1
0
mirror of https://github.com/DigitalDevices/dddvb.git synced 2023-10-10 13:37:43 +02:00
dddvb/frontends/cxd2099.c

727 lines
15 KiB
C
Raw Permalink Normal View History

2015-08-05 17:22:42 +02:00
/*
* cxd2099.c: Driver for the CXD2099AR Common Interface Controller
*
* Copyright (C) 2010-2013 Digital Devices GmbH
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 only, as published by the Free Software Foundation.
*
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
* Or, point your browser to http://www.gnu.org/copyleft/gpl.html
*/
#include <linux/version.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/i2c.h>
#include <linux/wait.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/io.h>
#include "cxd2099.h"
//#define BUFFER_MODE 1
static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount);
struct cxd {
struct dvb_ca_en50221 en;
struct i2c_adapter *i2c;
struct cxd2099_cfg cfg;
u8 regs[0x23];
u8 lastaddress;
u8 clk_reg_f;
u8 clk_reg_b;
int mode;
int ready;
int dr;
int write_busy;
int slot_stat;
u8 amem[1024];
int amem_read;
int cammode;
struct mutex lock;
u8 rbuf[1028];
u8 wbuf[1028];
};
static int i2c_write_reg(struct i2c_adapter *adapter, u8 adr,
u8 reg, u8 data)
{
u8 m[2] = {reg, data};
struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = m, .len = 2};
if (i2c_transfer(adapter, &msg, 1) != 1) {
pr_err("Failed to write to I2C register %02x@%02x!\n",
reg, adr);
return -1;
}
return 0;
}
static int i2c_write(struct i2c_adapter *adapter, u8 adr,
u8 *data, u16 len)
{
struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len};
if (i2c_transfer(adapter, &msg, 1) != 1) {
pr_err("Failed to write to I2C!\n");
return -1;
}
return 0;
}
static int i2c_read_reg(struct i2c_adapter *adapter, u8 adr,
u8 reg, u8 *val)
{
struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
.buf = &reg, .len = 1},
{.addr = adr, .flags = I2C_M_RD,
.buf = val, .len = 1} };
if (i2c_transfer(adapter, msgs, 2) != 2) {
pr_err("error in i2c_read_reg\n");
return -1;
}
return 0;
}
static int i2c_read(struct i2c_adapter *adapter, u8 adr,
u8 reg, u8 *data, u16 n)
{
struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
.buf = &reg, .len = 1},
{.addr = adr, .flags = I2C_M_RD,
.buf = data, .len = n} };
if (i2c_transfer(adapter, msgs, 2) != 2) {
pr_err("error in i2c_read\n");
return -1;
}
return 0;
}
static int read_block(struct cxd *ci, u8 adr, u8 *data, u16 n)
{
int status = 0;
if (ci->lastaddress != adr)
status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr);
if (!status) {
ci->lastaddress = adr;
while (n) {
int len = n;
if (ci->cfg.max_i2c &&
len > ci->cfg.max_i2c)
len = ci->cfg.max_i2c;
status = i2c_read(ci->i2c, ci->cfg.adr, 1, data, len);
if (status)
return status;
data += len;
n -= len;
}
}
return status;
}
static int read_reg(struct cxd *ci, u8 reg, u8 *val)
{
return read_block(ci, reg, val, 1);
}
