/* * ddbridge-core.c: Digital Devices bridge core functions * * Copyright (C) 2010-2016 Digital Devices GmbH * Marcus Metzler * Ralph Metzler * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 only, as published by the Free Software Foundation. * * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * * You should have received a copy of the GNU General Public License * along with this program; if not, point your browser to * http://www.gnu.org/copyleft/gpl.html */ #include "ddbridge.h" #include "ddbridge-i2c.h" #include "ddbridge-io.h" #include "dvb_net.h" #include "ddbridge-mci.h" struct workqueue_struct *ddb_wq; static DEFINE_MUTEX(redirect_lock); /* lock for redirect */ static int adapter_alloc; module_param(adapter_alloc, int, 0444); MODULE_PARM_DESC(adapter_alloc, "0-one adapter per io, 1-one per tab with io, 2-one per tab, 3-one for all"); static int ci_bitrate = 70000; module_param(ci_bitrate, int, 0444); MODULE_PARM_DESC(ci_bitrate, " Bitrate in KHz for output to CI."); static int ts_loop = -1; module_param(ts_loop, int, 0444); MODULE_PARM_DESC(ts_loop, "TS in/out test loop on port ts_loop"); static int dummy_tuner; module_param(dummy_tuner, int, 0444); MODULE_PARM_DESC(dummy_tuner, "attach dummy tuner to port 0 of supported cards"); static int vlan; module_param(vlan, int, 0444); MODULE_PARM_DESC(vlan, "VLAN and QoS IDs enabled"); static int xo2_speed = 2; module_param(xo2_speed, int, 0444); MODULE_PARM_DESC(xo2_speed, "default transfer speed for xo2 based duoflex, 0=55,1=75,2=90,3=104 MBit/s, default=2, use attribute to change for individual cards"); #ifdef __arm__ static int alt_dma = 1; #else static int alt_dma; #endif module_param(alt_dma, int, 0444); MODULE_PARM_DESC(alt_dma, "use alternative DMA buffer handling"); static int no_init; module_param(no_init, int, 0444); MODULE_PARM_DESC(no_init, "do not initialize most devices"); static int stv0910_single; module_param(stv0910_single, int, 0444); MODULE_PARM_DESC(stv0910_single, "use stv0910 cards as single demods"); static int dma_buf_num = 8; module_param(dma_buf_num, int, 0444); MODULE_PARM_DESC(dma_buf_num, "dma buffer number, possible values: 8-32"); static int dma_buf_size = 21; module_param(dma_buf_size, int, 0444); MODULE_PARM_DESC(dma_buf_size, "dma buffer size as multiple of 128*47, possible values: 1-43"); #define DDB_MAX_ADAPTER 64 static struct ddb *ddbs[DDB_MAX_ADAPTER]; DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr); /****************************************************************************/ /****************************************************************************/ /****************************************************************************/ struct ddb_irq *ddb_irq_set(struct ddb *dev, u32 link, u32 nr, void (*handler)(void *), void *data) { struct ddb_irq *irq = &dev->link[link].irq[nr]; irq->handler = handler; irq->data = data; return irq; } static void ddb_set_dma_table(struct ddb_io *io) { struct ddb *dev = io->port->dev; struct ddb_dma *dma = io->dma; u32 i; u64 mem; if (!dma) return; for (i = 0; i < dma->num; i++) { mem = dma->pbuf[i]; ddbwritel(dev, mem & 0xffffffff, dma->bufregs + i * 8); ddbwritel(dev, mem >> 32, dma->bufregs + i * 8 + 4); } dma->bufval = ((dma->div & 0x0f) << 16) | ((dma->num & 0x1f) << 11) | ((dma->size >> 7) & 0x7ff); } static void ddb_set_dma_tables(struct ddb *dev) { u32 i; for (i = 0; i < DDB_MAX_PORT; i++) { if (dev->port[i].input[0]) ddb_set_dma_table(dev->port[i].input[0]); if (dev->port[i].input[1]) ddb_set_dma_table(dev->port[i].input[1]); if (dev->port[i].output) ddb_set_dma_table(dev->port[i].output); } } /****************************************************************************/ /****************************************************************************/ /****************************************************************************/ static void ddb_redirect_dma(struct ddb *dev, struct ddb_dma *sdma, struct ddb_dma *ddma) { u32 i, base; u64 mem; sdma->bufval = ddma->bufval; base = sdma->bufregs; for (i = 0; i < ddma->num; i++) { mem = ddma->pbuf[i]; ddbwritel(dev, mem & 0xffffffff, base + i * 8); ddbwritel(dev, mem >> 32, base + i * 8 + 4); } } static int ddb_unredirect(struct ddb_port *port) { struct ddb_input *oredi, *iredi = NULL; struct ddb_output *iredo = NULL; mutex_lock(&redirect_lock); if (port->output->dma->running) { mutex_unlock(&redirect_lock); return -EBUSY; } oredi = port->output->redi; if (!oredi) goto done; if (port->input[0]) { iredi = port->input[0]->redi; iredo = port->input[0]->redo; if (iredo) { iredo->port->output->redi = oredi; if (iredo->port->input[0]) { iredo->port->input[0]->redi = iredi; ddb_redirect_dma(oredi->port->dev, oredi->dma, iredo->dma); } port->input[0]->redo = NULL; ddb_set_dma_table(port->input[0]); } oredi->redi = iredi; port->input[0]->redi = NULL; } oredi->redo = NULL; port->output->redi = NULL; ddb_set_dma_table(oredi); done: mutex_unlock(&redirect_lock); return 0; } static int ddb_redirect(u32 i, u32 p) { struct ddb *idev = ddbs[(i >> 4) & 0x3f]; struct ddb_input *input, *input2; struct ddb *pdev = ddbs[(p >> 4) & 0x3f]; struct ddb_port *port; if (!pdev || !idev) return -EINVAL; if (!pdev->has_dma || !idev->has_dma) return -EINVAL; port = &pdev->port[p & 0x0f]; if (!port->output) return -EINVAL; if (ddb_unredirect(port)) return -EBUSY; if (i == 8) return 0; input = &idev->input[i & 7]; if (!input) return -EINVAL; mutex_lock(&redirect_lock); if (port->output->dma->running || input->dma->running) { mutex_unlock(&redirect_lock); return -EBUSY; } input2 = port->input[0]; if (input2) { if (input->redi) { input2->redi = input->redi; input->redi = NULL; } else { input2->redi = input; } } input->redo = port->output; port->output->redi = input; ddb_redirect_dma(input->port->dev, input->dma, port->output->dma); mutex_unlock(&redirect_lock); return 0; } /****************************************************************************/ /****************************************************************************/ /****************************************************************************/ static void dma_free(struct pci_dev *pdev, struct ddb_dma *dma, int dir) { int i; if (!dma) return; for (i = 0; i < dma->num; i++) { if (dma->vbuf[i]) { if (alt_dma) { dma_unmap_single(&pdev->dev, dma->pbuf[i], dma->size, dir ? DMA_TO_DEVICE : DMA_FROM_DEVICE); kfree(dma->vbuf[i]); } else { dma_free_coherent(&pdev->dev, dma->size, dma->vbuf[i], dma->pbuf[i]); } dma->vbuf[i] = 0; } } } static int dma_alloc(struct pci_dev *pdev, struct ddb_dma *dma, int dir) { int i; if (!dma) return 0; for (i = 0; i < dma->num; i++) { if (alt_dma) { #if (KERNEL_VERSION(4, 13, 0) > LINUX_VERSION_CODE) dma->vbuf[i] = kmalloc(dma->size, __GFP_REPEAT); #else dma->vbuf[i] = kmalloc(dma->size, __GFP_RETRY_MAYFAIL); #endif if (!dma->vbuf[i]) return -ENOMEM; dma->pbuf[i] = dma_map_single(&pdev->dev, dma->vbuf[i], dma->size, dir ? DMA_TO_DEVICE : DMA_FROM_DEVICE); if (dma_mapping_error(&pdev->dev, dma->pbuf[i])) { kfree(dma->vbuf[i]); dma->vbuf[i] = 0; return -ENOMEM; } } else { dma->vbuf[i] = dma_alloc_coherent(&pdev->dev, dma->size, &dma->pbuf[i], GFP_KERNEL); if (!dma->vbuf[i]) return -ENOMEM; } } return 0; } static int ddb_buffers_alloc(struct ddb *dev) { int i; struct ddb_port *port; for (i = 0; i < dev->port_num; i++) { port = &dev->port[i]; switch (port->class) { case DDB_PORT_TUNER: if (port->input[0]->dma) if (dma_alloc(dev->pdev, port->input[0]->dma, 0) < 0) return -1; if (port->input[1]->dma) if (dma_alloc(dev->pdev, port->input[1]->dma, 0) < 0) return -1; break; case DDB_PORT_CI: case DDB_PORT_LOOP: if (port->input[0]->dma) if (dma_alloc(dev->pdev, port->input[0]->dma, 0) < 0) return -1; case DDB_PORT_MOD: if (port->output->dma) if (dma_alloc(dev->pdev, port->output->dma, 1) < 0) return -1; break; default: break; } } ddb_set_dma_tables(dev); return 0; } void ddb_buffers_free(struct ddb *dev) { int i; struct ddb_port *port; for (i = 0; i < dev->port_num; i++) { port = &dev->port[i]; if (port->input[0] && port->input[0]->dma) dma_free(dev->pdev, port->input[0]->dma, 0); if (port->input[1] && port->input[1]->dma) dma_free(dev->pdev, port->input[1]->dma, 0); if (port->output && port->output->dma) dma_free(dev->pdev, port->output->dma, 1); } } /* * Control: * * Bit 0 - Enable TS * 1 - Reset * 2 - clock enable * 3 - clock phase * 4 - gap enable * 5 - send null packets on underrun * 6 - enable clock gating * 7 - set error bit on inserted null packets * 8-10 - fine adjust clock delay * 11- HS (high speed), if NCO mode=0: 0=72MHz 1=96Mhz * 12- enable NCO mode * * Control 2: * * Bit 0-6 : gap_size, Gap = (gap_size * 2) + 4 * 16-31: HS = 0: Speed = 72 * Value / 8192 MBit/s * HS = 1: Speed = 72 * 8 / (Value + 1) MBit/s (only bit 19-16 used) * */ static void calc_con(struct ddb_output *output, u32 *con, u32 *con2, u32 flags) { struct ddb *dev = output->port->dev; u32 bitrate = output->port->obr, max_bitrate = 72000; u32 gap = 4, nco = 0; *con = 0x1C; if (output->port->gap != 0xffffffff) { flags |= 1; gap = output->port->gap; max_bitrate = 0; } if (dev->link[0].info->type == DDB_OCTOPUS_CI && output->port->nr > 1) { *con = 0x10c; if (dev->link[0].ids.regmapid >= 0x10003 && !(flags & 1)) { if (!(flags & 2)) { /* NCO */ max_bitrate = 0; gap = 0; if (bitrate != 72000) { if (bitrate >= 96000) { *con |= 0x800; } else { *con |= 0x1000; nco = (bitrate * 8192 + 71999) / 72000; } } } else { /* Divider and gap */ *con |= 0x1810; if (bitrate <= 64000) { max_bitrate = 64000; nco = 8; } else if (bitrate <= 72000) { max_bitrate = 72000; nco = 7; } else { max_bitrate = 96000; nco = 5; } } } else { if (bitrate > 72000) { *con |= 0x810; /* 96 MBit/s and gap */ max_bitrate = 96000; } *con |= 0x10; /* enable gap */ } } if (max_bitrate > 0) { if (bitrate > max_bitrate) bitrate = max_bitrate; if (bitrate < 31000) bitrate = 31000; gap = ((max_bitrate - bitrate) * 94) / bitrate; if (gap < 2) *con &= ~0x10; /* Disable gap */ else gap -= 2; if (gap > 127) gap = 127; } *con2 = (nco << 16) | gap; } static void ddb_output_start(struct ddb_output *output) { struct ddb *dev = output->port->dev; u32 con = 0x11c, con2 = 0; if (output->dma) { spin_lock_irq(&output->dma->lock); output->dma->cbuf = 0; output->dma->coff = 0; output->dma->stat = 0; ddbwritel(dev, 0, DMA_BUFFER_CONTROL(output->dma)); } if (output->port->class == DDB_PORT_MOD) { ddbridge_mod_output_start(output); } else { if (output->port->input[0]->port->class == DDB_PORT_LOOP) con = (1UL << 13) | 0x14; else calc_con(output, &con, &con2, 0); ddbwritel(dev, 0, TS_CONTROL(output)); ddbwritel(dev, 2, TS_CONTROL(output)); ddbwritel(dev, 0, TS_CONTROL(output)); ddbwritel(dev, con, TS_CONTROL(output)); ddbwritel(dev, con2, TS_CONTROL2(output)); } if (output->dma) { ddbwritel(dev, output->dma->bufval, DMA_BUFFER_SIZE(output->dma)); ddbwritel(dev, 0, DMA_BUFFER_ACK(output->dma)); ddbwritel(dev, 1, DMA_BASE_READ); ddbwritel(dev, 7, DMA_BUFFER_CONTROL(output->dma)); } if (output->port->class != DDB_PORT_MOD) ddbwritel(dev, con | 1, TS_CONTROL(output)); if (output->dma) { output->dma->running = 1; spin_unlock_irq(&output->dma->lock); } } static void ddb_output_stop(struct ddb_output *output) { struct ddb *dev = output->port->dev; if (output->dma) spin_lock_irq(&output->dma->lock); if (output->port->class == DDB_PORT_MOD) ddbridge_mod_output_stop(output); else ddbwritel(dev, 0, TS_CONTROL(output)); if (output->dma) { ddbwritel(dev, 0, DMA_BUFFER_CONTROL(output->dma)); output->dma->running = 0; spin_unlock_irq(&output->dma->lock); } } static void ddb_input_stop(struct ddb_input *input) { struct ddb *dev = input->port->dev; u32 tag = DDB_LINK_TAG(input->port->lnr); if (input->dma) spin_lock_irq(&input->dma->lock); ddbwritel(dev, 0, tag | TS_CONTROL(input)); if (input->dma) { ddbwritel(dev, 0, DMA_BUFFER_CONTROL(input->dma)); input->dma->running = 0; spin_unlock_irq(&input->dma->lock); } /*printk("input_stop %u.%u.