dddvb/frontends/stv6111.c

449 lines
9.7 KiB
C
Raw Normal View History

2015-08-05 17:22:42 +02:00
/*
* Driver for the ST STV6111 tuner
*
* Copyright (C) 2014 Digital Devices GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 only, as published by the Free Software Foundation.
*
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
* Or, point your browser to http://www.gnu.org/copyleft/gpl.html
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/version.h>
#include <asm/div64.h>
#include "dvb_frontend.h"
static inline u32 MulDiv32(u32 a, u32 b, u32 c)
{
u64 tmp64;
tmp64 = (u64)a * (u64)b;
do_div(tmp64, c);
return (u32) tmp64;
}
struct stv {
struct i2c_adapter *i2c;
u8 adr;
u8 reg[11];
u32 ref_freq;
};
static int i2c_read(struct i2c_adapter *adap,
u8 adr, u8 *msg, int len, u8 *answ, int alen)
{
struct i2c_msg msgs[2] = { { .addr = adr, .flags = 0,
.buf = msg, .len = len},
{ .addr = adr, .flags = I2C_M_RD,
.buf = answ, .len = alen } };
if (i2c_transfer(adap, msgs, 2) != 2) {
pr_err("stv6111: i2c_read error\n");
return -1;
}
return 0;
}
static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len)
{
struct i2c_msg msg = {.addr = adr, .flags = 0,
.buf = data, .len = len};
if (i2c_transfer(adap, &msg, 1) != 1) {
pr_err("stv6111: i2c_write error\n");
return -1;
}
return 0;
}
static int write_regs(struct stv *state, int reg, int len)
{
u8 d[12];
memcpy(&d[1], &state->reg[reg], len);
d[0] = reg;
return i2c_write(state->i2c, state->adr, d, len + 1);
}
#if 0
static int write_reg(struct stv *state, u8 reg, u8 val)
{
u8 d[2] = {reg, val};
return i2c_write(state->i2c, state->adr, d, 2);
}
#endif
static int read_reg(struct stv *state, u8 reg, u8 *val)
{
return i2c_read(state->i2c, state->adr, &reg, 1, val, 1);
}
static int read_regs(struct stv *state, u8 reg, u8 *val, int len)
{
return i2c_read(state->i2c, state->adr, &reg, 1, val, len);
}
static void dump_regs(struct stv *state)
{
u8 d[11], *c = &state->reg[0];
read_regs(state, 0, d, 11);
#if 0
pr_info("stv6111_regs = %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7],
d[8], d[9], d[10]);
pr_info("reg[] = %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7],
c[8], c[9], c[10]);
#endif
}
static int wait_for_call_done(struct stv *state, u8 mask)
{
int status = 0;
u32 LockRetryCount = 10;
while (LockRetryCount > 0) {
u8 Status;
status = read_reg(state, 9, &Status);
if (status < 0)
return status;
if ((Status & mask) == 0)
break;
usleep_range(4000, 6000);
LockRetryCount -= 1;
status = -1;
}
return status;
}
static void init_state(struct stv *state)
{
u32 clkdiv = 0;
u32 agcmode = 0;
u32 agcref = 2;
u32 agcset = 0xffffffff;
u32 bbmode = 0xffffffff;
state->reg[0] = 0x08;
state->reg[1] = 0x41;
state->reg[2] = 0x8f;
state->reg[3] = 0x00;
state->reg[4] = 0xce;
state->reg[5] = 0x54;
state->reg[6] = 0x55;
state->reg[7] = 0x45;
state->reg[8] = 0x46;
state->reg[9] = 0xbd;
state->reg[10] = 0x11;
state->ref_freq = 16000;
if (clkdiv <= 3)
state->reg[0x00] |= (clkdiv & 0x03);
if (agcmode <= 3) {
state->reg[0x03] |= (agcmode << 5);
if (agcmode == 0x01)
state->reg[0x01] |= 0x30;
}
if (bbmode <= 3)
state->reg[0x01] = (state->reg[0x01] & ~0x30) | (bbmode << 4);
if (agcref <= 7)
state->reg[0x03] |= agcref;
if (agcset <= 31)
state->reg[0x02] = (state->reg[0x02] & ~0x1F) | agcset | 0x40;
}
static int attach_init(struct stv *state)
{
if (write_regs(state, 0, 11))
return -1;
dump_regs(state);
return 0;
}
static int sleep(struct dvb_frontend *fe)
{
/* struct tda_state *state = fe->tuner_priv; */
return 0;
}
static int init(struct dvb_frontend *fe)
{
/* struct tda_state *state = fe->tuner_priv; */
return 0;
}
static int release(struct dvb_frontend *fe)
{
kfree(fe->tuner_priv);
fe->tuner_priv = NULL;
return 0;
}
static int set_bandwidth(struct dvb_frontend *fe, u32 CutOffFrequency)
{
struct stv *state = fe->tuner_priv;
u32 index = (CutOffFrequency + 999999) / 1000000;
if (index < 6)
index = 6;
if (index > 50)
index = 50;
if ((state->reg[0x08] & ~0xFC) == ((index-6) << 2))
return 0;
state->reg[0x08] = (state->reg[0x08] & ~0xFC) | ((index-6) << 2);
state->reg[0x09] = (state->reg[0x09] & ~0x0C) | 0x08;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
write_regs(state, 0x08, 2);
wait_for_call_done(state, 0x08);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return 0;
}
static int set_lof(struct stv *state, u32 LocalFrequency, u32 CutOffFrequency)
