/* * Driver for the ST STV6111 tuner * * Copyright (C) 2014 Digital Devices GmbH * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 only, as published by the Free Software Foundation. * * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA * Or, point your browser to http://www.gnu.org/copyleft/gpl.html */ #include #include #include #include #include #include #include #include #include #include static inline u32 MulDiv32(u32 a, u32 b, u32 c) { u64 tmp64; tmp64 = (u64)a * (u64)b; do_div(tmp64, c); return (u32) tmp64; } struct stv { struct i2c_adapter *i2c; u8 adr; u8 reg[11]; u32 ref_freq; u32 Frequency; }; static int i2c_read(struct i2c_adapter *adap, u8 adr, u8 *msg, int len, u8 *answ, int alen) { struct i2c_msg msgs[2] = { { .addr = adr, .flags = 0, .buf = msg, .len = len}, { .addr = adr, .flags = I2C_M_RD, .buf = answ, .len = alen } }; if (i2c_transfer(adap, msgs, 2) != 2) { pr_err("stv6111: i2c_read error\n"); return -1; } return 0; } static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len) { struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len}; if (i2c_transfer(adap, &msg, 1) != 1) { pr_err("stv6111: i2c_write error\n"); return -1; } return 0; } static int write_regs(struct stv *state, int reg, int len) { u8 d[12]; memcpy(&d[1], &state->reg[reg], len); d[0] = reg; return i2c_write(state->i2c, state->adr, d, len + 1); } static int write_reg(struct stv *state, u8 reg, u8 val) { u8 d[2] = {reg, val}; return i2c_write(state->i2c, state->adr, d, 2); } static int read_reg(struct stv *state, u8 reg, u8 *val) { return i2c_read(state->i2c, state->adr, ®, 1, val, 1); } #if 0 static int read_regs(struct stv *state, u8 reg, u8 *val, int len) { return i2c_read(state->i2c, state->adr, ®, 1, val, len); } static void dump_regs(struct stv *state) { u8 d[11], *c = &state->reg[0]; read_regs(state, 0, d, 11); pr_info("stv6111_regs = %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7], d[8], d[9], d[10]); pr_info("reg[] = %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7], c[8], c[9], c[10]); } #endif static int wait_for_call_done(struct stv *state, u8 mask) { int status = 0; u32 LockRetryCount = 10; while (LockRetryCount > 0) { u8 Status; status = read_reg(state, 9, &Status); if (status < 0) return status; if ((Status & mask) == 0) break; usleep_range(4000, 6000); LockRetryCount -= 1; status = -1; } return status; } static void init_state(struct stv *state) { u32 clkdiv = 0; u32 agcmode = 0; u32 agcref = 2; u32 agcset = 0xffffffff; u32 bbmode = 0xffffffff; state->reg[0] = 0x08; state->reg[1] = 0x41; state->reg[2] = 0x8f; state->reg[3] = 0x00; state->reg[4] = 0xce; state->reg[5] = 0x54; state->reg[6] = 0x55; state->reg[7] = 0x45; state->reg[8] = 0x46; state->reg[9] = 0xbd; state->reg[10] = 0x11; state->ref_freq = 16000; if (clkdiv <= 3) state->reg[0x00] |= (clkdiv & 0x03); if (agcmode <= 3) { state->reg[0x03] |= (agcmode << 