%u\n", * dev->nr, input->port->lnr, input->nr); */ } static void ddb_input_start(struct ddb_input *input) { struct ddb *dev = input->port->dev; if (input->dma) { spin_lock_irq(&input->dma->lock); input->dma->cbuf = 0; input->dma->coff = 0; input->dma->stat = 0; ddbwritel(dev, 0, DMA_BUFFER_CONTROL(input->dma)); } ddbwritel(dev, 0, TS_CONTROL(input)); ddbwritel(dev, 2, TS_CONTROL(input)); ddbwritel(dev, 0, TS_CONTROL(input)); if (input->dma) { ddbwritel(dev, input->dma->bufval, DMA_BUFFER_SIZE(input->dma)); ddbwritel(dev, 0, DMA_BUFFER_ACK(input->dma)); ddbwritel(dev, 1, DMA_BASE_WRITE); ddbwritel(dev, 3, DMA_BUFFER_CONTROL(input->dma)); } if (dev->link[0].info->type == DDB_OCTONET) ddbwritel(dev, 0x01, TS_CONTROL(input)); else ddbwritel(dev, 0x09, TS_CONTROL(input)); if (input->port->type == DDB_TUNER_DUMMY) ddbwritel(dev, 0x000fff01, TS_CONTROL2(input)); if (input->dma) { input->dma->running = 1; spin_unlock_irq(&input->dma->lock); } } int ddb_dvb_ns_input_start(struct ddb_input *input) { struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1]; if (!dvb->users) ddb_input_start(input); return ++dvb->users; } int ddb_dvb_ns_input_stop(struct ddb_input *input) { struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1]; if (--dvb->users) return dvb->users; ddb_input_stop(input); return 0; } static void ddb_input_start_all(struct ddb_input *input) { struct ddb_input *i = input; struct ddb_output *o; mutex_lock(&redirect_lock); while (i && (o = i->redo)) { ddb_output_start(o); i = o->port->input[0]; if (i) ddb_input_start(i); } ddb_input_start(input); mutex_unlock(&redirect_lock); } static void ddb_input_stop_all(struct ddb_input *input) { struct ddb_input *i = input; struct ddb_output *o; mutex_lock(&redirect_lock); ddb_input_stop(input); while (i && (o = i->redo)) { ddb_output_stop(o); i = o->port->input[0]; if (i) ddb_input_stop(i); } mutex_unlock(&redirect_lock); } static u32 ddb_output_free(struct ddb_output *output) { u32 idx, off, stat = output->dma->stat; s32 diff; idx = (stat >> 11) & 0x1f; off = (stat & 0x7ff) << 7; if (output->dma->cbuf != idx) { if ((((output->dma->cbuf + 1) % output->dma->num) == idx) && (output->dma->size - output->dma->coff <= 2*188)) return 0; return 188; } diff = off - output->dma->coff; if (diff <= 0 || diff > 2*188) return 188; return 0; } #if 0 static u32 ddb_dma_free(struct ddb_dma *dma) { u32 idx, off, stat = dma->stat; s32 p1, p2, diff; idx = (stat >> 11) & 0x1f; off = (stat & 0x7ff) << 7; p1 = idx * dma->size + off; p2 = dma->cbuf * dma->size + dma->coff; diff = p1 - p2; if (diff <= 0) diff += dma->num * dma->size; return diff; } #endif static ssize_t ddb_output_write(struct ddb_output *output, const __user u8 *buf, size_t count) { struct ddb *dev = output->port->dev; u32 idx, off, stat = output->dma->stat; u32 left = count, len; idx = (stat >> 11) & 0x1f; off = (stat & 0x7ff) << 7; while (left) { len = output->dma->size - output->dma->coff; if ((((output->dma->cbuf + 1) % output->dma->num) == idx) && (off == 0)) { if (len <= 188) break; len -= 188; } if (output->dma->cbuf == idx) { if (off > output->dma->coff) { len = off - output->dma->coff; len -= (len % 188); if (len <= 188) break; len -= 188; } } if (len > left) len = left; if (copy_from_user(output->dma->vbuf[output->dma->cbuf] + output->dma->coff, buf, len)) return -EIO; if (alt_dma) dma_sync_single_for_device(dev->dev, output->dma->pbuf[ output->dma->cbuf], output->dma->size, DMA_TO_DEVICE); left -= len; buf += len; output->dma->coff += len; if (output->dma->coff == output->dma->size) { output->dma->coff = 0; output->dma->cbuf = ((output->dma->cbuf + 1) % output->dma->num); } ddbwritel(dev, (output->dma->cbuf << 11) | (output->dma->coff >> 7), DMA_BUFFER_ACK(output->dma)); } return count - left; } #if 0 static u32 ddb_input_free_bytes(struct ddb_input *input) { struct ddb *dev = input->port->dev; u32 idx, off, stat = input->dma->stat; u32 ctrl = ddbreadl(dev, DMA_BUFFER_CONTROL(input->dma)); idx = (stat >> 11) & 0x1f; off = (stat & 0x7ff) << 7; if (ctrl & 4) return 0; if (input->dma->cbuf != idx) return 1; return 0; } static s32 ddb_output_used_bufs(struct ddb_output *output) { u32 idx, off, stat, ctrl; s32 diff; spin_lock_irq(&output->dma->lock); stat = output->dma->stat; ctrl = output->dma->ctrl; spin_unlock_irq(&output->dma->lock); idx = (stat >> 11) & 0x1f; off = (stat & 0x7ff) << 7; if (ctrl & 4) return 0; diff = output->dma->cbuf - idx; if (diff == 0 && off < output->dma->coff) return 0; if (diff <= 0) diff += output->dma->num; return diff; } static s32 ddb_input_free_bufs(struct ddb_input *input) { u32 idx, off, stat, ctrl; s32 free; spin_lock_irq(&input->dma->lock); ctrl = input->dma->ctrl; stat = input->dma->stat; spin_unlock_irq(&input->dma->lock); if (ctrl & 4) return 0; idx = (stat >> 11) & 0x1f; off = (stat & 0x7ff) << 7; free = input->dma->cbuf - idx; if (free == 0 && off < input->dma->coff) return 0; if (free <= 0) free += input->dma->num; return free - 1; } static u32 ddb_output_ok(struct ddb_output *output) { struct ddb_input *input = output->port->input[0]; s32 diff; diff = ddb_input_free_bufs(input) - ddb_output_used_bufs(output); if (diff > 0) return 1; return 0; } #endif static u32 ddb_input_avail(struct ddb_input *input) { struct ddb *dev = input->port->dev; u32 idx, off, stat = input->dma->stat; u32 ctrl = ddbreadl(dev, DMA_BUFFER_CONTROL(input->dma)); idx = (stat >> 11) & 0x1f; off = (stat & 0x7ff) << 7; if (ctrl & 4) { dev_err(dev->dev, "IA %d %d %08x\n", idx, off, ctrl); ddbwritel(dev, stat, DMA_BUFFER_ACK(input->dma)); return 0; } if (input->dma->cbuf != idx) return 188; return 0; } static size_t ddb_input_read(struct ddb_input *input, __user u8 *buf, size_t count) { struct ddb *dev = input->port->dev; u32 left = count; u32 idx, off, free, stat = input->dma->stat; int ret; idx = (stat >> 11) & 0x1f; off = (stat & 0x7ff) << 7; while (left) { if (input->dma->cbuf == idx) return count - left; free = input->dma->size - input->dma->coff; if (free > left) free = left; if (alt_dma) dma_sync_single_for_cpu(dev->dev, input->dma->pbuf[ input->dma->cbuf], input->dma->size, DMA_FROM_DEVICE); ret = copy_to_user(buf, input->dma->vbuf[input->dma->cbuf] + input->dma->coff, free); if (ret) return -EFAULT; input->dma->coff += free; if (input->dma->coff == input->dma->size) { input->dma->coff = 0; input->dma->cbuf = (input->dma->cbuf + 1) % input->dma->num; } left -= free; buf += free; ddbwritel(dev, (input->dma->cbuf << 11) | (input->dma->coff >> 7), DMA_BUFFER_ACK(input->dma)); } return count; } /****************************************************************************/ /****************************************************************************/ static ssize_t ts_write(struct file *file, const char *buf, size_t count, loff_t *ppos) { struct dvb_device *dvbdev = file->private_data; struct ddb_output *output = dvbdev->priv; struct ddb *dev = output->port->dev; size_t left = count; int stat; if (!dev->has_dma) return -EINVAL; while (left) { if (ddb_output_free(output) < 188) { if (file->f_flags & O_NONBLOCK) break; if (wait_event_interruptible( output->dma->wq, ddb_output_free(output) >= 188) < 0) break; } stat = ddb_output_write(output, buf, left); if (stat < 0) return stat; buf += stat; left -= stat; } return (left == count) ? -EAGAIN : (count - left); } static ssize_t ts_read(struct file *file, __user char *buf, size_t count, loff_t *ppos) { struct dvb_device *dvbdev = file->private_data; struct ddb_output *output = dvbdev->priv; struct ddb_input *input = output->port->input[0]; struct ddb *dev = output->port->dev; size_t left = count; int stat; if (!dev->has_dma) return -EINVAL; if (!input) return -EINVAL; while (left) { if (ddb_input_avail(input) < 188) { if (file->f_flags & O_NONBLOCK) break; if (wait_event_interruptible( input->dma->wq, ddb_input_avail(input) >= 188) < 0) break; } stat = ddb_input_read(input, buf, left); if (stat < 0) return stat; left -= stat; buf += stat; } return (count && (left == count)) ? -EAGAIN : (count - left); } static unsigned int ts_poll(struct file *file, poll_table *wait) { struct dvb_device *dvbdev = file->private_data; struct ddb_output *output = dvbdev->priv; struct ddb_input *input = output->port->input[0]; unsigned int mask = 0; poll_wait(file, &input->dma->wq, wait); poll_wait(file, &output->dma->wq, wait); if (ddb_input_avail(input) >= 188) mask |= POLLIN | POLLRDNORM; if (ddb_output_free(output) >= 188) mask |= POLLOUT | POLLWRNORM; return mask; } static int ts_release(struct inode *inode, struct file *file) { struct dvb_device *dvbdev = file->private_data; struct ddb_output *output = dvbdev->priv; struct ddb_input *input = output->port->input[0]; if ((file->f_flags & O_ACCMODE) == O_RDONLY) { if (!input) return -EINVAL; ddb_input_stop(input); } else if ((file->f_flags & O_ACCMODE) == O_WRONLY) { if (!output) return -EINVAL; ddb_output_stop(output); } return dvb_generic_release(inode, file); } static int ts_open(struct inode *inode, struct file *file) { int err; struct dvb_device *dvbdev = file->private_data; struct ddb_output *output = dvbdev->priv; struct ddb_input *input = output->port->input[0]; if ((file->f_flags & O_ACCMODE) == O_RDONLY) { if (!input) return -EINVAL; if (input->redo || input->redi) return -EBUSY; } else if ((file->f_flags & O_ACCMODE) == O_WRONLY) { if (!output) return -EINVAL; } else { return -EINVAL; } err = dvb_generic_open(inode, file); if (err < 0) return err; if ((file->f_flags & O_ACCMODE) == O_RDONLY) ddb_input_start(input); else if ((file->f_flags & O_ACCMODE) == O_WRONLY) ddb_output_start(output); return err; } static int mod_release(struct inode *inode, struct file *file) { struct dvb_device *dvbdev = file->private_data; struct ddb_output *output = dvbdev->priv; if ((file->f_flags & O_ACCMODE) == O_WRONLY) { if (!output) return -EINVAL; ddb_output_stop(output); } return dvb_generic_release(inode, file); } static int mod_open(struct inode *inode, struct file *file) { int err; struct dvb_device *dvbdev = file->private_data; struct ddb_output *output = dvbdev->priv; if ((file->f_flags & O_ACCMODE) == O_WRONLY) { if (!output) return -EINVAL; } err = dvb_generic_open(inode, file); if (err < 0) return err; if ((file->f_flags & O_ACCMODE) == O_WRONLY) ddb_output_start(output); return err; } static const struct file_operations ci_fops = { .owner = THIS_MODULE, .read = ts_read, .write = ts_write, .open = ts_open, .release = ts_release, .poll = ts_poll, .mmap = NULL, }; static struct dvb_device dvbdev_ci = { .priv = NULL, .readers = 1, .writers = 1, .users = 2, .fops = &ci_fops, }; /****************************************************************************/ /****************************************************************************/ static long mod_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { return dvb_usercopy(file, cmd, arg, ddbridge_mod_do_ioctl); } static const struct file_operations mod_fops = { .owner = THIS_MODULE, .read = ts_read, .write = ts_write, .open = mod_open, .release = mod_release, .poll = ts_poll, .mmap = NULL, .unlocked_ioctl = mod_ioctl, }; static struct dvb_device dvbdev_mod = { .priv = NULL, .readers = 1, .writers = 1, .users = 2, .fops = &mod_fops, }; static int locked_gate_ctrl(struct dvb_frontend *fe, int enable) { struct ddb_input *input = fe->sec_priv; struct ddb_port *port = input->port; struct ddb_dvb *dvb = &port->dvb[input->nr & 1]; int status; if (enable) { mutex_lock(&port->i2c_gate_lock); status = dvb->i2c_gate_ctrl(fe, 1); } else { status = dvb->i2c_gate_ctrl(fe, 0); mutex_unlock(&port->i2c_gate_lock); } return status; } /****************************************************************************/ static int dummy_read_status(struct dvb_frontend *fe, enum fe_status *status) { *status = 0x1f; return 0; } static void dummy_release(struct dvb_frontend *fe) { kfree(fe); } static struct dvb_frontend_ops dummy_ops = { .delsys = { SYS_DVBC_ANNEX_A }, .info = { .name = "DUMMY DVB-C/C2 DVB-T/T2", .frequency_stepsize = 166667, /* DVB-T only */ .frequency_min = 47000000, /* DVB-T: 47125000 */ .frequency_max = 865000000, /* DVB-C: 862000000 */ .symbol_rate_min = 870000, .symbol_rate_max = 11700000, .caps = FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_32 | FE_CAN_QAM_64 | FE_CAN_QAM_128 | FE_CAN_QAM_256 | FE_CAN_QAM_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS | FE_CAN_2G_MODULATION }, .release = dummy_release, .read_status = dummy_read_status, }; static struct dvb_frontend *dummy_attach(void) { #if (KERNEL_VERSION(4, 13, 0) > LINUX_VERSION_CODE) struct dvb_frontend *fe = kmalloc(sizeof(*fe), __GFP_REPEAT); #else struct dvb_frontend *fe = kmalloc(sizeof(*fe), __GFP_RETRY_MAYFAIL); #endif if (fe) fe->ops = dummy_ops; return fe; } static int demod_attach_dummy(struct ddb_input *input) { struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1]; dvb->fe = dvb_attach(dummy_attach); return 0; } /****************************************************************************/ #ifdef CONFIG_DVB_DRXK static int demod_attach_drxk(struct ddb_input *input) { struct i2c_adapter *i2c = &input->port->i2c->adap; struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1]; dvb->fe = dvb_attach(drxk_attach, i2c, 0x29 + (input->nr & 1), &dvb->fe2); if (!dvb->fe) { dev_err(input->port->dev->dev, "No DRXK found!\n"); return -ENODEV; } dvb->fe->sec_priv = input; dvb->i2c_gate_ctrl = dvb->fe->ops.i2c_gate_ctrl; dvb->fe->ops.i2c_gate_ctrl = locked_gate_ctrl; return 0; } #endif static int demod_attach_cxd2843(struct ddb_input *input, int par, int osc24) { struct i2c_adapter *i2c = &input->port->i2c->adap; struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1]; struct cxd2843_cfg cfg; cfg.adr = (input->nr & 1) ? 0x6d : 0x6c; cfg.ts_clock = par ? 0 : 1; cfg.parallel = par ? 1 : 0; cfg.osc = osc24 ? 24000000 : 20500000; dvb->fe = dvb_attach(cxd2843_attach, i2c, &cfg); if (!dvb->fe) { dev_err(input->port->dev->dev, "No cxd2837/38/43/54 found!