{
u32 index = (CutOffFrequency + 999999) / 1000000;
u32 Frequency = (LocalFrequency + 500) / 1000;
u32 p = 1, psel = 0, fvco, div, frac;
u8 Icp, tmp;
/* pr_info("F = %u, COF = %u\n", Frequency, CutOffFrequency); */
if (index < 6)
index = 6;
if (index > 50)
index = 50;
if (Frequency <= 1300000) {
p = 4;
psel = 1;
} else {
p = 2;
psel = 0;
}
fvco = Frequency * p;
div = fvco / state->ref_freq;
frac = fvco % state->ref_freq;
frac = MulDiv32(frac, 0x40000, state->ref_freq);
Icp = 0;
if (fvco < 2700000)
Icp = 0;
else if (fvco < 2950000)
Icp = 1;
else if (fvco < 3300000)
Icp = 2;
else if (fvco < 3700000)
Icp = 3;
else if (fvco < 4200000)
Icp = 5;
else if (fvco < 4800000)
Icp = 6;
else
Icp = 7;
state->reg[0x02] |= 0x80; /* LNA IIP3 Mode */
state->reg[0x03] = (state->reg[0x03] & ~0x80) | (psel << 7);
state->reg[0x04] = (div & 0xFF);
state->reg[0x05] = (((div >> 8) & 0x01) | ((frac & 0x7F) << 1)) & 0xff;
state->reg[0x06] = ((frac >> 7) & 0xFF);
state->reg[0x07] = (state->reg[0x07] & ~0x07) | ((frac >> 15) & 0x07);
state->reg[0x07] = (state->reg[0x07] & ~0xE0) | (Icp << 5);
state->reg[0x08] = (state->reg[0x08] & ~0xFC) | ((index - 6) << 2);
/* Start cal vco,CF */
state->reg[0x09] = (state->reg[0x09] & ~0x0C) | 0x0C;
write_regs(state, 2, 8);
wait_for_call_done(state, 0x0C);
usleep_range(10000, 12000);
read_reg(state, 0x03, &tmp);
if (tmp & 0x10) {
state->reg[0x02] &= ~0x80; /* LNA NF Mode */
write_regs(state, 2, 1);
}
read_reg(state, 0x08, &tmp);
dump_regs(state);
return 0;
}
static int set_params(struct dvb_frontend *fe)
{
struct stv *state = fe->tuner_priv;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
u32 freq, symb, cutoff;
if (p->delivery_system != SYS_DVBS && p->delivery_system != SYS_DVBS2)
return -EINVAL;
freq = p->frequency * 1000;
symb = p->symbol_rate;
cutoff = 5000000 + MulDiv32(p->symbol_rate, 135, 200);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
set_lof(state, freq, cutoff);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
2015-10-22 14:54:48 +02:00
return 0;
2015-08-05 17:22:42 +02:00
}
static int get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
*frequency = 0;
return 0;
}
static u32 AGC_Gain[] = {
000, /* 0.0 */
000, /* 0.1 */
1000, /* 0.2 */
2000, /* 0.3 */
3000, /* 0.4 */
4000, /* 0.5 */
5000, /* 0.6 */
6000, /* 0.7 */
7000, /* 0.8 */
14000, /* 0.9 */
20000, /* 1.0 */
27000, /* 1.1 */
32000, /* 1.2 */
37000, /* 1.3 */
42000, /* 1.4 */
47000, /* 1.5 */
50000, /* 1.6 */
53000, /* 1.7 */
56000, /* 1.8 */
58000, /* 1.9 */
60000, /* 2.0 */
62000, /* 2.1 */
63000, /* 2.2 */
64000, /* 2.3 */
64500, /* 2.4 */
65000, /* 2.5 */
65500, /* 2.6 */
66000, /* 2.7 */
66500, /* 2.8 */
67000, /* 2.9 */
};
static int get_rf_strength(struct dvb_frontend *fe, u16 *st)
{
*st = 0;
#if 0
struct stv *state = fe->tuner_priv;
s32 Gain;
u32 Index = RFAgc / 100;
if (Index >= (sizeof(AGC_Gain) / sizeof(AGC_Gain[0]) - 1))
Gain = AGC_Gain[sizeof(AGC_Gain) / sizeof(AGC_Gain[0]) - 1];
else
Gain = AGC_Gain[Index] +
((AGC_Gain[Index+1] - AGC_Gain[Index]) *
(RFAgc % 100)) / 100;
*st = Gain;
#endif
return 0;
}
static int get_if(struct dvb_frontend *fe, u32 *frequency)
{
*frequency = 0;
return 0;
}
static int get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
{
return 0;
}
static struct dvb_tuner_ops tuner_ops = {
.info = {
.name = "STV6111",
.frequency_min = 950000,
.frequency_max = 2150000,
.frequency_step = 0
},
.init = init,
.sleep = sleep,
.set_params = set_params,
.release = release,
.get_frequency = get_frequency,
.get_if_frequency = get_if,
.get_bandwidth = get_bandwidth,
.get_rf_strength = get_rf_strength,
.set_bandwidth = set_bandwidth,
};
struct dvb_frontend *stv6111_attach(struct dvb_frontend *fe,
struct i2c_adapter *i2c, u8 adr)
{
struct stv *state;
int stat;
state = kzalloc(sizeof(struct stv), GFP_KERNEL);
if (!state)
return NULL;
state->adr = adr;
state->i2c = i2c;
memcpy(&fe->ops.tuner_ops, &tuner_ops, sizeof(struct dvb_tuner_ops));
init_state(state);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
stat = attach_init(state);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
if (stat < 0) {
kfree(state);
return 0;
}
fe->tuner_priv = state;
return fe;
}
EXPORT_SYMBOL_GPL(stv6111_attach);
MODULE_DESCRIPTION("STV6111 driver");
MODULE_AUTHOR("Ralph Metzler, Manfred Voelkel");
MODULE_LICENSE("GPL");
/*
* Local variables:
* c-basic-offset: 8
* End:
*/