5); if (agcmode == 0x01) state->reg[0x01] |= 0x30; } if (bbmode <= 3) state->reg[0x01] = (state->reg[0x01] & ~0x30) | (bbmode << 4); if (agcref <= 7) state->reg[0x03] |= agcref; if (agcset <= 31) state->reg[0x02] = (state->reg[0x02] & ~0x1F) | agcset | 0x40; } static int attach_init(struct stv *state) { if (write_regs(state, 0, 11)) return -1; #if 0 dump_regs(state); #endif return 0; } static int sleep(struct dvb_frontend *fe) { /* struct tda_state *state = fe->tuner_priv; */ return 0; } static int init(struct dvb_frontend *fe) { /* struct tda_state *state = fe->tuner_priv; */ return 0; } static void release(struct dvb_frontend *fe) { kfree(fe->tuner_priv); fe->tuner_priv = NULL; } static int set_bandwidth(struct dvb_frontend *fe, u32 CutOffFrequency) { struct stv *state = fe->tuner_priv; u32 index = (CutOffFrequency + 999999) / 1000000; int stat = 0; if (index < 6) index = 6; if (index > 50) index = 50; if ((state->reg[0x08] & ~0xFC) == ((index-6) << 2)) return 0; state->reg[0x08] = (state->reg[0x08] & ~0xFC) | ((index-6) << 2); state->reg[0x09] = (state->reg[0x09] & ~0x0C) | 0x08; if (fe->ops.i2c_gate_ctrl) stat = fe->ops.i2c_gate_ctrl(fe, 1); if (!stat) { write_regs(state, 0x08, 2); wait_for_call_done(state, 0x08); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } return stat; } static int set_lof(struct stv *state, u32 LocalFrequency, u32 CutOffFrequency) { u32 index = (CutOffFrequency + 999999) / 1000000; u32 Frequency = (LocalFrequency + 500) / 1000; u32 p = 1, psel = 0, fvco, div, frac; u8 Icp, tmp; /* pr_info("F = %u, COF = %u\n", Frequency, CutOffFrequency); */ if (index < 6) index = 6; if (index > 50) index = 50; if (Frequency <= 1300000) { p = 4; psel = 1; } else { p = 2; psel = 0; } fvco = Frequency * p; div = fvco / state->ref_freq; frac = fvco % state->ref_freq; frac = MulDiv32(frac, 0x40000, state->ref_freq); Icp = 0; if (fvco < 2700000) Icp = 0; else if (fvco < 2950000) Icp = 1; else if (fvco < 3300000) Icp = 2; else if (fvco < 3700000) Icp = 3; else if (fvco < 4200000) Icp = 5; else if (fvco < 4800000) Icp = 6; else Icp = 7; state->reg[0x02] |= 0x80; /* LNA IIP3 Mode */ state->reg[0x03] = (state->reg[0x03] & ~0x80) | (psel << 7); state->reg[0x04] = (div & 0xFF); state->reg[0x05] = (((div >> 8) & 0x01) | ((frac & 0x7F) << 1)) & 0xff; state->reg[0x06] = ((frac >> 7) & 0xFF); state->reg[0x07] = (state->reg[0x07] & ~0x07) | ((frac >> 15) & 0x07); state->reg[0x07] = (state->reg[0x07] & ~0xE0) | (Icp << 5); state->reg[0x08] = (state->reg[0x08] & ~0xFC) | ((index - 6) << 2); /* Start cal vco,CF */ state->reg[0x09] = (state->reg[0x09] & ~0x0C) | 0x0C; write_regs(state, 2, 8); wait_for_call_done(state, 0x0C); usleep_range(10000, 12000); read_reg(state, 0x03, &tmp); if (tmp & 0x10) { state->reg[0x02] &= ~0x80; /* LNA NF Mode */ write_regs(state, 2, 1); } read_reg(state, 0x08, &tmp); state->Frequency = Frequency; #if 0 