\n"); return -ENODEV; } dvb->fe->sec_priv = input; dvb->i2c_gate_ctrl = dvb->fe->ops.i2c_gate_ctrl; dvb->fe->ops.i2c_gate_ctrl = locked_gate_ctrl; return 0; } static int demod_attach_stv0367dd(struct ddb_input *input) { struct i2c_adapter *i2c = &input->port->i2c->adap; struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1]; struct stv0367_cfg cfg = { .cont_clock = 0 }; cfg.adr = 0x1f - (input->nr & 1); if (input->port->dev->link[input->port->lnr].info->con_clock) cfg.cont_clock = 1; dvb->fe = dvb_attach(stv0367_attach, i2c, &cfg); if (!dvb->fe) { dev_err(input->port->dev->dev, "No stv0367 found!\n"); return -ENODEV; } dvb->fe->sec_priv = input; dvb->i2c_gate_ctrl = dvb->fe->ops.i2c_gate_ctrl; dvb->fe->ops.i2c_gate_ctrl = locked_gate_ctrl; return 0; } static int tuner_attach_tda18271(struct ddb_input *input) { struct i2c_adapter *i2c = &input->port->i2c->adap; struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1]; struct dvb_frontend *fe; if (dvb->fe->ops.i2c_gate_ctrl) dvb->fe->ops.i2c_gate_ctrl(dvb->fe, 1); fe = dvb_attach(tda18271c2dd_attach, dvb->fe, i2c, 0x60); if (dvb->fe->ops.i2c_gate_ctrl) dvb->fe->ops.i2c_gate_ctrl(dvb->fe, 0); if (!fe) { dev_err(input->port->dev->dev, "No TDA18271 found!\n"); return -ENODEV; } return 0; } static int tuner_attach_tda18212dd(struct ddb_input *input) { struct i2c_adapter *i2c = &input->port->i2c->adap; struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1]; struct dvb_frontend *fe; fe = dvb_attach(tda18212dd_attach, dvb->fe, i2c, (input->nr & 1) ? 0x63 : 0x60); if (!fe) { dev_err(input->port->dev->dev, "No TDA18212 found!\n"); return -ENODEV; } return 0; } #ifdef CONFIG_DVB_TDA18212 struct tda18212_config tda18212_0 = { .i2c_address = 0x60, }; struct tda18212_config tda18212_1 = { .i2c_address = 0x63, }; static int tuner_attach_tda18212(struct ddb_input *input) { struct i2c_adapter *i2c = &input->port->i2c->adap; struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1]; struct dvb_frontend *fe; struct tda18212_config *cfg; cfg = (input->nr & 1) ? &tda18212_1 : &tda18212_0; fe = dvb_attach(tda18212_attach, dvb->fe, i2c, cfg); if (!fe) { dev_err(input->port->dev->dev, "No TDA18212 found!\n"); return -ENODEV; } return 0; } #endif /****************************************************************************/ /****************************************************************************/ /****************************************************************************/ static struct stv090x_config stv0900 = { .device = STV0900, .demod_mode = STV090x_DUAL, .clk_mode = STV090x_CLK_EXT, .xtal = 27000000, .address = 0x69, .ts1_mode = STV090x_TSMODE_SERIAL_PUNCTURED, .ts2_mode = STV090x_TSMODE_SERIAL_PUNCTURED, .ts1_tei = 1, .ts2_tei = 1, .repeater_level = STV090x_RPTLEVEL_16, .adc1_range = STV090x_ADC_1Vpp, .adc2_range = STV090x_ADC_1Vpp, .diseqc_envelope_mode = true, }; static struct stv090x_config stv0900_aa = { .device = STV0900, .demod_mode = STV090x_DUAL, .clk_mode = STV090x_CLK_EXT, .xtal = 27000000, .address = 0x68, .ts1_mode = STV090x_TSMODE_SERIAL_PUNCTURED, .ts2_mode = STV090x_TSMODE_SERIAL_PUNCTURED, .ts1_tei = 1, .ts2_tei = 1, .repeater_level = STV090x_RPTLEVEL_16, .adc1_range = STV090x_ADC_1Vpp, .adc2_range = STV090x_ADC_1Vpp, .diseqc_envelope_mode = true, }; static struct stv6110x_config stv6110a = { .addr = 0x60, .refclk = 27000000, .clk_div = 1, }; static struct stv6110x_config stv6110b = { .addr = 0x63, .refclk = 27000000, .clk_div = 1, }; static int demod_attach_stv0900(struct ddb_input *input, int type) { struct i2c_adapter *i2c = &input->port->i2c->adap; struct stv090x_config *feconf = type ? &stv0900_aa : &stv0900; struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1]; dvb->fe = dvb_attach(stv090x_attach, feconf, i2c, (input->nr & 1) ? STV090x_DEMODULATOR_1 : STV090x_DEMODULATOR_0); if (!dvb->fe) { dev_err(input->port->dev->dev, "No STV0900 found!\n"); return -ENODEV; } if (!dvb_attach(lnbh24_attach, dvb->fe, i2c, 0, 0, (input->nr & 1) ? (0x09 - type) : (0x0b - type))) { dev_err(input->port->dev->dev, "No LNBH24 found!\n"); return -ENODEV; } return 0; } static int tuner_attach_stv6110(struct ddb_input *input, int type) { struct i2c_adapter *i2c = &input->port->i2c->adap; struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1]; struct stv090x_config *feconf = type ? &stv0900_aa : &stv0900; struct stv6110x_config *tunerconf = (input->nr & 1) ? &stv6110b : &stv6110a; const struct stv6110x_devctl *ctl; ctl = dvb_attach(stv6110x_attach, dvb->fe, tunerconf, i2c); if (!ctl) { dev_err(input->port->dev->dev, "No STV6110X found!\n"); return -ENODEV; } dev_info(input->port->dev->dev, "attach tuner input %d adr %02x\n", input->nr, tunerconf->addr); feconf->tuner_init = ctl->tuner_init; feconf->tuner_sleep = ctl->tuner_sleep; feconf->tuner_set_mode = ctl->tuner_set_mode; feconf->tuner_set_frequency = ctl->tuner_set_frequency; feconf->tuner_get_frequency = ctl->tuner_get_frequency; feconf->tuner_set_bandwidth = ctl->tuner_set_bandwidth; feconf->tuner_get_bandwidth = ctl->tuner_get_bandwidth; feconf->tuner_set_bbgain = ctl->tuner_set_bbgain; feconf->tuner_get_bbgain = ctl->tuner_get_bbgain; feconf->tuner_set_refclk = ctl->tuner_set_refclk; feconf->tuner_get_status = ctl->tuner_get_status; return 0; } static struct stv0910_cfg stv0910_p = { .adr = 0x68, .parallel = 1, .rptlvl = 4, .clk = 30000000, }; static int demod_attach_stv0910(struct ddb_input *input, int type) { struct i2c_adapter *i2c = &input->port->i2c->adap; struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1]; struct stv0910_cfg cfg = stv0910_p; if (stv0910_single) cfg.single = 1; if (type) cfg.parallel = 2; dvb->fe = dvb_attach(stv0910_attach, i2c, &cfg, (input->nr & 1)); if (!dvb->fe) { cfg.adr = 0x6c; dvb->fe = dvb_attach(stv0910_attach, i2c, &cfg, (input->nr & 1)); } if (!dvb->fe) { dev_err(input->port->dev->dev, "No STV0910 found!\n"); return -ENODEV; } if (!dvb_attach(lnbh25_attach, dvb->fe, i2c, ((input->nr & 1) ? 0x0d : 0x0c))) { if (!dvb_attach(lnbh25_attach, dvb->fe, i2c, ((input->nr & 1) ? 0x09 : 0x08))) { dev_err(input->port->dev->dev, "No LNBH25 found!\n"); return -ENODEV; } } return 0; } static int tuner_attach_stv6111(struct ddb_input *input, int type) { struct i2c_adapter *i2c = &input->port->i2c->adap; struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1]; struct dvb_frontend *fe; u8 adr = (type ? 0 : 4) + ((input->nr & 1) ? 0x63 : 0x60); fe = dvb_attach(stv6111_attach, dvb->fe, i2c, adr); if (!fe) { fe = dvb_attach(stv6111_attach, dvb->fe, i2c, adr & ~4); if (!fe) { dev_err(input->port->dev->dev, "No STV6111 found at 0x%02x!\n", adr); return -ENODEV; } } return 0; } #if 0 static int start_input(struct ddb_input *input) { struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1]; if (!dvb->users) ddb_input_start_all(input); return ++dvb->users; } static int stop_input(struct ddb_input *input) { struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1]; if (--dvb->users) return dvb->users; ddb_input_stop_all(input); return 0; } #endif static int start_feed(struct dvb_demux_feed *dvbdmxfeed) { struct dvb_demux *dvbdmx = dvbdmxfeed->demux; struct ddb_input *input = dvbdmx->priv; struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1]; if (!dvb->users) ddb_input_start_all(input); return ++dvb->users; } static int stop_feed(struct dvb_demux_feed *dvbdmxfeed) { struct dvb_demux *dvbdmx = dvbdmxfeed->demux; struct ddb_input *input = dvbdmx->priv; struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1]; if (--dvb->users) return dvb->users; ddb_input_stop_all(input); return 0; } static void dvb_input_detach(struct ddb_input *input) { struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1]; struct dvb_demux *dvbdemux = &dvb->demux; switch (dvb->attached) { case 0x41: if (dvb->fe2) dvb_unregister_frontend(dvb->fe2); case 0x40: if (dvb->fe) dvb_unregister_frontend(dvb->fe); /* fallthrough */ case 0x30: dvb_frontend_detach(dvb->fe); dvb->fe = NULL; dvb->fe2 = NULL; /* fallthrough */ case 0x21: if (input->port->dev->ns_num) dvb_netstream_release(&dvb->dvbns); /* fallthrough */ case 0x20: dvb_net_release(&dvb->dvbnet); /* fallthrough */ case 0x12: dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &dvb->hw_frontend); dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &dvb->mem_frontend); /* fallthrough */ case 0x11: dvb_dmxdev_release(&dvb->dmxdev); /* fallthrough */ case 0x10: dvb_dmx_release(&dvb->demux); /* fallthrough */ case 0x01: break; } dvb->attached = 0x00; } static int dvb_register_adapters(struct ddb *dev) { int i, ret = 0; struct ddb_port *port; struct dvb_adapter *adap; if (adapter_alloc == 3 || dev->link[0].info->type == DDB_MOD || dev->link[0].info->type == DDB_OCTONET) { port = &dev->port[0]; adap = port->dvb[0].adap; ret = dvb_register_adapter(adap, "DDBridge", THIS_MODULE, port->dev->dev, adapter_nr); if (ret < 0) return ret; port->dvb[0].adap_registered = 1; for (i = 0; i < dev->port_num; i++) { port = &dev->port[i]; port->dvb[0].adap = adap; port->dvb[1].adap = adap; } return 0; } for (i = 0; i < dev->port_num; i++) { port = &dev->port[i]; switch (port->class) { case DDB_PORT_TUNER: adap = port->dvb[0].adap; ret = dvb_register_adapter(adap, "DDBridge", THIS_MODULE, port->dev->dev, adapter_nr); if (ret < 0) return ret; port->dvb[0].adap_registered = 1; if (adapter_alloc > 0) { port->dvb[1].adap = port->dvb[0].adap; break; } adap = port->dvb[1].adap; ret = dvb_register_adapter(adap, "DDBridge", THIS_MODULE, port->dev->dev, adapter_nr); if (ret < 0) return ret; port->dvb[1].adap_registered = 1; break; case DDB_PORT_CI: case DDB_PORT_LOOP: adap = port->dvb[0].adap; ret = dvb_register_adapter(adap, "DDBridge", THIS_MODULE, port->dev->dev, adapter_nr); if (ret < 0) return ret; port->dvb[0].adap_registered = 1; break; default: if (adapter_alloc < 2) break; adap = port->dvb[0].adap; ret = dvb_register_adapter(adap, "DDBridge", THIS_MODULE, port->dev->dev, adapter_nr); if (ret < 0) return ret; port->dvb[0].adap_registered = 1; break; } } return ret; } static void dvb_unregister_adapters(struct ddb *dev) { int i; struct ddb_port *port; struct ddb_dvb *dvb; for (i = 0; i < dev->link[0].info->port_num; i++) { port = &dev->port[i]; dvb = &port->dvb[0]; if (dvb->adap_registered) dvb_unregister_adapter(dvb->adap); dvb->adap_registered = 0; dvb = &port->dvb[1]; if (dvb->adap_registered) dvb_unregister_adapter(dvb->adap); dvb->adap_registered = 0; } } static int dvb_input_attach(struct ddb_input *input) { int ret = 0; struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1]; struct ddb_port *port = input->port; struct dvb_adapter *adap = dvb->adap; struct dvb_demux *dvbdemux = &dvb->demux; int par = 0, osc24 = 0; dvb->attached = 0x01; dvbdemux->priv = input; dvbdemux->dmx.capabilities = DMX_TS_FILTERING | DMX_SECTION_FILTERING | DMX_MEMORY_BASED_FILTERING; dvbdemux->start_feed = start_feed; dvbdemux->stop_feed = stop_feed; dvbdemux->filternum = 256; dvbdemux->feednum = 256; ret = dvb_dmx_init(dvbdemux); if (ret < 0) return ret; dvb->attached = 0x10; dvb->dmxdev.filternum = 256; dvb->dmxdev.demux = &dvbdemux->dmx; ret = dvb_dmxdev_init(&dvb->dmxdev, adap); if (ret < 0) return ret; dvb->attached = 0x11; dvb->mem_frontend.source = DMX_MEMORY_FE; dvb->demux.dmx.add_frontend(&dvb->demux.dmx, &dvb->mem_frontend); dvb->hw_frontend.source = DMX_FRONTEND_0; dvb->demux.dmx.add_frontend(&dvb->demux.dmx, &dvb->hw_frontend); ret = dvbdemux->dmx.connect_frontend(&dvbdemux->dmx, &dvb->hw_frontend); if (ret < 0) return ret; dvb->attached = 0x12; ret = dvb_net_init(adap, &dvb->dvbnet, dvb->dmxdev.demux); if (ret < 0) return ret; dvb->attached = 0x20; if (input->port->dev->ns_num) { ret = netstream_init(input); if (ret < 0) return ret; dvb->attached = 0x21; } dvb->fe = NULL; dvb->fe2 = NULL; switch (port->type) { case DDB_TUNER_MXL5XX: if (ddb_fe_attach_mxl5xx(input) < 0) return -ENODEV; break; case DDB_TUNER_DVBS_ST: if (demod_attach_stv0900(input, 0) < 0) return -ENODEV; dvb->attached = 0x30; if (tuner_attach_stv6110(input, 0) < 0) return -ENODEV; break; case DDB_TUNER_DVBS_ST_AA: if (demod_attach_stv0900(input, 1) < 0) return -ENODEV; dvb->attached = 0x30; if (tuner_attach_stv6110(input, 1) < 0) return -ENODEV; break; case DDB_TUNER_DVBS_STV0910: if (demod_attach_stv0910(input, 0) < 0) return -ENODEV; dvb->attached = 0x30; if (tuner_attach_stv6111(input, 0) < 0) return -ENODEV; break; case DDB_TUNER_DVBS_STV0910_PR: if (demod_attach_stv0910(input, 1) < 0) return -ENODEV; dvb->attached = 0x30; if (tuner_attach_stv6111(input, 1) < 0) return -ENODEV; break; case DDB_TUNER_DVBS_STV0910_P: if (demod_attach_stv0910(input, 0) < 0) return -ENODEV; dvb->attached = 0x30; if (tuner_attach_stv6111(input, 1) < 0) return -ENODEV; break; #ifdef CONFIG_DVB_DRXK case DDB_TUNER_DVBCT_TR: if (demod_attach_drxk(input) < 0) return -ENODEV; dvb->attached = 0x30; if (tuner_attach_tda18271(input) < 0) return -ENODEV; break; #endif case DDB_TUNER_DVBCT_ST: if (demod_attach_stv0367dd(input) < 0) return -ENODEV; dvb->attached = 0x30; if (tuner_attach_tda18212dd(input) < 0) return -ENODEV; break; case DDB_TUNER_DVBC2T2I_SONY_P: if (input->port->dev->link[input->port->lnr].info->ts_quirks & TS_QUIRK_ALT_OSC) osc24 = 0; else osc24 = 1; case DDB_TUNER_DVBCT2_SONY_P: case DDB_TUNER_DVBC2T2_SONY_P: case DDB_TUNER_ISDBT_SONY_P: if (input->port->dev->link[input->port->lnr].info->ts_quirks & TS_QUIRK_SERIAL) par = 0; else par = 1; if (demod_attach_cxd2843(input, par, osc24) < 0) return -ENODEV; dvb->attached = 0x30; if (tuner_attach_tda18212dd(input) < 0) return -ENODEV; break; case DDB_TUNER_DVBC2T2I_SONY: osc24 = 1; case DDB_TUNER_DVBCT2_SONY: case DDB_TUNER_DVBC2T2_SONY: case DDB_TUNER_ISDBT_SONY: if (demod_attach_cxd2843(input, 0, osc24) < 0) return -ENODEV; dvb->attached = 0x30; if (tuner_attach_tda18212dd(input) < 0) return -ENODEV; break; case DDB_TUNER_DUMMY: if (demod_attach_dummy(input) < 0) return -ENODEV; break; case DDB_TUNER_MCI: if (ddb_fe_attach_mci(input) < 0) return -ENODEV; break; default: return 0; } dvb->attached = 0x30; if (dvb->fe) { if (dvb_register_frontend(adap, dvb->fe) < 0) return -ENODEV; } dvb->attached = 0x40; if (dvb->fe2) { if (dvb_register_frontend(adap, dvb->fe2) < 0) return -ENODEV; dvb->fe2->tuner_priv = dvb->fe->tuner_priv; memcpy(&dvb->fe2->ops.tuner_ops, &dvb->fe->ops.tuner_ops, sizeof(struct dvb_tuner_ops)); } dvb->attached = 0x41; return 0; } static int port_has_encti(struct ddb_port *port) { u8 val; int ret = i2c_read_reg(&port->i2c->adap, 0x20, 0, &val); if (!ret) dev_info(port->dev->dev, "[0x20]=0x%02x\n", val); return ret ? 