static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
{
int status;
u8 addr[3] = {2, address & 0xff, address >> 8};
status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
if (!status)
status = i2c_read(ci->i2c, ci->cfg.adr, 3, data, n);
return status;
}
static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n)
{
int status;
u8 addr[3] = {2, address & 0xff, address >> 8};
status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
if (!status) {
u8 buf[256] = {3};
memcpy(buf + 1, data, n);
status = i2c_write(ci->i2c, ci->cfg.adr, buf, n+1);
}
return status;
}
static int read_io(struct cxd *ci, u16 address, u8 *val)
{
int status;
u8 addr[3] = {2, address & 0xff, address >> 8};
status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
if (!status)
status = i2c_read(ci->i2c, ci->cfg.adr, 3, val, 1);
return status;
}
static int write_io(struct cxd *ci, u16 address, u8 val)
{
int status;
u8 addr[3] = {2, address & 0xff, address >> 8};
u8 buf[2] = {3, val};
status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
if (!status)
status = i2c_write(ci->i2c, ci->cfg.adr, buf, 2);
return status;
}
#if 0
static int read_io_data(struct cxd *ci, u8 *data, u16 n)
{
int status;
u8 addr[3] = { 2, 0, 0 };
status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
if (!status)
status = i2c_read(ci->i2c, ci->cfg.adr, 3, data, n);
return 0;
}
static int write_io_data(struct cxd *ci, u8 *data, u16 n)
{
int status;
u8 addr[3] = {2, 0, 0};
status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
if (!status) {
u8 buf[256] = {3};
memcpy(buf + 1, data, n);
status = i2c_write(ci->i2c, ci->cfg.adr, buf, n + 1);
}
return 0;
}
#endif
static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask)
{
int status = 0;
if (ci->lastaddress != reg)
status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, reg);
if (!status && reg >= 6 && reg <= 8 && mask != 0xff)
status = i2c_read_reg(ci->i2c, ci->cfg.adr, 1, &ci->regs[reg]);
ci->lastaddress = reg;
ci->regs[reg] = (ci->regs[reg] & (~mask)) | val;
if (!status)
status = i2c_write_reg(ci->i2c, ci->cfg.adr, 1, ci->regs[reg]);
if (reg == 0x20)
ci->regs[reg] &= 0x7f;
return status;
}
static int write_reg(struct cxd *ci, u8 reg, u8 val)
{
return write_regm(ci, reg, val, 0xff);
}
#ifdef BUFFER_MODE
static int write_block(struct cxd *ci, u8 adr, u8 *data, u16 n)
{
int status = 0;
u8 *buf = ci->wbuf;
if (ci->lastaddress != adr)
status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, adr);
if (status)
return status;
printk("write_block %d\n", n);
ci->lastaddress = adr;
buf[0] = 1;
while (n) {
int len = n;
if (ci->cfg.max_i2c &&
len + 1 > ci->cfg.max_i2c)
len = ci->cfg.max_i2c - 1;
printk("write %d\n", len);
memcpy(buf + 1, data, len);
status = i2c_write(ci->i2c, ci->cfg.adr, buf, len + 1);
if (status)
return status;
n -= len;
data += len;
}
return status;
}
#endif
static void set_mode(struct cxd *ci, int mode)