dump_regs(state); #endif return 0; } static int set_params(struct dvb_frontend *fe) { struct stv *state = fe->tuner_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; u32 freq, symb, cutoff; int stat = 0; if (p->delivery_system != SYS_DVBS && p->delivery_system != SYS_DVBS2) return -EINVAL; freq = p->frequency * 1000; symb = p->symbol_rate; cutoff = 5000000 + MulDiv32(p->symbol_rate, 135, 200); if (fe->ops.i2c_gate_ctrl) stat = fe->ops.i2c_gate_ctrl(fe, 1); if (!stat) { set_lof(state, freq, cutoff); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } return stat; } static int get_frequency(struct dvb_frontend *fe, u32 *frequency) { struct stv *state = fe->tuner_priv; *frequency = state->Frequency; return 0; } struct SLookup { s16 Value; u16 RegValue; }; static struct SLookup LNAGain_NF_LookUp[] = { /*Gain *100dB*/ /*Reg*/ { 2572 , 0 }, { 2575 , 1 }, { 2580 , 2 }, { 2588 , 3 }, { 2596 , 4 }, { 2611 , 5 }, { 2633 , 6 }, { 2664 , 7 }, { 2701 , 8 }, { 2753 , 9 }, { 2816 , 10 }, { 2902 , 11 }, { 2995 , 12 }, { 3104 , 13 }, { 3215 , 14 }, { 3337 , 15 }, { 3492 , 16 }, { 3614 , 17 }, { 3731 , 18 }, { 3861 , 19 }, { 3988 , 20 }, { 4124 , 21 }, { 4253 , 22 }, { 4386 , 23 }, { 4505 , 24 }, { 4623 , 25 }, { 4726 , 26 }, { 4821 , 27 }, { 4903 , 28 }, { 4979 , 29 }, { 5045 , 30 }, { 5102 , 31 } }; static struct SLookup LNAGain_IIP3_LookUp[] = { /*Gain *100dB*/ /*reg*/ { 1548 , 0 }, { 1552 , 1 }, { 1569 , 2 }, { 1565 , 3 }, { 1577 , 4 }, { 1594 , 5 }, { 1627 , 6 }, { 1656 , 7 }, { 1700 , 8 }, { 1748 , 9 }, { 1805 , 10 }, { 1896 , 11 }, { 1995 , 12 }, { 2113 , 13 }, { 2233 , 14 }, { 2366 , 15 }, { 2543 , 16 }, { 2687 , 17 }, { 2842 , 18 }, { 2999 , 19 }, { 3167 , 20 }, { 3342 , 21 }, { 3507 , 22 }, { 3679 , 23 }, { 3827 , 24 }, { 3970 , 25 }, { 4094 , 26 }, { 4210 , 27 }, { 4308 , 28 }, { 4396 , 29 }, { 4468 , 30 }, { 4535 , 31 } }; static struct SLookup Gain_RFAGC_LookUp[] = { /*Gain *100dB*/ /*reg*/ { 4870 , 0x3000 }, { 4850 , 0x3C00 }, { 4800 , 0x4500 }, { 4750 , 0x4800 }, { 4700 , 0x4B00 }, { 4650 , 0x4D00 }, { 4600 , 0x4F00 }, { 4550 , 0x5100 }, { 4500 , 0x5200 }, { 4420 , 0x5500 }, { 4316 , 0x5800 }, { 4200 , 0x5B00 }, { 4119 , 0x5D00 }, { 3999 , 0x6000 }, { 3950 , 0x6100 }, { 3876 , 0x6300 }, { 3755 , 0x6600 }, { 3641 , 0x6900 }, { 3567 , 0x6B00 }, { 3425 , 0x6F00 }, { 3350 , 0x7100 }, { 3236 , 0x7400 }, { 3118 , 0x7700 }, { 3004 , 0x7A00 }, { 2917 , 0x7C00 }, { 2776 , 0x7F00 }, { 2635 , 0x8200 }, { 2516 , 0x8500 }, { 2406 , 0x8800 }, { 2290 , 0x8B00 }, { 2170 , 0x8E00 }, { 2073 , 0x9100 }, { 1949 , 0x9400 }, { 1836 , 0x9700 }, { 1712 , 0x9A00 }, { 1631 , 0x9C00 }, { 1515 , 0x9F00 }, { 1400 , 0xA200 }, { 1323 , 0xA400 }, { 1203 , 0xA700 }, { 1091 , 0xAA00 }, { 1011 , 0xAC00 }, { 904 , 0xAF00 }, { 787 , 0xB200 }, { 685 , 0xB500 }, { 571 , 0xB800 }, { 464 , 0xBB00 }, { 374 , 0xBE00 }, { 275 , 0xC200 }, { 181 , 0xC600 }, { 102 , 0xCC00 }, { 49 , 0xD900 } }; // This table is 6 dB too low comapred to the others (probably created with a different BB_MAG setting) static struct SLookup Gain_Channel_AGC_NF_LookUp[] = { /*Gain *100dB*/ /*reg*/ { 7082 , 0x3000 }, { 7052 , 0x4000 }, { 7007 , 0x4600 }, { 6954 , 0x4A00 }, { 6909 , 0x4D00 }, { 6833 , 0x5100 }, { 6753 , 0x5400 }, { 6659 , 0x5700 }, { 6561 , 0x5A00 }, { 6472 , 0x5C00 }, { 6366 , 0x5F00 }, { 6259 , 0x6100 }, { 6151 , 0x6400 }, { 6026 , 0x6700 }, { 5920 , 0x6900 }, { 5835 , 0x6B00 }, { 5770 , 0x6C00 }, { 5681 , 0x6E00 }, { 5596 , 0x7000 }, { 5503 , 0x7200 }, { 5429 , 0x7300 }, { 5319 , 0x7500 }, { 5220 , 0x7700 }, { 5111 , 0x7900 }, { 4983 , 0x7B00 }, { 4876 , 0x7D00 }, { 4755 , 0x7F00 }, { 4635 , 0x8100 }, { 4499 , 0x8300 }, { 4405 , 0x8500 }, { 4323 , 0x8600 }, { 4233 , 0x8800 }, { 4156 , 0x8A00 }, { 4038 , 0x8C00 }, { 3935 , 0x8E00 }, { 3823 , 0x9000 }, { 3712 , 0x9200 }, { 3601 , 0x9500 }, { 3511 , 0x9700 }, { 3413 , 0x9900 }, { 3309 , 0x9B00 }, { 3213 , 0x9D00 }, { 3088 , 0x9F00 }, { 2992 , 0xA100 }, { 2878 , 0xA400 }, { 2769 , 0xA700 }, { 2645 , 0xAA00 }, { 2538 , 0xAD00 }, { 2441 , 0xB000 }, { 2350 , 0xB600 }, { 2237 , 0xBA00 }, { 2137 , 0xBF00 }, { 2039 , 0xC500 }, { 1938 , 0xDF00 }, { 1927 , 0xFF00 } }; static struct SLookup Gain_Channel_AGC_IIP3_LookUp[] = { /*Gain *100dB*/ /*reg*/ { 7070 , 0x3000 }, { 7028 , 0x4000 }, { 7019 , 0x4600 }, { 6900 , 0x4A00 }, { 6811 , 0x4D00 }, { 6763 , 0x5100 }, { 6690 , 0x5400 }, { 6644 , 0x5700 }, { 6617 , 0x5A00 }, { 6598 , 0x5C00 }, { 6462 , 0x5F00 }, { 6348 , 0x6100 }, { 6197 , 0x6400 }, { 6154 , 0x6700 }, { 6098 , 0x6900 }, { 5893 , 0x6B00 }, { 5812 , 0x6C00 }, { 5773 , 0x6E00 }, { 5723 , 0x7000 }, { 5661 , 0x7200 }, { 5579 , 0x7300 }, { 5460 , 0x7500 }, { 5308 , 0x7700 }, { 5099 , 0x7900 }, { 4910 , 0x7B00 }, { 4800 , 0x7D00 }, { 4785 , 0x7F00 }, { 4635 , 0x8100 }, { 4466 , 0x8300 }, { 4314 , 0x8500 }, { 4295 , 0x8600 }, { 4144 , 0x8800 }, { 3920 , 0x8A00 }, { 3889 , 0x8C00 }, { 3771 , 0x8E00 }, { 3655 , 0x9000 }, { 3446 , 0x9200 }, { 3298 , 0x9500 }, { 3083 , 0x9700 }, { 3015 , 0x9900 }, { 2833 , 0x9B00 }, { 2746 , 0x9D00 }, { 2632 , 0x9F00 }, { 2598 , 0xA100 }, { 2480 , 0xA400 }, { 2236 , 0xA700 }, { 2171 , 0xAA00 }, { 2060 , 0xAD00 }, { 1999 , 0xB000 }, { 1974 , 0xB600 }, { 1820 , 0xBA00 }, { 1741 , 0xBF00 }, { 1655 , 0xC500 }, { 1444 , 0xDF00 }, { 1325 , 0xFF00 }, }; static s32 TableLookup(struct SLookup *Table, int TableSize, u16 RegValue) { s32 Gain; s32 RegDiff; int imin = 0; int imax = TableSize - 1; int i; // Assumes Table[0].RegValue < Table[imax].RegValue if( RegValue <= Table[0].RegValue ) Gain = Table[0].Value; else if( RegValue >= Table[imax].RegValue ) Gain = Table[imax].Value; else { while(imax-imin > 1) { i = (imax + imin) / 2; if ((Table[imin].RegValue <= RegValue) && (RegValue <= Table[i].RegValue) ) imax = i; else imin = i; } RegDiff = Table[imax].RegValue - Table[imin].RegValue; Gain = Table[imin].Value; if (RegDiff != 0) Gain += ((s32) (RegValue - Table[imin].RegValue) * (s32)(Table[imax].Value - Table[imin].Value))/(RegDiff); } return Gain; } static int get_rf_strength(struct dvb_frontend *fe, u16 *st) { struct stv *state = fe->tuner_priv; u16 RFAgc = *st; s32 Gain; if ((state->reg[0x03] & 0x60) == 0 ) { // RF Mode // Read AGC ADC u8 Reg = 0; int stat = 0; if (fe->ops.i2c_gate_ctrl) stat = fe->ops.i2c_gate_ctrl(fe, 1); if (!stat) { write_reg(state, 0x02, state->reg[0x02] | 0x20); read_reg(state, 2, &Reg); if (Reg & 0x20) read_reg(state, 2, &Reg); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } if((state->reg[0x02] & 0x80) == 0) // NF Gain = TableLookup(LNAGain_NF_LookUp, ARRAY_SIZE(LNAGain_NF_LookUp), Reg & 0x1F); else // IIP3 Gain = TableLookup(LNAGain_IIP3_LookUp, ARRAY_SIZE(LNAGain_IIP3_LookUp), Reg & 0x1F); Gain += TableLookup(Gain_RFAGC_LookUp, ARRAY_SIZE(Gain_RFAGC_LookUp), RFAgc); Gain -= 2400; } else { // Channel Mode if( (state->reg[0x02] & 0x80) == 0 ) { // NF Gain = TableLookup(Gain_Channel_AGC_NF_LookUp, ARRAY_SIZE(Gain_Channel_AGC_NF_LookUp), RFAgc); Gain += 600; } else { // IIP3 Gain = TableLookup(Gain_Channel_AGC_IIP3_LookUp, ARRAY_SIZE(Gain_Channel_AGC_IIP3_LookUp), RFAgc); } } if (state->Frequency > 0) // Tilt correction ( 0.00016 dB/MHz ) Gain -= ((((s32)(state->Frequency / 1000) - 1550) * 2) / 12); Gain += (s32)( (state->reg[0x01] & 0xC0 ) >> 6 ) * 600 - 1300;// + (BBGain * 10); if( Gain < 0 ) Gain = 0; else if (Gain > 10000) Gain = 10000; *st = 10000 - Gain; return 0; } static int get_if(struct dvb_frontend *fe, u32 *frequency) { *frequency = 0; return 0; } static int get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth) { return 0; } static struct dvb_tuner_ops tuner_ops = { .info = { .name = "STV6111", .frequency_min_hz = 950000000, .frequency_max_hz = 2150000000, .frequency_step_hz = 0 }, .init = init, .sleep = sleep, .set_params = set_params, .release = release, .get_frequency = get_frequency, .get_if_frequency = get_if, .get_bandwidth = get_bandwidth, .get_rf_strength = get_rf_strength, .set_bandwidth = set_bandwidth, }; struct dvb_frontend *stv6111_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, u8 adr) { struct stv *state; int stat = 0; state = kzalloc(sizeof(struct stv), GFP_KERNEL); if (!state) return NULL; state->adr = adr; state->i2c = i2c; memcpy(&fe->ops.tuner_ops, &tuner_ops, sizeof(struct dvb_tuner_ops)); init_state(state); if (fe->ops.i2c_gate_ctrl) stat = fe->ops.i2c_gate_ctrl(fe, 1); if (!stat) { stat = attach_init(state); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } if (stat < 0) { kfree(state); return NULL; } fe->tuner_priv = state; return fe; } EXPORT_SYMBOL_GPL(stv6111_attach); MODULE_DESCRIPTION("STV6111 driver"); MODULE_AUTHOR("Ralph Metzler, Manfred Voelkel"); MODULE_LICENSE("GPL v2"); /* * Local variables: * c-basic-offset: 8 * End: */