0 : 1; } static int port_has_cxd(struct ddb_port *port, u8 *type) { u8 val; u8 probe[4] = { 0xe0, 0x00, 0x00, 0x00 }, data[4]; struct i2c_msg msgs[2] = {{ .addr = 0x40, .flags = 0, .buf = probe, .len = 4 }, { .addr = 0x40, .flags = I2C_M_RD, .buf = data, .len = 4 } }; val = i2c_transfer(&port->i2c->adap, msgs, 2); if (val != 2) return 0; if (data[0] == 0x02 && data[1] == 0x2b && data[3] == 0x43) *type = 2; else *type = 1; return 1; } static int port_has_xo2(struct ddb_port *port, u8 *type, u8 *id) { u8 probe[1] = { 0x00 }, data[4]; if (i2c_io(&port->i2c->adap, 0x10, probe, 1, data, 4)) return 0; if (data[0] == 'D' && data[1] == 'F') { *id = data[2]; *type = 1; return 1; } if (data[0] == 'C' && data[1] == 'I') { *id = data[2]; *type = 2; return 1; } return 0; } static int port_has_stv0900(struct ddb_port *port) { u8 val; if (i2c_read_reg16(&port->i2c->adap, 0x69, 0xf100, &val) < 0) return 0; return 1; } static int port_has_stv0900_aa(struct ddb_port *port, u8 *id) { if (i2c_read_reg16(&port->i2c->adap, 0x68, 0xf100, id) < 0) return 0; return 1; } static int port_has_drxks(struct ddb_port *port) { u8 val; if (i2c_read(&port->i2c->adap, 0x29, &val) < 0) return 0; if (i2c_read(&port->i2c->adap, 0x2a, &val) < 0) return 0; return 1; } static int port_has_stv0367(struct ddb_port *port) { u8 val; if (i2c_read_reg16(&port->i2c->adap, 0x1e, 0xf000, &val) < 0) return 0; if (val != 0x60) return 0; if (i2c_read_reg16(&port->i2c->adap, 0x1f, 0xf000, &val) < 0) return 0; if (val != 0x60) return 0; return 1; } static int init_xo2(struct ddb_port *port) { struct i2c_adapter *i2c = &port->i2c->adap; struct ddb *dev = port->dev; u8 val, data[2]; int res; res = i2c_read_regs(i2c, 0x10, 0x04, data, 2); if (res < 0) return res; if (data[0] != 0x01) { dev_info(dev->dev, "Port %d: invalid XO2\n", port->nr); return -1; } i2c_read_reg(i2c, 0x10, 0x08, &val); if (val != 0) { i2c_write_reg(i2c, 0x10, 0x08, 0x00); msleep(100); } /* Enable tuner power, disable pll, reset demods */ i2c_write_reg(i2c, 0x10, 0x08, 0x04); usleep_range(2000, 3000); /* Release demod resets */ i2c_write_reg(i2c, 0x10, 0x08, 0x07); /* speed: 0=55,1=75,2=90,3=104 MBit/s */ i2c_write_reg(i2c, 0x10, 0x09, xo2_speed); if (dev->link[port->lnr].info->con_clock) { dev_info(dev->dev, "Setting continuous clock for XO2\n"); i2c_write_reg(i2c, 0x10, 0x0a, 0x03); i2c_write_reg(i2c, 0x10, 0x0b, 0x03); } else { i2c_write_reg(i2c, 0x10, 0x0a, 0x01); i2c_write_reg(i2c, 0x10, 0x0b, 0x01); } usleep_range(2000, 3000); /* Start XO2 PLL */ i2c_write_reg(i2c, 0x10, 0x08, 0x87); return 0; } static int init_xo2_ci(struct ddb_port *port) { struct i2c_adapter *i2c = &port->i2c->adap; struct ddb *dev = port->dev; u8 val, data[2]; int res; res = i2c_read_regs(i2c, 0x10, 0x04, data, 2); if (res < 0) return res; if (data[0] > 1) { dev_info(dev->dev, "Port %d: invalid XO2 CI %02x\n", port->nr, data[0]); return -1; } dev_info(dev->dev, "Port %d: DuoFlex CI %u.%u\n", port->nr, data[0], data[1]); i2c_read_reg(i2c, 0x10, 0x08, &val); if (val != 0) { i2c_write_reg(i2c, 0x10, 0x08, 0x00); msleep(100); } /* Enable both CI */ i2c_write_reg(i2c, 0x10, 0x08, 3); usleep_range(2000, 3000); /* speed: 0=55,1=75,2=90,3=104 MBit/s */ i2c_write_reg(i2c, 0x10, 0x09, 1); i2c_write_reg(i2c, 0x10, 0x08, 0x83); usleep_range(2000, 3000); if (dev->link[port->lnr].info->con_clock) { dev_info(dev->dev, "Setting continuous clock for DuoFLex CI\n"); i2c_write_reg(i2c, 0x10, 0x0a, 0x03); i2c_write_reg(i2c, 0x10, 0x0b, 0x03); } else { i2c_write_reg(i2c, 0x10, 0x0a, 0x01); i2c_write_reg(i2c, 0x10, 0x0b, 0x01); } return 0; } static int port_has_cxd28xx(struct ddb_port *port, u8 *id) { struct i2c_adapter *i2c = &port->i2c->adap; int status; status = i2c_write_reg(&port->i2c->adap, 0x6e, 0, 0); if (status) return 0; status = i2c_read_reg(i2c, 0x6e, 0xfd, id); if (status) return 0; return 1; } static char *xo2names[] = { "DUAL DVB-S2", "DUAL DVB-C/T/T2", "DUAL DVB-ISDBT", "DUAL DVB-C/C2/T/T2", "DUAL ATSC", "DUAL DVB-C/C2/T/T2,ISDB-T", "", "" }; static char *xo2types[] = { "DVBS_ST", "DVBCT2_SONY", "ISDBT_SONY", "DVBC2T2_SONY", "ATSC_ST", "DVBC2T2I_SONY" }; static void ddb_port_probe(struct ddb_port *port) { struct ddb *dev = port->dev; u32 l = port->lnr; u8 id, type; port->name = "NO MODULE"; port->type_name = "NONE"; port->class = DDB_PORT_NONE; /* Handle missing ports and ports without I2C */ if (dummy_tuner && !port->nr && dev->link[0].ids.device == 0x0005) { port->name = "DUMMY"; port->class = DDB_PORT_TUNER; port->type = DDB_TUNER_DUMMY; port->type_name = "DUMMY"; return; } if (port->nr == ts_loop) { port->name = "TS LOOP"; port->class = DDB_PORT_LOOP; return; } if (port->nr == 1 && dev->link[l].info->type == DDB_OCTOPUS_CI && dev->link[l].info->i2c_mask == 1) { port->name = "NO TAB"; port->class = DDB_PORT_NONE; return; } if (dev->link[l].info->type == DDB_MOD) { port->name = "MOD"; port->class = DDB_PORT_MOD; return; } #if 0 if (dev->link[l].info->type == DDB_OCTOPRO_HDIN) { if (port->nr == 0) { dev->link[l].info->type = DDB_OCTOPUS; port->name = "HDIN"; port->class = DDB_PORT_LOOP; } return; } #endif if (dev->link[l].info->type == DDB_OCTOPUS_MAX) { port->name = "DUAL DVB-S2 MAX"; port->type_name = "MXL5XX"; port->class = DDB_PORT_TUNER; port->type = DDB_TUNER_MXL5XX; if (port->i2c) ddbwritel(dev, I2C_SPEED_400, port->i2c->regs + I2C_TIMING); return; } if (dev->link[l].info->type == DDB_OCTOPUS_MCI) { if (port->nr >= dev->link[l].info->mci) return; port->name = "DUAL MCI"; port->type_name = "MCI"; port->class = DDB_PORT_TUNER; port->type = DDB_TUNER_MCI; return; } if (port->nr > 1 && dev->link[l].info->type == DDB_OCTOPUS_CI) { port->name = "CI internal"; port->type_name = "INTERNAL"; port->class = DDB_PORT_CI; port->type = DDB_CI_INTERNAL; } if (!port->i2c) return; /* Probe ports with I2C */ if (port_has_cxd(port, &id)) { if (id == 1) { port->name = "CI"; port->type_name = "CXD2099"; port->class = DDB_PORT_CI; port->type = DDB_CI_EXTERNAL_SONY; ddbwritel(dev, I2C_SPEED_400, port->i2c->regs + I2C_TIMING); } else { dev_info(dev->dev, "Port %d: Uninitialized DuoFlex\n", port->nr); return; } } else if (port_has_xo2(port, &type, &id)) { ddbwritel(dev, I2C_SPEED_400, port->i2c->regs + I2C_TIMING); dev_info(dev->dev, "XO2 ID %02x\n", id); if (type == 2) { port->name = "DuoFlex CI"; port->class = DDB_PORT_CI; port->type = DDB_CI_EXTERNAL_XO2; port->type_name = "CI_XO2"; init_xo2_ci(port); return; } id >>= 2; if (id > 5) { port->name = "unknown XO2 DuoFlex"; port->type_name = "UNKNOWN"; } else { port->name = xo2names[id]; port->class = DDB_PORT_TUNER; port->type = DDB_TUNER_XO2 + id; port->type_name = xo2types[id]; init_xo2(port); } } else if (port_has_cxd28xx(port, &id)) { switch (id) { case 0xa4: port->name = "DUAL DVB-C2T2 CXD2843"; port->type = DDB_TUNER_DVBC2T2_SONY_P; port->type_name = "DVBC2T2_SONY"; break; case 0xb1: port->name = "DUAL DVB-CT2 CXD2837"; port->type = DDB_TUNER_DVBCT2_SONY_P; port->type_name = "DVBCT2_SONY"; break; case 0xb0: port->name = "DUAL ISDB-T CXD2838"; port->type = DDB_TUNER_ISDBT_SONY_P; port->type_name = "ISDBT_SONY"; break; case 0xc1: port->name = "DUAL DVB-C2T2 ISDB-T CXD2854"; port->type = DDB_TUNER_DVBC2T2I_SONY_P; port->type_name = "DVBC2T2I_ISDBT_SONY"; break; default: return; } port->class = DDB_PORT_TUNER; ddbwritel(dev, I2C_SPEED_400, port->i2c->regs + I2C_TIMING); } else if (port_has_stv0900(port)) { port->name = "DUAL DVB-S2"; port->class = DDB_PORT_TUNER; port->type = DDB_TUNER_DVBS_ST; port->type_name = "DVBS_ST"; ddbwritel(dev, I2C_SPEED_100, port->i2c->regs + I2C_TIMING); } else if (port_has_stv0900_aa(port, &id)) { port->name = "DUAL DVB-S2"; port->class = DDB_PORT_TUNER; if (id == 0x51) { if (port->nr == 0 && dev->link[l].info->ts_quirks & TS_QUIRK_REVERSED) port->type = DDB_TUNER_DVBS_STV0910_PR; else port->type = DDB_TUNER_DVBS_STV0910_P; port->type_name = "DVBS_ST_0910"; } else { port->type = DDB_TUNER_DVBS_ST_AA; port->type_name = "DVBS_ST_AA"; } ddbwritel(dev, I2C_SPEED_100, port->i2c->regs + I2C_TIMING); } else if (port_has_drxks(port)) { port->name = "DUAL DVB-C/T"; port->class = DDB_PORT_TUNER; port->type = DDB_TUNER_DVBCT_TR; port->type_name = "DVBCT_TR"; ddbwritel(dev, I2C_SPEED_400, port->i2c->regs + I2C_TIMING); } else if (port_has_stv0367(port)) { port->name = "DUAL DVB-C/T"; port->class = DDB_PORT_TUNER; port->type = DDB_TUNER_DVBCT_ST; port->type_name = "DVBCT_ST"; ddbwritel(dev, I2C_SPEED_100, port->i2c->regs + I2C_TIMING); } else if (port_has_encti(port)) { port->name = "ENCTI"; port->class = DDB_PORT_LOOP; } } /****************************************************************************/ /****************************************************************************/ /****************************************************************************/ static int ddb_port_attach(struct ddb_port *port) { int ret = 0; switch (port->class) { case DDB_PORT_TUNER: ret = dvb_input_attach(port->input[0]); if (ret < 0) break; ret = dvb_input_attach(port->input[1]); if (ret < 0) break; port->input[0]->redi = port->input[0]; port->input[1]->redi = port->input[1]; break; case DDB_PORT_CI: ret = ddb_ci_attach(port, ci_bitrate); if (ret < 0) break; case DDB_PORT_LOOP: ret = dvb_register_device(port->dvb[0].adap, &port->dvb[0].dev, &dvbdev_ci, (void *)port->output, DVB_DEVICE_CI, 1); break; case DDB_PORT_MOD: ret = dvb_register_device(port->dvb[0].adap, &port->dvb[0].dev, &dvbdev_mod, (void *)port->output, DVB_DEVICE_MOD, 1); break; default: break; } if (ret < 0) dev_err(port->dev->dev, "port_attach on port %d failed\n", port->nr); return ret; } static int ddb_ports_attach(struct ddb *dev) { int i, ret = 0; struct ddb_port *port; dev->ns_num = dev->link[0].info->ns_num; for (i = 0; i < dev->ns_num; i++) dev->ns[i].nr = i; dev_info(dev->dev, "%d netstream channels\n", dev->ns_num); if (dev->port_num) { ret = dvb_register_adapters(dev); if (ret < 0) { dev_err(dev->dev, "Registering adapters failed. Check DVB_MAX_ADAPTERS in config.