{
if (mode == ci->mode)
return;
switch (mode) {
case 0x00: /* IO mem */
write_regm(ci, 0x06, 0x00, 0x07);
break;
case 0x01: /* ATT mem */
write_regm(ci, 0x06, 0x02, 0x07);
break;
default:
break;
}
ci->mode = mode;
}
static void cam_mode(struct cxd *ci, int mode)
{
u8 dummy;
if (mode == ci->cammode)
return;
switch (mode) {
case 0x00:
write_regm(ci, 0x20, 0x80, 0x80);
break;
case 0x01:
if (!ci->en.read_data)
return;
ci->write_busy = 0;
pr_info("enable cam buffer mode\n");
write_reg(ci, 0x0d, 0x00);
write_reg(ci, 0x0e, 0x01);
write_regm(ci, 0x08, 0x40, 0x40);
read_reg(ci, 0x12, &dummy);
write_regm(ci, 0x08, 0x80, 0x80);
break;
default:
break;
}
ci->cammode = mode;
}
#define CHK_ERROR(s) if ((status = s)) break
static int init(struct cxd *ci)
{
int status;
mutex_lock(&ci->lock);
ci->mode = -1;
do {
CHK_ERROR(write_reg(ci, 0x00, 0x00));
CHK_ERROR(write_reg(ci, 0x01, 0x00));
CHK_ERROR(write_reg(ci, 0x02, 0x10));
CHK_ERROR(write_reg(ci, 0x03, 0x00));
CHK_ERROR(write_reg(ci, 0x05, 0xFF));
CHK_ERROR(write_reg(ci, 0x06, 0x1F));
CHK_ERROR(write_reg(ci, 0x07, 0x1F));
CHK_ERROR(write_reg(ci, 0x08, 0x28));
CHK_ERROR(write_reg(ci, 0x14, 0x20));
/* TOSTRT = 8, Mode B (gated clock), falling Edge,
Serial, POL=HIGH, MSB */
CHK_ERROR(write_reg(ci, 0x0A, 0xA7));
CHK_ERROR(write_reg(ci, 0x0B, 0x33));
CHK_ERROR(write_reg(ci, 0x0C, 0x33));
CHK_ERROR(write_regm(ci, 0x14, 0x00, 0x0F));
CHK_ERROR(write_reg(ci, 0x15, ci->clk_reg_b));
CHK_ERROR(write_regm(ci, 0x16, 0x00, 0x0F));
CHK_ERROR(write_reg(ci, 0x17, ci->clk_reg_f));
if (ci->cfg.clock_mode == 2) {
/* bitrate*2^13/ 72000 */
u32 reg = ((ci->cfg.bitrate << 13) + 71999) / 72000;
if (ci->cfg.polarity) {
CHK_ERROR(write_reg(ci, 0x09, 0x6f));
} else {
CHK_ERROR(write_reg(ci, 0x09, 0x6d));
}
CHK_ERROR(write_reg(ci, 0x20, 0x08));
CHK_ERROR(write_reg(ci, 0x21, (reg >> 8) & 0xff));
CHK_ERROR(write_reg(ci, 0x22, reg & 0xff));
} else if (ci->cfg.clock_mode == 1) {
if (ci->cfg.polarity) {
CHK_ERROR(write_reg(ci, 0x09, 0x6f)); /* D */
} else {
CHK_ERROR(write_reg(ci, 0x09, 0x6d));
}
CHK_ERROR(write_reg(ci, 0x20, 0x68));
CHK_ERROR(write_reg(ci, 0x21, 0x00));
CHK_ERROR(write_reg(ci, 0x22, 0x02));
} else {
if (ci->cfg.polarity) {
CHK_ERROR(write_reg(ci, 0x09, 0x4f)); /* C */
} else {
CHK_ERROR(write_reg(ci, 0x09, 0x4d));
}
CHK_ERROR(write_reg(ci, 0x20, 0x28));
CHK_ERROR(write_reg(ci, 0x21, 0x00));
CHK_ERROR(write_reg(ci, 0x22, 0x07));
}
CHK_ERROR(write_regm(ci, 0x20, 0x80, 0x80));
CHK_ERROR(write_regm(ci, 0x03, 0x02, 0x02));
CHK_ERROR(write_reg(ci, 0x01, 0x04));
CHK_ERROR(write_reg(ci, 0x00, 0x31));
/* Put TS in bypass */
CHK_ERROR(write_regm(ci, 0x09, 0x08, 0x08));
ci->cammode = -1;
cam_mode(ci, 0);
} while (0);
mutex_unlock(&ci->lock);
return 0;
}
static int read_attribute_mem(struct dvb_ca_en50221 *ca,
int slot, int address)
{
struct cxd *ci = ca->data;
#if 0
if (ci->amem_read) {