\n"); return ret; } } for (i = 0; i < dev->port_num; i++) { port = &dev->port[i]; ret = ddb_port_attach(port); if (ret < 0) break; } return ret; } void ddb_ports_detach(struct ddb *dev) { int i; struct ddb_port *port; for (i = 0; i < dev->port_num; i++) { port = &dev->port[i]; switch (port->class) { case DDB_PORT_TUNER: dvb_input_detach(port->input[0]); dvb_input_detach(port->input[1]); break; case DDB_PORT_CI: case DDB_PORT_LOOP: if (port->dvb[0].dev) dvb_unregister_device(port->dvb[0].dev); if (port->en) { dvb_ca_en50221_release(port->en); kfree(port->en->data); port->en = NULL; } break; case DDB_PORT_MOD: if (port->dvb[0].dev) dvb_unregister_device(port->dvb[0].dev); break; } } dvb_unregister_adapters(dev); } /* Copy input DMA pointers to output DMA and ACK. */ static void input_write_output(struct ddb_input *input, struct ddb_output *output) { ddbwritel(output->port->dev, input->dma->stat, DMA_BUFFER_ACK(output->dma)); output->dma->cbuf = (input->dma->stat >> 11) & 0x1f; output->dma->coff = (input->dma->stat & 0x7ff) << 7; } static void output_ack_input(struct ddb_output *output, struct ddb_input *input) { ddbwritel(input->port->dev, output->dma->stat, DMA_BUFFER_ACK(input->dma)); } static void input_write_dvb(struct ddb_input *input, struct ddb_input *input2) { struct ddb_dvb *dvb = &input2->port->dvb[input2->nr & 1]; struct ddb_dma *dma, *dma2; struct ddb *dev = input->port->dev; int ack = 1; dma = input->dma; dma2 = input->dma; /* if there also is an output connected, do not ACK. * input_write_output will ACK. */ if (input->redo) { dma2 = input->redo->dma; ack = 0; } while (dma->cbuf != ((dma->stat >> 11) & 0x1f) || (4 & dma->ctrl)) { if (4 & dma->ctrl) { /*dev_err(dev->dev, "Overflow dma %d\n", dma->nr);*/ ack = 1; } if (alt_dma) dma_sync_single_for_cpu(dev->dev, dma2->pbuf[dma->cbuf], dma2->size, DMA_FROM_DEVICE); #if 0 dev_info(dev->dev, "%02x %02x %02x %02x\n", dma2->vbuf[dma->cbuf][0], dma2->vbuf[dma->cbuf][1], dma2->vbuf[dma->cbuf][2], dma2->vbuf[dma->cbuf][3]); #endif dvb_dmx_swfilter_packets(&dvb->demux, dma2->vbuf[dma->cbuf], dma2->size / 188); dma->cbuf = (dma->cbuf + 1) % dma2->num; if (ack) ddbwritel(dev, (dma->cbuf << 11), DMA_BUFFER_ACK(dma)); dma->stat = ddbreadl(dev, DMA_BUFFER_CURRENT(dma)); dma->ctrl = ddbreadl(dev, DMA_BUFFER_CONTROL(dma)); } } #ifdef DDB_USE_WORK static void input_work(struct work_struct *work) { struct ddb_dma *dma = container_of(work, struct ddb_dma, work); #else static void input_tasklet(unsigned long data) { struct ddb_dma *dma = (struct ddb_dma *)data; #endif struct ddb_input *input = (struct ddb_input *)dma->io; struct ddb *dev = input->port->dev; unsigned long flags; spin_lock_irqsave(&dma->lock, flags); if (!dma->running) { spin_unlock_irqrestore(&dma->lock, flags); return; } dma->stat = ddbreadl(dev, DMA_BUFFER_CURRENT(dma)); dma->ctrl = ddbreadl(dev, DMA_BUFFER_CONTROL(dma)); #if 0 if (4 & dma->ctrl) dev_err(dev->dev, "Overflow dma %d\n", dma->nr); #endif if (input->redi) input_write_dvb(input, input->redi); if (input->redo) input_write_output(input, input->redo); wake_up(&dma->wq); spin_unlock_irqrestore(&dma->lock, flags); } #if 0 static void input_handler(unsigned long data) { struct ddb_input *input = (struct ddb_input *)data; struct ddb_dma *dma = input->dma; /* If there is no input connected, input_tasklet() will * just copy pointers and ACK. So, there is no need to go * through the tasklet scheduler. */ #ifdef DDB_USE_WORK if (input->redi) queue_work(ddb_wq, &dma->work); else input_work(&dma->work); #else if (input->redi) tasklet_schedule(&dma->tasklet); else input_tasklet(data); #endif } #else static void input_handler(void *data) { struct ddb_input *input = (struct ddb_input *)data; struct ddb_dma *dma = input->dma; #ifdef DDB_USE_WORK queue_work(ddb_wq, &dma->work); #else input_tasklet((unsigned long)dma); #endif } #endif #ifdef DDB_USE_WORK static void output_work(struct work_struct *work) { struct ddb_dma *dma = container_of(work, struct ddb_dma, work); #else static void output_tasklet(unsigned long data) { struct ddb_dma *dma = (struct ddb_dma *)data; #endif struct ddb_output *output = (struct ddb_output *)dma->io; struct ddb *dev = output->port->dev; unsigned long flags; spin_lock_irqsave(&dma->lock, flags); if (!dma->running) goto unlock_exit; dma->stat = ddbreadl(dev, DMA_BUFFER_CURRENT(dma)); dma->ctrl = ddbreadl(dev, DMA_BUFFER_CONTROL(dma)); if (output->redi) output_ack_input(output, output->redi); wake_up(&dma->wq); unlock_exit: spin_unlock_irqrestore(&dma->lock, flags); } #if 0 static void output_handler(void *data) { struct ddb_output *output = (struct ddb_output *)data; struct ddb_dma *dma = output->dma; struct ddb *dev = output->port->dev; spin_lock(&dma->lock); if (!dma->running) { spin_unlock(&dma->lock); return; } dma->stat = ddbreadl(dev, DMA_BUFFER_CURRENT(dma)); dma->ctrl = ddbreadl(dev, DMA_BUFFER_CONTROL(dma)); if (output->redi) output_ack_input(output, output->redi); wake_up(&dma->wq); spin_unlock(&dma->lock); } #else static void output_handler(void *data) { struct ddb_output *output = (struct ddb_output *)data; struct ddb_dma *dma = output->dma; #ifdef DDB_USE_WORK queue_work(ddb_wq, &dma->work); #else tasklet_schedule(&dma->tasklet); #endif } #endif /****************************************************************************/ /****************************************************************************/ static const struct ddb_regmap *io_regmap(struct ddb_io *io, int link) { const struct ddb_info *info; if (link) info = io->port->dev->link[io->port->lnr].info; else info = io->port->dev->link[0].info; if (!info) return NULL; return info->regmap; } static void ddb_dma_init(struct ddb_io *io, int nr, int out, int irq_nr) { struct ddb_dma *dma; const struct ddb_regmap *rm = io_regmap(io, 0); dma = out ? &io->port->dev->odma[nr] : &io->port->dev->idma[nr]; io->dma = dma; dma->io = io; spin_lock_init(&dma->lock); init_waitqueue_head(&dma->wq); if (out) { #ifdef DDB_USE_WORK INIT_WORK(&dma->work, output_work); #else tasklet_init(&dma->tasklet, output_tasklet, (unsigned long)dma); #endif dma->regs = rm->odma->base + rm->odma->size * nr; dma->bufregs = rm->odma_buf->base + rm->odma_buf->size * nr; if (io->port->dev->link[0].info->type == DDB_MOD && io->port->dev->link[0].info->version == 3) { dma->num = OUTPUT_DMA_BUFS_SDR; dma->size = OUTPUT_DMA_SIZE_SDR; dma->div = 1; } else { dma->num = dma_buf_num; dma->size = dma_buf_size * 128 * 47; dma->div = 1; } } else { #ifdef DDB_USE_WORK INIT_WORK(&dma->work, input_work); #else tasklet_init(&dma->tasklet, input_tasklet, (unsigned long)dma); #endif dma->regs = rm->idma->base + rm->idma->size * nr; dma->bufregs = rm->idma_buf->base + rm->idma_buf->size * nr; dma->num = dma_buf_num; dma->size = dma_buf_size * 128 * 47; dma->div = 1; } ddbwritel(io->port->dev, 0, DMA_BUFFER_ACK(dma)); dev_info(io->port->dev->dev, "init link %u, io %u, dma %u, dmaregs %08x bufregs %08x\n", io->port->lnr, io->nr, nr, dma->regs, dma->bufregs); } static void ddb_input_init(struct ddb_port *port, int nr, int pnr, int anr) { struct ddb *dev = port->dev; struct ddb_input *input = &dev->input[anr]; const struct ddb_regmap *rm; port->input[pnr] = input; input->nr = nr; input->port = port; rm = io_regmap(input, 1); input->regs = DDB_LINK_TAG(port->lnr) | (rm->input->base + rm->input->size * nr); dev_info(dev->dev, "init link %u, input %u, regs %08x\n", port->lnr, nr, input->regs); if (dev->has_dma) { const struct ddb_regmap *rm0 = io_regmap(input, 0); u32 base = rm0->irq_base_idma; u32 dma_nr = nr; if (port->lnr) dma_nr += 32 + (port->lnr - 1) * 8; dev_info(dev->dev, "init link %u, input %u, handler %u\n", port->lnr, nr, dma_nr + base); ddb_irq_set(dev, 0, dma_nr + base, &input_handler, input); ddb_dma_init(input, dma_nr, 0, dma_nr + base); } } static void ddb_output_init(struct ddb_port *port, int nr) { struct ddb *dev = port->dev; struct ddb_output *output = &dev->output[nr]; const struct ddb_regmap *rm; port->output = output; output->nr = nr; output->port = port; rm = io_regmap(output, 1); output->regs = DDB_LINK_TAG(port->lnr) | (rm->output->base + rm->output->size * nr); dev_info(dev->dev, "init link %u, output %u, regs %08x\n", port->lnr, nr, output->regs); if (dev->has_dma) { const struct ddb_regmap *rm0 = io_regmap(output, 0); u32 base = rm0->irq_base_odma; ddb_irq_set(dev, 0, nr + base, &output_handler, output); ddb_dma_init(output, nr, 1, nr + base); } } static int ddb_port_match_i2c(struct ddb_port *port) { struct ddb *dev = port->dev; u32 i; for (i = 0; i < dev->i2c_num; i++) { if (dev->i2c[i].link == port->lnr && dev->i2c[i].nr == port->nr) { port->i2c = &dev->i2c[i]; return 1; } } return 0; } static int ddb_port_match_link_i2c(struct ddb_port *port) { struct ddb *dev = port->dev; u32 i; for (i = 0; i < dev->i2c_num; i++) { if (dev->i2c[i].link == port->lnr) { port->i2c = &dev->i2c[i]; return 1; } } return 0; } static void ddb_ports_init(struct ddb *dev) { u32 i, l, p; struct ddb_port *port; const struct ddb_info *info; const struct ddb_regmap *rm; for (p = l = 0; l < DDB_MAX_LINK; l++) { info = dev->link[l].info; if (!info) continue; rm = info->regmap; if (!rm) continue; for (i = 0; i < info->port_num; i++, p++) { port = &dev->port[p]; port->dev = dev; port->nr = i; port->lnr = l; port->pnr = p; port->gap = 0xffffffff; port->obr = ci_bitrate; mutex_init(&port->i2c_gate_lock); if (!ddb_port_match_i2c(port)) if (info->type == DDB_OCTOPUS_MAX) ddb_port_match_link_i2c(port); ddb_port_probe(port); port->dvb[0].adap = &dev->adap[2 * p]; port->dvb[1].adap = &dev->adap[2 * p + 1]; if ((port->class == DDB_PORT_NONE) && i && dev->port[p - 1].type == DDB_CI_EXTERNAL_XO2) { port->class = DDB_PORT_CI; port->type = DDB_CI_EXTERNAL_XO2_B; port->name = "DuoFlex CI_B"; port->i2c = dev->port[p - 1].i2c; } dev_info(dev->dev, "Port %u: Link %u, Link Port %u (TAB %u): %s\n", port->pnr, port->lnr, port->nr, port->nr + 1, port->name); if (port->class == DDB_PORT_CI && port->type == DDB_CI_EXTERNAL_XO2) { ddb_input_init(port, 2 * i, 0, 2 * i); ddb_output_init(port, i); continue; } if (port->class == DDB_PORT_CI && port->type == DDB_CI_EXTERNAL_XO2_B) { ddb_input_init(port, 2 * i - 1, 0, 2 * i - 1); ddb_output_init(port, i); continue; } if (port->class == DDB_PORT_NONE) continue; switch (dev->link[l].info->type) { case DDB_OCTOPUS_CI: if (i >= 2) { ddb_input_init(port, 2 + i, 0, 2 + i); ddb_input_init(port, 4 + i, 1, 4 + i); ddb_output_init(port, i); break; } /* fallthrough */ case DDB_OCTONET: case DDB_OCTOPUS: case DDB_OCTOPRO: ddb_input_init(port, 2 * i, 0, 2 * i); ddb_input_init(port, 2 * i + 1, 1, 2 * i + 1); ddb_output_init(port, i); break; case DDB_OCTOPUS_MAX: case DDB_OCTOPUS_MAX_CT: case DDB_OCTOPUS_MCI: ddb_input_init(port, 2 * i, 0, 2 * p); ddb_input_init(port, 2 * i + 1, 1, 2 * p + 1); break; case DDB_MOD: ddb_output_init(port, i); ddb_irq_set(dev, 0, i + rm->irq_base_rate, &ddbridge_mod_rate_handler, &dev->output[i]); break; default: break; } } } dev->port_num = p; } void ddb_ports_release(struct ddb *dev) { int i; struct ddb_port *port; for (i = 0; i < dev->port_num; i++) { port = &dev->port[i]; #ifdef DDB_USE_WORK if (port->input[0] && port->input[0]->dma) cancel_work_sync(&port->input[0]->dma->work); if (port->input[1] && port->input[1]->dma) cancel_work_sync(&port->input[1]->dma->work); if (port->output && port->output->dma) cancel_work_sync(&port->output->dma->work); #else if (port->input[0] && port->input[0]->dma) tasklet_kill(&port->input[0]->dma->tasklet); if (port->input[1] && port->input[1]->dma) tasklet_kill(&port->input[1]->dma->tasklet); if (port->output && port->output->dma) tasklet_kill(&port->output->dma->tasklet); #endif } } /****************************************************************************/ /****************************************************************************/ /****************************************************************************/ #define IRQ_HANDLE(_n) \ do { if ((s & (1UL << ((_n) & 0x1f))) && dev->link[0].irq[_n].handler) \ dev->link[0].irq[_n].handler(dev->link[0].irq[_n].data); } \ while (0) #define IRQ_HANDLE_NIBBLE(_shift) { \ if (s & (0x0000000f << ((_shift) & 0x1f))) { \ IRQ_HANDLE(0 + (_shift)); \ IRQ_HANDLE(1 + (_shift)); \ IRQ_HANDLE(2 + (_shift)); \ IRQ_HANDLE(3 + (_shift)); \ } \ } #define IRQ_HANDLE_BYTE(_shift) { \ if (s & (0x000000ff << ((_shift) & 0x1f))) { \ IRQ_HANDLE(0 + (_shift)); \ IRQ_HANDLE(1 + (_shift)); \ IRQ_HANDLE(2 + (_shift)); \ IRQ_HANDLE(3 + (_shift)); \ IRQ_HANDLE(4 + (_shift)); \ IRQ_HANDLE(5 + (_shift)); \ IRQ_HANDLE(6 + (_shift)); \ IRQ_HANDLE(7 + (_shift)); \ } \ } static void irq_handle_msg(struct ddb *dev, u32 s) { dev->i2c_irq++; IRQ_HANDLE_NIBBLE(0); } static void irq_handle_io(struct ddb *dev, u32 s) { dev->ts_irq++; IRQ_HANDLE_NIBBLE(4); IRQ_HANDLE_BYTE(8); IRQ_HANDLE_BYTE(16); IRQ_HANDLE_BYTE(24); } irqreturn_t ddb_irq_handler0(int irq, void *dev_id) { struct ddb *dev = (struct ddb *)dev_id; u32 s = ddbreadl(dev, INTERRUPT_STATUS); do { if (s & 0x80000000) return IRQ_NONE; if (!(s & 0xfffff00)) return IRQ_NONE; ddbwritel(dev, s & 0xfffff00, INTERRUPT_ACK); irq_handle_io(dev, s); } while ((s = ddbreadl(dev, INTERRUPT_STATUS))); return IRQ_HANDLED; } irqreturn_t ddb_irq_handler1(int irq, void *dev_id) { struct ddb *dev = (struct ddb *)dev_id; u32 s = ddbreadl(dev, INTERRUPT_STATUS); do { if (s & 0x80000000) return IRQ_NONE; if (!(s & 0x0000f)) return IRQ_NONE; ddbwritel(dev, s & 0x0000f, INTERRUPT_ACK); irq_handle_msg(dev, s); } while ((s = ddbreadl(dev, INTERRUPT_STATUS))); return IRQ_HANDLED; } irqreturn_t ddb_irq_handler(int irq, void *dev_id) { struct ddb *dev = (struct ddb *)dev_id; u32 s = ddbreadl(dev, INTERRUPT_STATUS); int ret = IRQ_HANDLED; if (!s) return IRQ_NONE; do { if (s & 0x80000000) return IRQ_NONE; ddbwritel(dev, s, INTERRUPT_ACK); if (s & 0x0000000f) irq_handle_msg(dev, s); if (s & 0x0fffff00) { irq_handle_io(dev, s); #ifdef DDB_TEST_THREADED ret = IRQ_WAKE_THREAD; #endif } } while ((s = ddbreadl(dev, INTERRUPT_STATUS))); return ret; } static irqreturn_t irq_handle_v2_n(struct ddb *dev, u32 n) { u32 reg = INTERRUPT_V2_STATUS + 4 * n; u32 s = ddbreadl(dev, reg); u32 off = n * 32; if (!s) return IRQ_NONE; ddbwritel(dev, s, reg); IRQ_HANDLE_BYTE(0 + off); IRQ_HANDLE_BYTE(8 + off); IRQ_HANDLE_BYTE(16 + off); IRQ_HANDLE_BYTE(24 + off); return IRQ_HANDLED; } irqreturn_t ddb_irq_handler_v2(int irq, void *dev_id) { struct ddb *dev = (struct ddb *)dev_id; u32 s = 0xffff & ddbreadl(dev, INTERRUPT_V2_STATUS); int ret = IRQ_HANDLED; if (!s) return IRQ_NONE; do { if (s & 0x80) return IRQ_NONE; ddbwritel(dev, s, INTERRUPT_V2_STATUS); if (s & 0x00000001) irq_handle_v2_n(dev, 1); if (s & 0x00000002) irq_handle_v2_n(dev, 2); if (s & 0x00000004) irq_handle_v2_n(dev, 3); IRQ_HANDLE_NIBBLE(8); } while ((s = 0xffff & ddbreadl(dev, INTERRUPT_V2_STATUS))); return ret; } #ifdef DDB_TEST_THREADED static irqreturn_t irq_thread(int irq, void *dev_id) { /* struct ddb *dev = (struct ddb *) dev_id; */ return IRQ_HANDLED; } #endif /****************************************************************************/ /****************************************************************************/ /****************************************************************************/ static ssize_t nsd_read(struct file *file, char *buf, size_t count, loff_t *ppos) { return 0; } static unsigned int nsd_poll(struct file *file, poll_table *wait) { return 0; } static int nsd_release(struct inode *inode, struct file *file) { return dvb_generic_release(inode, file); } static int nsd_open(struct inode *inode, struct file *file) { return dvb_generic_open(inode, file); } static struct ddb_input *plugtoinput(struct ddb *dev, u8 plug) { int i, j; for (i = j = 0; i < dev->port_num; i++) { if (dev->port[i].class == DDB_PORT_TUNER) { if (j == plug) return dev->port[i].input[0]; if (j + 1 == plug) return dev->port[i].input[1]; j += 2; } } return 0; } static int nsd_do_ioctl(struct file *file, unsigned int cmd, void *parg) { struct dvb_device *dvbdev = file->private_data; struct ddb *dev = dvbdev->priv; /* unsigned long arg = (unsigned long)parg; */ int ret = 0; switch (cmd) { case NSD_START_GET_TS: { struct dvb_nsd_ts *ts = parg; struct ddb_input *input = plugtoinput(dev, ts->input); u32 ctrl; u32 to; if (!input) return -EINVAL; ctrl = (input->port->lnr << 16) | ((input->nr & 7) << 8) | ((ts->filter_mask & 3) << 2); if (ddbreadl(dev, TS_CAPTURE_CONTROL) & 1) { dev_info(dev->dev, "ts capture busy\n"); return -EBUSY; } ddb_dvb_ns_input_start(input); ddbwritel(dev, ctrl, TS_CAPTURE_CONTROL); ddbwritel(dev, ts->pid, TS_CAPTURE_PID); ddbwritel(dev, (ts->section_id << 16) | (ts->table << 8) | ts->section, TS_CAPTURE_TABLESECTION); /* 1024 ms default timeout if timeout set to 0 */ if (ts->timeout) to = ts->timeout; else to = 1024; /* 21 packets default if num set to 0 */ if (ts->num) to |= ((u32)ts->num << 16); else to |= (21 << 16); ddbwritel(dev, to, TS_CAPTURE_TIMEOUT); if (ts->mode) ctrl |= 2; ddbwritel(dev, ctrl | 1, TS_CAPTURE_CONTROL); break; } case NSD_POLL_GET_TS: { struct dvb_nsd_ts *ts = parg; u32 ctrl = ddbreadl(dev, TS_CAPTURE_CONTROL); if (ctrl & 1) return -EBUSY; if (ctrl & (1 << 14)) return -EAGAIN; ddbcpyfrom(dev, dev->tsbuf, TS_CAPTURE_MEMORY, TS_CAPTURE_LEN); ts->len = ddbreadl(dev, TS_CAPTURE_RECEIVED) & 0x1fff; if (copy_to_user(ts->ts, dev->tsbuf, ts->len)) return -EIO; break; } case NSD_CANCEL_GET_TS: { u32 ctrl = 0; ddbwritel(dev, ctrl, TS_CAPTURE_CONTROL); ctrl = ddbreadl(dev, TS_CAPTURE_CONTROL); break; } case NSD_STOP_GET_TS: { struct dvb_nsd_ts *ts = parg; struct ddb_input *input = plugtoinput(dev, ts->input); u32 ctrl = ddbreadl(dev, TS_CAPTURE_CONTROL); if (!input) return -EINVAL; if (ctrl & 1) { dev_info(dev->dev, "cannot stop ts capture, while it was neither finished nor canceled\n"); return -EBUSY; } ddb_dvb_ns_input_stop(input); break; } default: ret = -EINVAL; break; } return ret; } static long nsd_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { return dvb_usercopy(file, cmd, arg, nsd_do_ioctl); } static const struct file_operations nsd_fops = { .owner = THIS_MODULE, .read = nsd_read, .open = nsd_open, .release = nsd_release, .poll = nsd_poll, .unlocked_ioctl = nsd_ioctl, }; static struct dvb_device dvbdev_nsd = { .priv = 0, .readers = 1, .writers = 1, .users = 1, .fops = &nsd_fops, }; static int ddb_nsd_attach(struct ddb *dev) { int ret; if (!dev->link[0].info->ns_num) return 0; ret = dvb_register_device(&dev->adap[0], &dev->nsd_dev, &dvbdev_nsd, (void *)dev, DVB_DEVICE_NSD, 0); return ret; } void ddb_nsd_detach(struct ddb *dev) { if (!dev->link[0].info->ns_num) return; if (dev->nsd_dev->users > 2) { wait_event(dev->nsd_dev->wait_queue, dev->nsd_dev->users == 2); } dvb_unregister_device(dev->nsd_dev); } /****************************************************************************/ /****************************************************************************/ /****************************************************************************/ static int reg_wait(struct ddb *dev, u32 reg, u32 bit) { u32 count = 0; while (ddbreadl(dev, reg) & bit) { ndelay(10); if (++count == 100) return -1; } return 0; } static int flashio(struct ddb *dev, u32 lnr, u8 *wbuf, u32 wlen, u8 *rbuf, u32 rlen) { u32 data, shift; u32 tag = DDB_LINK_TAG(lnr); struct ddb_link *link = &dev->link[lnr]; mutex_lock(&link->flash_mutex); if (wlen > 4) ddbwritel(dev, 1, tag | SPI_CONTROL); while (wlen > 4) { /* FIXME: check for big-endian */ data = swab32(*(u32 *)wbuf); wbuf += 4; wlen -= 4; ddbwritel(dev, data, tag | SPI_DATA); if (reg_wait(dev, tag | SPI_CONTROL, 4)) goto fail; } if (rlen) ddbwritel(dev, 0x0001 | ((wlen << (8 + 3)) & 0x1f00), tag | SPI_CONTROL); else ddbwritel(dev, 0x0003 | ((wlen << (8 + 3)) & 0x1f00), tag | SPI_CONTROL); data = 0; shift = ((4 - wlen) * 8); while (wlen) { data <<= 8; data |= *wbuf; wlen--; wbuf++; } if (shift) data <<= shift; ddbwritel(dev, data, tag | SPI_DATA); if (reg_wait(dev, tag | SPI_CONTROL, 4)) goto fail; if (!rlen) { ddbwritel(dev, 0, tag | SPI_CONTROL); goto exit; } if (rlen > 4) ddbwritel(dev, 1, tag | SPI_CONTROL); while (rlen > 4) { ddbwritel(dev, 0xffffffff, tag | SPI_DATA); if (reg_wait(dev, tag | SPI_CONTROL, 4)) goto fail; data = ddbreadl(dev, tag | SPI_DATA); *(u32 *)rbuf = swab32(data); rbuf += 4; rlen -= 4; } ddbwritel(dev, 0x0003 | ((rlen << (8 + 3)) & 0x1F00), tag | SPI_CONTROL); ddbwritel(dev, 0xffffffff, tag | SPI_DATA); if (reg_wait(dev, tag | SPI_CONTROL, 4)) goto fail; data = ddbreadl(dev, tag | SPI_DATA); ddbwritel(dev, 0, tag | SPI_CONTROL); if (rlen < 4) data <<= ((4 - rlen) * 8); while (rlen > 0) { *rbuf = ((data >> 24) & 0xff); data <<= 8; rbuf++; rlen--; } exit: mutex_unlock(&link->flash_mutex); return 0; fail: mutex_unlock(&link->flash_mutex); return -1; } int ddbridge_flashread(struct ddb *dev, u32 link, u8 *buf, u32 addr, u32 len) { u8 cmd[4] = {0x03, (addr >> 16) & 0xff, (addr >> 8) & 0xff, addr & 0xff}; return flashio(dev, link, cmd, 4, buf, len); } static int mdio_write(struct ddb *dev, u8 adr, u8 reg, u16 val) { ddbwritel(dev, adr, MDIO_ADR); ddbwritel(dev, reg, MDIO_REG); ddbwritel(dev, val, MDIO_VAL); ddbwritel(dev, 0x03, MDIO_CTRL); while (ddbreadl(dev, MDIO_CTRL) & 0x02) ndelay(500); return 0; } static u16 mdio_read(struct ddb *dev, u8 adr, u8 reg) { ddbwritel(dev, adr, MDIO_ADR); ddbwritel(dev, reg, MDIO_REG); ddbwritel(dev, 0x07, MDIO_CTRL); while (ddbreadl(dev, MDIO_CTRL) & 0x02) ndelay(500); return ddbreadl(dev, MDIO_VAL); } #define DDB_MAGIC 'd' struct ddb_flashio { __u8 *write_buf; __u32 write_len; __u8 *read_buf; __u32 read_len; __u32 link; }; struct ddb_gpio { __u32 mask; __u32 data; }; struct ddb_id { __u16 vendor; __u16 device; __u16 subvendor; __u16 subdevice; __u32 hw; __u32 regmap; }; struct ddb_reg { __u32 reg; __u32 val; }; struct ddb_mem { __u32 off; __u8 *buf; __u32 len; }; struct ddb_mdio { __u8 adr; __u8 reg; __u16 val; }; struct ddb_i2c_msg { __u8 bus; __u8 adr; __u8 *hdr; __u32 hlen; __u8 *msg; __u32 mlen; }; #define IOCTL_DDB_FLASHIO _IOWR(DDB_MAGIC, 0x00, struct ddb_flashio) #define IOCTL_DDB_GPIO_IN _IOWR(DDB_MAGIC, 0x01, struct ddb_gpio) #define IOCTL_DDB_GPIO_OUT _IOWR(DDB_MAGIC, 0x02, struct ddb_gpio) #define IOCTL_DDB_ID _IOR(DDB_MAGIC, 0x03, struct ddb_id) #define IOCTL_DDB_READ_REG _IOWR(DDB_MAGIC, 0x04, struct ddb_reg) #define IOCTL_DDB_WRITE_REG _IOW(DDB_MAGIC, 0x05, struct ddb_reg) #define IOCTL_DDB_READ_MEM _IOWR(DDB_MAGIC, 0x06, struct ddb_mem) #define IOCTL_DDB_WRITE_MEM _IOR(DDB_MAGIC, 0x07, struct ddb_mem) #define IOCTL_DDB_READ_MDIO _IOWR(DDB_MAGIC, 0x08, struct ddb_mdio) #define IOCTL_DDB_WRITE_MDIO _IOR(DDB_MAGIC, 0x09, struct ddb_mdio) #define IOCTL_DDB_READ_I2C _IOWR(DDB_MAGIC, 0x0a, struct ddb_i2c_msg) #define IOCTL_DDB_WRITE_I2C _IOR(DDB_MAGIC, 0x0b, struct ddb_i2c_msg) #define DDB_NAME "ddbridge" static u32 ddb_num; static int ddb_major; static DEFINE_MUTEX(ddb_mutex); static int ddb_release(struct inode *inode, struct file *file) { struct ddb *dev = file->private_data; dev->ddb_dev_users--; return 0; } static int ddb_open(struct inode *inode, struct file *file) { struct ddb *dev = ddbs[iminor(inode)]; if (dev->ddb_dev_users) return -EBUSY; dev->ddb_dev_users++; file->private_data = dev; return 0; } static long ddb_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct ddb *dev = file->private_data; void *parg = (void *)arg; int res; switch (cmd) { case IOCTL_DDB_FLASHIO: { struct ddb_flashio fio; u8 *rbuf, *wbuf; if (copy_from_user(&fio, parg, sizeof(fio))) return -EFAULT; if (fio.write_len > 1028 || fio.read_len > 1028) return -EINVAL; if (fio.write_len + fio.read_len > 1028) return -EINVAL; if (fio.link > 3) return -EINVAL; wbuf = &dev->iobuf[0]; rbuf = wbuf + fio.write_len; if (copy_from_user(wbuf, fio.write_buf, fio.write_len)) return -EFAULT; res = flashio(dev, fio.link, wbuf, fio.write_len, rbuf, fio.read_len); if (res) return res; if (copy_to_user(fio.read_buf, rbuf, fio.read_len)) return -EFAULT; break; } case IOCTL_DDB_GPIO_OUT: { struct ddb_gpio gpio; if (copy_from_user(&gpio, parg, sizeof(gpio))) return -EFAULT; ddbwritel(dev, gpio.mask, GPIO_DIRECTION); ddbwritel(dev, gpio.data, GPIO_OUTPUT); break; } case IOCTL_DDB_ID: { struct ddb_id ddbid; ddbid.vendor = dev->link[0].ids.vendor; ddbid.device = dev->link[0].ids.device; ddbid.subvendor = dev->link[0].ids.subvendor; ddbid.subdevice = dev->link[0].ids.subdevice; ddbid.hw = ddbreadl(dev, 0); ddbid.regmap = ddbreadl(dev, 4); if (copy_to_user(parg, &ddbid, sizeof(ddbid))) return -EFAULT; break; } case IOCTL_DDB_READ_REG: { struct ddb_reg reg; if (copy_from_user(®, parg, sizeof(reg))) return -EFAULT; if ((reg.reg & 0xfffffff) >= dev->regs_len) return -EINVAL; reg.val = ddbreadl(dev, reg.reg); if (copy_to_user(parg, ®, sizeof(reg))) return -EFAULT; break; } case IOCTL_DDB_WRITE_REG: { struct ddb_reg reg; if (copy_from_user(®, parg, sizeof(reg))) return -EFAULT; if ((reg.reg & 0xfffffff) >= dev->regs_len) return -EINVAL; ddbwritel(dev, reg.val, reg.reg); break; } case IOCTL_DDB_READ_MDIO: { struct ddb_mdio mdio; if (!dev->link[0].info->mdio_num) return -EIO; if (copy_from_user(&mdio, parg, sizeof(mdio))) return -EFAULT; mdio.val = mdio_read(dev, mdio.adr, mdio.reg); if (copy_to_user(parg, &mdio, sizeof(mdio))) return -EFAULT; break; } case IOCTL_DDB_WRITE_MDIO: { struct ddb_mdio mdio; if (!dev->link[0].info->mdio_num) return -EIO; if (copy_from_user(&mdio, parg, sizeof(mdio))) return -EFAULT; mdio_write(dev, mdio.adr, mdio.reg, mdio.val); break; } case IOCTL_DDB_READ_MEM: { struct ddb_mem mem; u8 *buf = &dev->iobuf[0]; if (copy_from_user(&mem, parg, sizeof(mem))) return -EFAULT; if ((((mem.len + mem.off) & 0xfffffff) > dev->regs_len) || mem.len > 1024) return -EINVAL; ddbcpyfrom(dev, buf, mem.off, mem.len); if (copy_to_user(mem.buf, buf, mem.len)) return -EFAULT; break; } case IOCTL_DDB_WRITE_MEM: { struct ddb_mem mem; u8 *buf = &dev->iobuf[0]; if (copy_from_user(&mem, parg, sizeof(mem))) return -EFAULT; if ((((mem.len + mem.off) & 0xfffffff) > dev->regs_len) || mem.len > 1024) return -EINVAL; if (copy_from_user(buf, mem.buf, mem.len)) return -EFAULT; ddbcpyto(dev, mem.off, buf, mem.len); break; } case IOCTL_DDB_READ_I2C: { struct ddb_i2c_msg i2c; struct i2c_adapter *adap; u8 *mbuf, *hbuf = &dev->iobuf[0]; if (copy_from_user(&i2c, parg, sizeof(i2c))) return -EFAULT; if (i2c.bus > dev->link[0].info->regmap->i2c->num) return -EINVAL; if (i2c.mlen + i2c.hlen > 512) return -EINVAL; adap = &dev->i2c[i2c.bus].adap; mbuf = hbuf + i2c.hlen; if (copy_from_user(hbuf, i2c.hdr, i2c.hlen)) return -EFAULT; if (i2c_io(adap, i2c.adr, hbuf, i2c.hlen, mbuf, i2c.mlen) < 0) return -EIO; if (copy_to_user(i2c.msg, mbuf, i2c.mlen)) return -EFAULT; break; } case IOCTL_DDB_WRITE_I2C: { struct ddb_i2c_msg i2c; struct i2c_adapter *adap; u8 *buf = &dev->iobuf[0]; if (copy_from_user(&i2c, parg, sizeof(i2c))) return -EFAULT; if (i2c.bus > dev->link[0].info->regmap->i2c->num) return -EINVAL; if (i2c.mlen + i2c.hlen > 250) return -EINVAL; adap = &dev->i2c[i2c.bus].adap; if (copy_from_user(buf, i2c.hdr, i2c.hlen)) return -EFAULT; if (copy_from_user(buf + i2c.hlen, i2c.msg, i2c.mlen)) return -EFAULT; if (i2c_write(adap, i2c.adr, buf, i2c.hlen + i2c.mlen) < 0) return -EIO; break; } default: return -ENOTTY; } return 0; } static const struct file_operations ddb_fops = { .unlocked_ioctl = ddb_ioctl, .open = ddb_open, .release = ddb_release, }; #if (KERNEL_VERSION(3, 4, 0) > LINUX_VERSION_CODE) static char *ddb_devnode(struct device *device, mode_t *mode) #else static char *ddb_devnode(struct device *device, umode_t *mode) #endif { struct ddb *dev = dev_get_drvdata(device); return