if (address <= 0 || address > 1024)
return -EIO;
return ci->amem[address];
}
mutex_lock(&ci->lock);
write_regm(ci, 0x06, 0x00, 0x05);
read_pccard(ci, 0, &ci->amem[0], 128);
read_pccard(ci, 128, &ci->amem[0], 128);
read_pccard(ci, 256, &ci->amem[0], 128);
read_pccard(ci, 384, &ci->amem[0], 128);
write_regm(ci, 0x06, 0x05, 0x05);
mutex_unlock(&ci->lock);
return ci->amem[address];
#else
u8 val;
mutex_lock(&ci->lock);
set_mode(ci, 1);
read_pccard(ci, address, &val, 1);
mutex_unlock(&ci->lock);
return val;
#endif
}
static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot,
int address, u8 value)
{
struct cxd *ci = ca->data;
mutex_lock(&ci->lock);
set_mode(ci, 1);
write_pccard(ci, address, &value, 1);
mutex_unlock(&ci->lock);
return 0;
}
static int read_cam_control(struct dvb_ca_en50221 *ca,
int slot, u8 address)
{
struct cxd *ci = ca->data;
u8 val;
mutex_lock(&ci->lock);
set_mode(ci, 0);
read_io(ci, address, &val);
mutex_unlock(&ci->lock);
return val;
}
static int write_cam_control(struct dvb_ca_en50221 *ca, int slot,
u8 address, u8 value)
{
struct cxd *ci = ca->data;
mutex_lock(&ci->lock);
set_mode(ci, 0);
write_io(ci, address, value);
mutex_unlock(&ci->lock);
return 0;
}
static int slot_reset(struct dvb_ca_en50221 *ca, int slot)
{
struct cxd *ci = ca->data;
if (ci->cammode)
read_data(ca, slot, ci->rbuf, 0);
mutex_lock(&ci->lock);
#if 0
write_reg(ci, 0x00, 0x21);
write_reg(ci, 0x06, 0x1F);
write_reg(ci, 0x00, 0x31);
#else
#if 0
write_reg(ci, 0x06, 0x1F);
write_reg(ci, 0x06, 0x2F);
#else
cam_mode(ci, 0);
write_reg(ci, 0x00, 0x21);
write_reg(ci, 0x06, 0x1F);
/*msleep(300);*/
write_reg(ci, 0x00, 0x31);
write_regm(ci, 0x20, 0x80, 0x80);
write_reg(ci, 0x03, 0x02);
ci->ready = 0;
#endif
#endif
ci->mode = -1;
{
int i;
#if 0
u8 val;
#endif
for (i = 0; i < 100; i++) {
msleep(20);
#if 0
read_reg(ci, 0x06, &val);
pr_info(KERN_INFO "%d:%02x\n", i, val);
if (!(val&0x10))
break;
#else
if (ci->ready)
break;
#endif
}
}
mutex_unlock(&ci->lock);
/* msleep(500); */
return 0;
}
static int slot_shutdown(struct dvb_ca_en50221 *ca, int slot)
{
struct cxd *ci = ca->data;
pr_info("slot_shutdown\n");
if (ci->cammode)
read_data(ca, slot, ci->rbuf, 0);
mutex_lock(&ci->lock);
write_reg(ci, 0x00, 0x21);
write_reg(ci, 0x06, 0x1F);
msleep(300);
write_regm(ci, 0x09, 0x08, 0x08);
write_regm(ci, 0x20, 0x80, 0x80); /* Reset CAM Mode */
write_regm(ci, 0x06, 0x07, 0x07); /* Clear IO Mode */
ci->mode = -1;
ci->write_busy = 0;
mutex_unlock(&ci->lock);
return 0;
}
static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot)
{
struct cxd *ci = ca->data;
mutex_lock(&ci->lock);
write_regm(ci, 0x09, 0x00, 0x08);
set_mode(ci, 0);
cam_mode(ci, 1);
mutex_unlock(&ci->lock);
return 0;
}
static int campoll(struct cxd *ci)
{
u8 istat;
read_reg(ci, 0x04, &istat);
if (!istat)
return 0;
write_reg(ci, 0x05, istat);
if (istat & 0x40)
ci->dr = 1;
if (istat & 0x20)
ci->write_busy = 0;