kasprintf(GFP_KERNEL, "ddbridge/card%d", dev->nr); } #define __ATTR_MRO(_name, _show) { \ .attr = { .name = __stringify(_name), .mode = 0444 }, \ .show = _show, \ } #define __ATTR_MWO(_name, _store) { \ .attr = { .name = __stringify(_name), .mode = 0222 }, \ .store = _store, \ } static ssize_t ports_show(struct device *device, struct device_attribute *attr, char *buf) { struct ddb *dev = dev_get_drvdata(device); return sprintf(buf, "%d\n", dev->port_num); } static ssize_t ts_irq_show(struct device *device, struct device_attribute *attr, char *buf) { struct ddb *dev = dev_get_drvdata(device); return sprintf(buf, "%d\n", dev->ts_irq); } static ssize_t i2c_irq_show(struct device *device, struct device_attribute *attr, char *buf) { struct ddb *dev = dev_get_drvdata(device); return sprintf(buf, "%d\n", dev->i2c_irq); } static char *class_name[] = { "NONE", "CI", "TUNER", "LOOP", "MOD" }; static ssize_t fan_show(struct device *device, struct device_attribute *attr, char *buf) { struct ddb *dev = dev_get_drvdata(device); u32 val; val = ddbreadl(dev, GPIO_OUTPUT) & 1; return sprintf(buf, "%d\n", val); } static ssize_t fan_store(struct device *device, struct device_attribute *d, const char *buf, size_t count) { struct ddb *dev = dev_get_drvdata(device); u32 val; if (sscanf(buf, "%u\n", &val) != 1) return -EINVAL; ddbwritel(dev, 1, GPIO_DIRECTION); ddbwritel(dev, val & 1, GPIO_OUTPUT); return count; } static ssize_t fanspeed_show(struct device *device, struct device_attribute *attr, char *buf) { struct ddb *dev = dev_get_drvdata(device); int num = attr->attr.name[8] - 0x30; struct ddb_link *link = &dev->link[num]; u32 spd; spd = ddblreadl(link, TEMPMON_FANCONTROL) & 0xff; return sprintf(buf, "%u\n", spd * 100); } static ssize_t temp_show(struct device *device, struct device_attribute *attr, char *buf) { struct ddb *dev = dev_get_drvdata(device); struct ddb_link *link = &dev->link[0]; struct i2c_adapter *adap; s32 temp, temp2, temp3; int i; u8 tmp[2]; if (link->info->type == DDB_MOD) { if (link->info->version >= 2) { temp = 0xffff & ddbreadl(dev, TEMPMON2_BOARD); temp = (temp * 1000) >> 8; temp2 = 0xffff & ddbreadl(dev, TEMPMON2_FPGACORE); temp2 = (temp2 * 1000) >> 8; temp3 = 0xffff & ddbreadl(dev, TEMPMON2_QAMCORE); temp3 = (temp3 * 1000) >> 8; return sprintf(buf, "%d %d %d\n", temp, temp2, temp3); } ddbwritel(dev, 1, TEMPMON_CONTROL); for (i = 0; i < 10; i++) { if (0 == (1 & ddbreadl(dev, TEMPMON_CONTROL))) break; usleep_range(1000, 2000); } temp = ddbreadl(dev, TEMPMON_SENSOR1); temp2 = ddbreadl(dev, TEMPMON_SENSOR2); temp = (temp * 1000) >> 8; temp2 = (temp2 * 1000) >> 8; if (ddbreadl(dev, TEMPMON_CONTROL) & 0x8000) { temp3 = ddbreadl(dev, TEMPMON_CORE); temp3 = (temp3 * 1000) >> 8; return sprintf(buf, "%d %d %d\n", temp, temp2, temp3); } return sprintf(buf, "%d %d\n", temp, temp2); } if (!link->info->temp_num) return sprintf(buf, "no sensor\n"); adap = &dev->i2c[link->info->temp_bus].adap; if (i2c_read_regs(adap, 0x48, 0, tmp, 2) < 0) return sprintf(buf, "read_error\n"); temp = (tmp[0] << 3) | (tmp[1] >> 5); temp *= 125; if (link->info->temp_num == 2) { if (i2c_read_regs(adap, 0x49, 0, tmp, 2) < 0) return sprintf(buf, "read_error\n"); temp2 = (tmp[0] << 3) | (tmp[1] >> 5); temp2 *= 125; return sprintf(buf, "%d %d\n", temp, temp2); } return sprintf(buf, "%d\n", temp); } static ssize_t ctemp_show(struct device *device, struct device_attribute *attr, char *buf) { struct ddb *dev = dev_get_drvdata(device); struct i2c_adapter *adap; int temp; u8 tmp[2]; int num = attr->attr.name[4] - 0x30; adap = &dev->i2c[num].adap; if (!adap) return 0; if (i2c_read_regs(adap, 0x49, 0, tmp, 2) < 0) if (i2c_read_regs(adap, 0x4d, 0, tmp, 2) < 0) return sprintf(buf, "no sensor\n"); temp = tmp[0] * 1000; return sprintf(buf, "%d\n", temp); } #if 0 static ssize_t qam_show(struct device *device, struct device_attribute *attr, char *buf) { struct ddb *dev = dev_get_drvdata(device); struct i2c_adapter *adap; u8 tmp[4]; s16 i, q; adap = &dev->i2c[1].adap; if (i2c_read_regs16(adap, 0x1f, 0xf480, tmp, 4) < 0) return sprintf(buf, "read_error\n"); i = (s16)(((u16)tmp[1]) << 14) | (((u16)tmp[0]) << 6); q = (s16)(((u16)tmp[3]) << 14) | (((u16)tmp[2]) << 6); return sprintf(buf, "%d %d\n", i, q); } #endif static ssize_t mod_show(struct device *device, struct device_attribute *attr, char *buf) { struct ddb *dev = dev_get_drvdata(device); int num = attr->attr.name[3] - 0x30; return sprintf(buf, "%s:%s\n", class_name[dev->port[num].class], dev->port[num].type_name); } static ssize_t led_show(struct device *device, struct device_attribute *attr, char *buf) { struct ddb *dev = dev_get_drvdata(device); int num = attr->attr.name[3] - 0x30; return sprintf(buf, "%d\n", dev->leds & (1 << num) ? 1 : 0); } static void ddb_set_led(struct ddb *dev, int num, int val) { if (!dev->link[0].info->led_num) return; switch (dev->port[num].class) { case DDB_PORT_TUNER: switch (dev->port[num].type) { case DDB_TUNER_DVBS_ST: i2c_write_reg16(&dev->i2c[num].adap, 0x69, 0xf14c, val ? 2 : 0); break; case DDB_TUNER_DVBCT_ST: i2c_write_reg16(&dev->i2c[num].adap, 0x1f, 0xf00e, 0); i2c_write_reg16(&dev->i2c[num].adap, 0x1f, 0xf00f, val ? 1 : 0); break; case DDB_TUNER_XO2 ... DDB_TUNER_DVBC2T2I_SONY: { u8 v; i2c_read_reg(&dev->i2c[num].adap, 0x10, 0x08, &v); v = (v & ~0x10) | (val ? 0x10 : 0); i2c_write_reg(&dev->i2c[num].adap, 0x10, 0x08, v); break; } default: break; } break; } } static ssize_t led_store(struct device *device, struct device_attribute *attr, const char *buf, size_t count) { struct ddb *dev = dev_get_drvdata(device); int num = attr->attr.name[3] - 0x30; u32 val; if (sscanf(buf, "%u\n", &val) != 1) return -EINVAL; if (val) dev->leds |= (1 << num); else dev->leds &= ~(1 << num); ddb_set_led(dev, num, val); return count; } static ssize_t snr_show(struct device *device, struct device_attribute *attr, char *buf) { struct ddb *dev = dev_get_drvdata(device); char snr[32]; int num = attr->attr.name[3] - 0x30; if (dev->port[num].type >= DDB_TUNER_XO2) { if (i2c_read_regs(&dev->i2c[num].adap, 0x10, 0x10, snr, 16) < 0) return sprintf(buf, "NO SNR\n"); snr[16] = 0; } else { /* serial number at 0x100-0x11f */ if (i2c_read_regs16(&dev->i2c[num].adap, 0x57, 0x100, snr, 32) < 0) if (i2c_read_regs16(&dev->i2c[num].adap, 0x50, 0x100, snr, 32) < 0) return sprintf(buf, "NO SNR\n"); snr[31] = 0; /* in case it is not terminated on EEPROM */ } return sprintf(buf, "%s\n", snr); } static ssize_t snr_store(struct device *device, struct device_attribute *attr, const char *buf, size_t count) { struct ddb *dev = dev_get_drvdata(device); int num = attr->attr.name[3] - 0x30; u8 snr[34] = { 0x01, 0x00 }; return 0; /* NOE: remove completely? */ if (count > 31) return -EINVAL; if (dev->port[num].type >= DDB_TUNER_XO2) return -EINVAL; memcpy(snr + 2, buf, count); i2c_write(&dev->i2c[num].adap, 0x57, snr, 34); i2c_write(&dev->i2c[num].adap, 0x50, snr, 34); return count; } static ssize_t bsnr_show(struct device *device, struct device_attribute *attr, char *buf) { struct ddb *dev = dev_get_drvdata(device); char snr[16]; ddbridge_flashread(dev, 0, snr, 0x10, 15); snr[15] = 0; /* in case it is not terminated on EEPROM */ return sprintf(buf, "%s\n", snr); } static ssize_t bpsnr_show(struct device *device, struct device_attribute *attr, char *buf) { struct ddb *dev = dev_get_drvdata(device); unsigned char snr[32]; if (!dev->i2c_num) return 0; if (i2c_read_regs16(&dev->i2c[0].adap, 0x50, 0x0000, snr, 32) < 0 || snr[0] == 0xff) return sprintf(buf, "NO SNR\n"); snr[31] = 0; /* in case it is not terminated on EEPROM */ return sprintf(buf, "%s\n", snr); } static ssize_t redirect_show(struct device *device, struct device_attribute *attr, char *buf) { return 0; } static ssize_t redirect_store(struct device *device, struct device_attribute *attr, const char *buf, size_t count) { unsigned int i, p; int res; if (sscanf(buf, "%x %x\n", &i, &p) != 2) return -EINVAL; res = ddb_redirect(i, p); if (res < 0) return res; dev_info(device, "redirect: %02x, %02x\n", i, p); return count; } #if 0 /* A L P I AAAAAALLPPPPPPII */ /* AAAAAAAA LLLLLLLL PPPPPPII */ static ssize_t redirect2_show(struct device *device, struct device_attribute *attr, char *buf) { return 0; } static ssize_t redirect2_store(struct device *device, struct device_attribute *attr, const char *buf, size_t count) { unsigned int i, p; int res; if (sscanf(buf, "%x %x\n", &i, &p) != 2) return -EINVAL; res = ddb_redirect(i, p); if (res < 0) return res; dev_info(device, "redirect: %02x, %02x\n", i, p); return count; } #endif static ssize_t gap_show(struct device *device, struct device_attribute *attr, char *buf) { struct ddb *dev = dev_get_drvdata(device); int num = attr->attr.name[3] - 0x30; return sprintf(buf, "%d\n", dev->port[num].gap); } static ssize_t gap_store(struct device *device, struct device_attribute *attr, const char *buf, size_t count) { struct ddb *dev = dev_get_drvdata(device); int num = attr->attr.name[3] - 0x30; unsigned int val; if (sscanf(buf, "%u\n", &val) != 1) return -EINVAL; if (val > 128) return -EINVAL; if (val == 128) val = 0xffffffff; dev->port[num].gap = val; return count; } static ssize_t obr_show(struct device *device, struct device_attribute *attr, char *buf) { struct ddb *dev = dev_get_drvdata(device); int num = attr->attr.name[3] - 0x30; return sprintf(buf, "%d\n", dev->port[num].obr); } static ssize_t obr_store(struct device *device, struct device_attribute *attr, const char *buf, size_t count) { struct ddb *dev = dev_get_drvdata(device); int num = attr->attr.name[3] - 0x30; unsigned int val; if (sscanf(buf, "%u\n", &val) != 1) return -EINVAL; if (val > 96000) return -EINVAL; dev->port[num].obr = val; return count; } static ssize_t version_show(struct device *device, struct device_attribute *attr, char *buf) { struct ddb *dev = dev_get_drvdata(device); return sprintf(buf, "%08x %08x\n", dev->link[0].ids.hwid, dev->link[0].ids.regmapid); } static ssize_t hwid_show(struct device *device, struct device_attribute *attr, char *buf) { struct ddb *dev = dev_get_drvdata(device); return sprintf(buf, "0x%08X\n", dev->link[0].ids.hwid); } static ssize_t regmap_show(struct device *device, struct device_attribute *attr, char *buf) { struct ddb *dev = dev_get_drvdata(device); return sprintf(buf, "0x%08X\n", dev->link[0].ids.regmapid); } static ssize_t vlan_show(struct device *device, struct device_attribute *attr, char *buf) { struct ddb *dev = dev_get_drvdata(device); return sprintf(buf, "%u\n", dev->vlan); } static ssize_t vlan_store(struct device *device, struct device_attribute *attr, const char *buf, size_t count) { struct ddb *dev = dev_get_drvdata(device); unsigned int val; if (sscanf(buf, "%u\n", &val) != 1) return -EINVAL; if (val > 1) return -EINVAL; if (!dev->link[0].info->ns_num) return -EINVAL; ddbwritel(dev, 14 + (val ? 4 : 0), ETHER_LENGTH); dev->vlan = val; return count; } static ssize_t fmode_show(struct device *device, struct device_attribute *attr, char *buf) { int num = attr->attr.name[5] - 0x30; struct ddb *dev = dev_get_drvdata(device); return sprintf(buf, "%u\n", dev->link[num].lnb.fmode); } static ssize_t devid_show(struct device *device, struct device_attribute *attr, char *buf) { int num = attr->attr.name[5] - 0x30; struct ddb *dev = dev_get_drvdata(device); return sprintf(buf, "%08x\n", dev->link[num].ids.devid); } static ssize_t fmode_store(struct device *device, struct device_attribute *attr, const char *buf, size_t count) { struct ddb *dev = dev_get_drvdata(device); int num = attr->attr.name[5] - 0x30; unsigned int val; if (sscanf(buf, "%u\n", &val) != 1) return -EINVAL; if (val > 3) return -EINVAL; ddb_lnb_init_fmode(dev, &dev->link[num], val); return count; } static struct device_attribute ddb_attrs[] = { __ATTR_RO(version), __ATTR_RO(ports), __ATTR_RO(ts_irq), __ATTR_RO(i2c_irq), __ATTR(gap0, 0664, gap_show, gap_store), __ATTR(gap1, 0664, gap_show, gap_store), __ATTR(gap2, 0664, gap_show, gap_store), __ATTR(gap3, 0664, gap_show, gap_store), __ATTR(obr0, 0664, obr_show, obr_store), __ATTR(obr1, 0664, obr_show, obr_store), __ATTR(obr2, 0664, obr_show, obr_store), __ATTR(obr3, 0664, obr_show, obr_store), __ATTR(vlan, 0664, vlan_show, vlan_store), __ATTR(fmode0, 0664, fmode_show, fmode_store), __ATTR(fmode1, 0664, fmode_show, fmode_store), __ATTR(fmode2, 0664, fmode_show, fmode_store), __ATTR(fmode3, 0664, fmode_show, fmode_store), __ATTR_MRO(devid0, devid_show), __ATTR_MRO(devid1, devid_show), __ATTR_MRO(devid2, devid_show), __ATTR_MRO(devid3, devid_show), __ATTR_RO(hwid), __ATTR_RO(regmap), #if 0 __ATTR_RO(qam), #endif __ATTR(redirect, 0664, redirect_show, redirect_store), __ATTR_MRO(snr, bsnr_show), __ATTR_RO(bpsnr), __ATTR_NULL, }; static struct device_attribute ddb_attrs_temp[] = { __ATTR_RO(temp), }; static struct device_attribute ddb_attrs_mod[] = { __ATTR_MRO(mod0, mod_show), __ATTR_MRO(mod1, mod_show), __ATTR_MRO(mod2, mod_show), __ATTR_MRO(mod3, mod_show), __ATTR_MRO(mod4, mod_show), __ATTR_MRO(mod5, mod_show), __ATTR_MRO(mod6, mod_show), __ATTR_MRO(mod7, mod_show), __ATTR_MRO(mod8, mod_show), __ATTR_MRO(mod9, mod_show), }; static struct device_attribute ddb_attrs_fan[] = { __ATTR(fan, 0664, fan_show, fan_store), }; static struct device_attribute ddb_attrs_snr[] = { __ATTR(snr0, 0664, snr_show, snr_store), __ATTR(snr1, 0664, snr_show, snr_store), __ATTR(snr2, 0664, snr_show, snr_store), __ATTR(snr3, 0664, snr_show, snr_store), }; static struct device_attribute ddb_attrs_ctemp[] = { __ATTR_MRO(temp0, ctemp_show), __ATTR_MRO(temp1, ctemp_show), __ATTR_MRO(temp2, ctemp_show), __ATTR_MRO(temp3, ctemp_show), }; static struct device_attribute ddb_attrs_led[] = { __ATTR(led0, 0664, led_show, led_store), __ATTR(led1, 0664, led_show, led_store), __ATTR(led2, 0664, led_show, led_store), __ATTR(led3, 0664, led_show, led_store), }; static struct device_attribute ddb_attrs_fanspeed[] = { __ATTR_MRO(fanspeed0, fanspeed_show), __ATTR_MRO(fanspeed1, fanspeed_show), __ATTR_MRO(fanspeed2, fanspeed_show), __ATTR_MRO(fanspeed3, fanspeed_show), }; static struct class ddb_class = { .name = "ddbridge", .owner = THIS_MODULE, #if 0 .dev_attrs = ddb_attrs, #endif .devnode = ddb_devnode, }; int ddb_class_create(void) { ddb_major = register_chrdev(0, DDB_NAME, &ddb_fops); if (ddb_major < 0) return ddb_major; if (class_register(&ddb_class) < 0) return -1; return 0; } void ddb_class_destroy(void) { class_unregister(&ddb_class); unregister_chrdev(ddb_major, DDB_NAME); } static void ddb_device_attrs_del(struct ddb *dev) { int i; for (i = 0; i < 4; i++) if (dev->link[i].info && dev->link[i].info->tempmon_irq) device_remove_file(dev->ddb_dev, &ddb_attrs_fanspeed[i]); for (i = 0; i < dev->link[0].info->temp_num; i++) device_remove_file(dev->ddb_dev, &ddb_attrs_temp[i]); for (i = 0; i < dev->link[0].info->port_num; i++) device_remove_file(dev->ddb_dev, &ddb_attrs_mod[i]); for (i = 0; i < dev->link[0].info->fan_num; i++) device_remove_file(dev->ddb_dev, &ddb_attrs_fan[i]); for (i = 0; i < dev->i2c_num && i < 4; i++) { if (dev->link[0].info->led_num) device_remove_file(dev->ddb_dev, &ddb_attrs_led[i]); device_remove_file(dev->ddb_dev, &ddb_attrs_snr[i]); device_remove_file(dev->ddb_dev, &ddb_attrs_ctemp[i]); } for (i = 0; ddb_attrs[i].attr.name; i++) device_remove_file(dev->ddb_dev, &ddb_attrs[i]); } static int ddb_device_attrs_add(struct ddb *dev) { int i; for (i = 0; ddb_attrs[i].attr.name; i++) if (device_create_file(dev->ddb_dev, &ddb_attrs[i])) goto fail; for (i = 0; i < dev->link[0].info->temp_num; i++) if (device_create_file(dev->ddb_dev, &ddb_attrs_temp[i])) goto fail; for (i = 0; (i < dev->link[0].info->port_num) && (i < 10); i++) if (device_create_file(dev->ddb_dev, &ddb_attrs_mod[i])) goto fail; for (i = 0; i < dev->link[0].info->fan_num; i++) if (device_create_file(dev->ddb_dev, &ddb_attrs_fan[i])) goto fail; for (i = 0; (i < dev->i2c_num) && (i < 4); i++) { if (device_create_file(dev->ddb_dev, &ddb_attrs_snr[i])) goto fail; if (device_create_file(dev->ddb_dev, &ddb_attrs_ctemp[i])) goto fail; if (dev->link[0].info->led_num) if (device_create_file(dev->ddb_dev, &ddb_attrs_led[i])) goto fail; } for (i = 0; i < 4; i++) if (dev->link[i].info && dev->link[i].info->tempmon_irq) if (device_create_file(dev->ddb_dev, &ddb_attrs_fanspeed[i])) goto fail; return 0; fail: return -1; } static int ddb_device_create(struct ddb *dev) { int res = 0; if (ddb_num == DDB_MAX_ADAPTER) return -ENOMEM; mutex_lock(&ddb_mutex); dev->nr = ddb_num; ddbs[dev->nr] = dev; dev->ddb_dev = device_create(&ddb_class, dev->dev, MKDEV(ddb_major, dev->nr), dev, "ddbridge%d", dev->nr); if (IS_ERR(dev->ddb_dev)) { res = PTR_ERR(dev->ddb_dev); dev_info(dev->dev, "Could not create ddbridge%d\n", dev->nr); goto fail; } res = ddb_device_attrs_add(dev); if (res) { ddb_device_attrs_del(dev); device_destroy(&ddb_class, MKDEV(ddb_major, dev->nr)); ddbs[dev->nr] = NULL; dev->ddb_dev = ERR_PTR(-ENODEV); } else { ddb_num++; } fail: mutex_unlock(&ddb_mutex); return res; } void ddb_device_destroy(struct ddb *dev) { if (IS_ERR(dev->ddb_dev)) return; ddb_device_attrs_del(dev); device_destroy(&ddb_class, MKDEV(ddb_major, dev->nr)); } #define LINK_IRQ_HANDLE(_l, _nr) \ do { if ((s & (1UL << (_nr))) && dev->link[_l].irq[_nr].handler) \ dev->link[_l].irq[_nr].handler(dev->link[_l].irq[_nr].data); } \ while (0) static void gtl_link_handler(void *priv) { struct ddb *dev = (struct ddb *)priv; u32 regs = dev->link[0].info->regmap->gtl->base; dev_info(dev->dev, "GT link change: %u\n", (1 & ddbreadl(dev, regs))); } static void link_tasklet(unsigned long data) { struct ddb_link *link = (struct ddb_link *)data; struct ddb *dev = link->dev; u32 s, tag = DDB_LINK_TAG(link->nr); u32 l = link->nr; s = ddbreadl(dev, tag | INTERRUPT_STATUS); dev_info(dev->dev, "gtl_irq %08x = %08x\n", tag | INTERRUPT_STATUS, s); if (!s) return; ddbwritel(dev, s, tag | INTERRUPT_ACK); LINK_IRQ_HANDLE(l, 0); LINK_IRQ_HANDLE(l, 1); LINK_IRQ_HANDLE(l, 2); LINK_IRQ_HANDLE(l, 3); LINK_IRQ_HANDLE(l, 24); } static void gtl_irq_handler(void *priv) { struct ddb_link *link = (struct ddb_link *)priv; #if 1 struct ddb *dev = link->dev; u32 s, l = link->nr, tag = DDB_LINK_TAG(link->nr); while ((s = ddbreadl(dev, tag | INTERRUPT_STATUS))) { ddbwritel(dev, s, tag | INTERRUPT_ACK); LINK_IRQ_HANDLE(l, 0); LINK_IRQ_HANDLE(l, 1); LINK_IRQ_HANDLE(l, 2); LINK_IRQ_HANDLE(l, 3); LINK_IRQ_HANDLE(l, 24); } #else tasklet_schedule(&link->tasklet); #endif } static int ddb_gtl_init_link(struct ddb *dev, u32 l) { struct ddb_link *link = &dev->link[l]; u32 regs = dev->link[0].info->regmap->gtl->base + (l - 1) * dev->link[0].info->regmap->gtl->size; u32 id, subid, base = dev->link[0].info->regmap->irq_base_gtl; dev_info(dev->dev, "Checking GT link %u: regs = %08x\n", l, regs); spin_lock_init(&link->lock); mutex_init(&link->lnb.lock); link->lnb.fmode = 0xffffffff; mutex_init(&link->flash_mutex); link->nr = l; link->dev = dev; link->regs = regs; if (!(1 & ddbreadl(dev, regs))) { u32 c; for (c = 0; c < 5; c++) { ddbwritel(dev, 2, regs); msleep(20); ddbwritel(dev, 0, regs); msleep(200); if (1 & ddbreadl(dev, regs)) break; } if (c == 5) return -1; } id = ddbreadl(dev, DDB_LINK_TAG(l) | 8); subid = ddbreadl(dev, DDB_LINK_TAG(l) | 12); link->info = get_ddb_info(id & 0xffff, id >> 16, subid & 0xffff, subid >> 16); if (link->info->type != DDB_OCTOPUS_MAX_CT && link->info->type != DDB_OCTOPUS_MAX && link->info->type != DDB_OCTOPUS_MCI ) { dev_info(dev->dev, "Detected GT link but found invalid ID %08x. You might have to update (flash) the add-on card first.", id); return -1; } link->ids.devid = id; ddbwritel(dev, 1, regs + 0x20); ddb_irq_set(dev, 0, base + l, gtl_irq_handler, link); dev->link[l].ids.hwid = ddbreadl(dev, DDB_LINK_TAG(l) | 0); dev->link[l].ids.regmapid = ddbreadl(dev, DDB_LINK_TAG(l) | 4); dev->link[l].ids.vendor = id & 0xffff; dev->link[l].ids.device = id >> 16; dev->link[l].ids.subvendor = subid & 0xffff; dev->link[l].ids.subdevice = subid >> 16; dev_info(dev->dev, "GTL %s\n", dev->link[l].info->name); dev_info(dev->dev, "GTL HW %08x REGMAP %08x\n", dev->link[l].ids.hwid, dev->link[l].ids.regmapid); dev_info(dev->dev, "GTL ID %08x\n", ddbreadl(dev, DDB_LINK_TAG(l) | 8)); tasklet_init(&link->tasklet, link_tasklet, (unsigned long)link); ddbwritel(dev, 0xffffffff, DDB_LINK_TAG(l) | INTERRUPT_ACK); ddbwritel(dev, 0x0100000f, DDB_LINK_TAG(l) | INTERRUPT_ENABLE); return 0; } static int ddb_gtl_init(struct ddb *dev) { u32 l, base = dev->link[0].info->regmap->irq_base_gtl; ddb_irq_set(dev, 0, base, gtl_link_handler, dev); for (l = 1; l < dev->link[0].info->regmap->gtl->num + 1; l++) ddb_gtl_init_link(dev, l); return 0; } /****************************************************************************/ /****************************************************************************/ /****************************************************************************/ static void tempmon_setfan(struct ddb_link *link) { u32 temp, temp2, pwm; if ((ddblreadl(link, TEMPMON_CONTROL) & TEMPMON_CONTROL_OVERTEMP) != 0) { dev_info(link->dev->dev, "Over temperature condition\n"); link->over_temperature_error = 1; } temp = (ddblreadl(link, TEMPMON_SENSOR0) >> 8) & 0xFF; if (temp & 0x80) temp = 0; temp2 = (ddblreadl(link, TEMPMON_SENSOR1) >> 8) & 0xFF; if (temp2 & 0x80) temp2 = 0; if (temp2 > temp) temp = temp2; pwm = (ddblreadl(link, TEMPMON_FANCONTROL) >> 8) & 0x0F; if (pwm > 10) pwm = 10; if (temp >= link->temp_tab[pwm]) { while (pwm < 10 && temp >= link->temp_tab[pwm + 1]) pwm += 1; } else { while (pwm > 1 && temp < link->temp_tab[pwm - 2]) pwm -= 1; } ddblwritel(link, (pwm << 8), TEMPMON_FANCONTROL); } static void temp_handler(void *data) { struct ddb_link *link = (struct ddb_link *)data; spin_lock(&link->temp_lock); tempmon_setfan(link); spin_unlock(&link->temp_lock); } static int tempmon_init(struct ddb_link *link, int first_time) { struct ddb *dev = link->dev; int status = 0; u32 l = link->nr; spin_lock_irq(&link->temp_lock); if (first_time) { static u8 temperature_table[11] = { 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80}; memcpy(link->temp_tab, temperature_table, sizeof(temperature_table)); } ddb_irq_set(dev, l, link->info->tempmon_irq, temp_handler, link); ddblwritel(link, (TEMPMON_CONTROL_OVERTEMP | TEMPMON_CONTROL_AUTOSCAN | TEMPMON_CONTROL_INTENABLE), TEMPMON_CONTROL); ddblwritel(link, (3 << 8), TEMPMON_FANCONTROL); link->over_temperature_error = ((ddblreadl(link, TEMPMON_CONTROL) & TEMPMON_CONTROL_OVERTEMP) != 0); if (link->over_temperature_error) { dev_info(dev->dev, "Over temperature condition\n"); status = -1; } tempmon_setfan(link); spin_unlock_irq(&link->temp_lock); return status; } static int ddb_init_tempmon(struct ddb_link *link) { const struct ddb_info *info = link->info; if (!info->tempmon_irq) return 0; if (info->type == DDB_OCTOPUS_MAX || info->type == DDB_OCTOPUS_MAX_CT) if (link->ids.regmapid < 0x00010002) return 0; spin_lock_init(&link->temp_lock); return tempmon_init(link, 1); } /****************************************************************************/ /****************************************************************************/ /****************************************************************************/ static int ddb_init_boards(struct ddb *dev) { const struct ddb_info *info; struct ddb_link *link; u32 l; for (l = 0; l < DDB_MAX_LINK; l++) { link = &dev->link[l]; info = link->info; if (!info) continue; dev_info(dev->dev, "link %u vendor %04x device %04x subvendor %04x subdevice %04x\n", l, dev->link[l].ids.vendor, dev->link[l].ids.device, dev->link[l].ids.subvendor, dev->link[l].ids.subdevice); if (info->board_control) { ddbwritel(dev, 0, DDB_LINK_TAG(l) | BOARD_CONTROL); msleep(100); ddbwritel(dev, info->board_control_2, DDB_LINK_TAG(l) | BOARD_CONTROL); usleep_range(2000, 3000); ddbwritel(dev, info->board_control_2 | info->board_control, DDB_LINK_TAG(l) | BOARD_CONTROL); usleep_range(2000, 3000); } ddb_init_tempmon(link); } return 0; } int ddb_init(struct ddb *dev) { mutex_init(&dev->link[0].flash_mutex); mutex_init(&dev->ioctl_mutex); if (no_init) { ddb_device_create(dev); return 0; } if (dev->link[0].info->ns_num) { ddbwritel(dev, 1, ETHER_CONTROL); dev->vlan = vlan; ddbwritel(dev, 14 + (dev->vlan ? 4 : 0), ETHER_LENGTH); } mutex_init(&dev->link[0].lnb.lock); if (dev->link[0].info->regmap->gtl) ddb_gtl_init(dev); ddb_init_boards(dev); if (ddb_i2c_init(dev) < 0) goto fail; ddb_ports_init(dev); if (dev->link[0].info->type == DDB_MOD) ddbridge_mod_init(dev); if (ddb_buffers_alloc(dev) < 0) { dev_info(dev->dev, "Could not allocate buffer memory\n"); goto fail2; } if (ddb_ports_attach(dev) < 0) goto fail3; ddb_nsd_attach(dev); ddb_device_create(dev); if (dev->link[0].info->fan_num) { ddbwritel(dev, 1, GPIO_DIRECTION); ddbwritel(dev, 1, GPIO_OUTPUT); } return 0; fail3: ddb_ports_detach(dev); dev_err(dev->dev, "fail3\n"); ddb_ports_release(dev); fail2: dev_err(dev->dev, "fail2\n"); ddb_buffers_free(dev); ddb_i2c_release(dev); fail: dev_err(dev->dev, "fail1\n"); return -1; } static void ddb_reset_io(struct ddb *dev, u32 reg) { ddbwritel(dev, 0x00, reg); ddbwritel(dev, 0x02, reg); ddbwritel(dev, 0x00, reg); } void ddb_reset_ios(struct ddb *dev) { u32 i; const struct ddb_regmap *rm = dev->link[0].info->regmap; if (rm->input) for (i = 0; i < rm->input->num; i++) ddb_reset_io(dev, rm->input->base + i * rm->input->size); if (rm->output) for (i = 0; i < rm->output->num; i++) ddb_reset_io(dev, rm->output->base + i * rm->output->size); usleep_range(5000, 6000); } void ddb_unmap(struct ddb *dev) { if (dev->regs) iounmap(dev->regs); vfree(dev); } int ddb_exit_ddbridge(int stage, int error) { switch (stage) { default: case 2: destroy_workqueue(ddb_wq); case 1: ddb_class_destroy(); } return error; } int ddb_init_ddbridge(void) { if (dma_buf_num < 8) dma_buf_num = 8; if (dma_buf_num > 32) dma_buf_num = 32; if (dma_buf_size < 1) dma_buf_size = 1; if (dma_buf_size > 43) dma_buf_size = 43; if (ddb_class_create() < 0) return -1; ddb_wq = alloc_workqueue("ddbridge", 0, 0); if (!ddb_wq) return ddb_exit_ddbridge(1, -1); return 0; }