if (istat & 2) {
u8 slotstat;
read_reg(ci, 0x01, &slotstat);
if (!(2 & slotstat)) {
if (!ci->slot_stat) {
ci->slot_stat |=
DVB_CA_EN50221_POLL_CAM_PRESENT;
write_regm(ci, 0x03, 0x08, 0x08);
}
} else {
if (ci->slot_stat) {
ci->slot_stat = 0;
write_regm(ci, 0x03, 0x00, 0x08);
pr_info("NO CAM\n");
ci->ready = 0;
}
}
if ((istat & 8) &&
(ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT)) {
ci->ready = 1;
ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY;
}
}
return 0;
}
static int poll_slot_status(struct dvb_ca_en50221 *ca, int slot, int open)
{
struct cxd *ci = ca->data;
u8 slotstat;
mutex_lock(&ci->lock);
campoll(ci);
read_reg(ci, 0x01, &slotstat);
mutex_unlock(&ci->lock);
return ci->slot_stat;
}
static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
{
struct cxd *ci = ca->data;
u8 msb, lsb;
u16 len;
mutex_lock(&ci->lock);
campoll(ci);
mutex_unlock(&ci->lock);
if (!ci->dr)
return 0;
mutex_lock(&ci->lock);
read_reg(ci, 0x0f, &msb);
read_reg(ci, 0x10, &lsb);
len = ((u16) msb << 8) | lsb;
if (len > ecount || len < 2) {
/* read it anyway or cxd may hang */
read_block(ci, 0x12, ci->rbuf, len);
mutex_unlock(&ci->lock);
return -EIO;
}
read_block(ci, 0x12, ebuf, len);
ci->dr = 0;
mutex_unlock(&ci->lock);
#if 0
pr_info("read_data %d\n", len);
{
int i;
for (i = 0; i < len; i++)
pr_info("%02x ", ebuf[i]);
pr_info("\n");
}
#endif
return len;
}
#ifdef BUFFER_MODE
static int write_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
{
struct cxd *ci = ca->data;
if (ci->write_busy)
return -EAGAIN;
mutex_lock(&ci->lock);
write_reg(ci, 0x0d, ecount >> 8);
write_reg(ci, 0x0e, ecount & 0xff);
write_block(ci, 0x11, ebuf, ecount);
ci->write_busy = 1;
mutex_unlock(&ci->lock);
return ecount;
}
#endif
static struct dvb_ca_en50221 en_templ = {
.read_attribute_mem = read_attribute_mem,
.write_attribute_mem = write_attribute_mem,
.read_cam_control = read_cam_control,
.write_cam_control = write_cam_control,
.slot_reset = slot_reset,
.slot_shutdown = slot_shutdown,
.slot_ts_enable = slot_ts_enable,
.poll_slot_status = poll_slot_status,
#ifdef BUFFER_MODE
.read_data = read_data,
.write_data = write_data,
#endif
};
struct dvb_ca_en50221 *cxd2099_attach(struct cxd2099_cfg *cfg,
void *priv,
struct i2c_adapter *i2c)
{
struct cxd *ci = 0;
u8 val;
if (i2c_read_reg(i2c, cfg->adr, 0, &val) < 0) {
pr_info("No CXD2099 detected at %02x\n", cfg->adr);
return 0;
}
ci = kzalloc(sizeof(struct cxd), GFP_KERNEL);
if (!ci)
return 0;
mutex_init(&ci->lock);
memcpy(&ci->cfg, cfg, sizeof(struct cxd2099_cfg));
ci->i2c = i2c;
ci->lastaddress = 0xff;
ci->clk_reg_b = 0x4a;
ci->clk_reg_f = 0x1b;
memcpy(&ci->en, &en_templ, sizeof(en_templ));
ci->en.data = ci;
init(ci);
pr_info("Attached CXD2099AR at %02x\n", ci->cfg.adr);
return &ci->en;
}
EXPORT_SYMBOL(cxd2099_attach);
MODULE_DESCRIPTION("cxd2099");
MODULE_AUTHOR("Ralph Metzler");
MODULE_LICENSE("GPL");