// SPDX-License-Identifier: GPL-2.0 /* * ddbridge-mci.c: Digital Devices microcode interface * * Copyright (C) 2017-2018 Digital Devices GmbH * Ralph Metzler * Marcus Metzler * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 only, as published by the Free Software Foundation. * * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * * You should have received a copy of the GNU General Public License * along with this program; if not, point your browser to * http://www.gnu.org/copyleft/gpl.html */ #include "ddbridge.h" #include "ddbridge-io.h" #include "ddbridge-mci.h" static LIST_HEAD(mci_list); static int mci_reset(struct mci *state) { struct ddb_link *link = state->base->link; u32 status = 0; u32 timeout = 40; ddblwritel(link, MCI_CONTROL_RESET, MCI_CONTROL); ddblwritel(link, 0, MCI_CONTROL + 4); /* 1= no internal init */ msleep(300); ddblwritel(link, 0, MCI_CONTROL); while (1) { status = ddblreadl(link, MCI_CONTROL); if ((status & MCI_CONTROL_READY) == MCI_CONTROL_READY) break; if (--timeout == 0) break; msleep(50); } if ((status & MCI_CONTROL_READY) == 0) return -1; if (link->ids.device == 0x0009 || link->ids.device == 0x000b) ddblwritel(link, SX8_TSCONFIG_MODE_NORMAL, SX8_TSCONFIG); return 0; } int ddb_mci_config(struct mci *state, u32 config) { struct ddb_link *link = state->base->link; if (link->ids.device != 0x0009 && link->ids.device != 0x000b) return -EINVAL; ddblwritel(link, config, SX8_TSCONFIG); return 0; } static int ddb_mci_cmd_raw_unlocked(struct mci *state, u32 *cmd, u32 cmd_len, u32 *res, u32 res_len) { struct ddb_link *link = state->base->link; u32 i, val; unsigned long stat; val = ddblreadl(link, MCI_CONTROL); if (val & (MCI_CONTROL_RESET | MCI_CONTROL_START_COMMAND)) return -EIO; if (cmd && cmd_len) for (i = 0; i < cmd_len; i++) ddblwritel(link, cmd[i], MCI_COMMAND + i * 4); val |= (MCI_CONTROL_START_COMMAND | MCI_CONTROL_ENABLE_DONE_INTERRUPT); ddblwritel(link, val, MCI_CONTROL); stat = wait_for_completion_timeout(&state->base->completion, HZ); if (stat == 0) { u32 istat = ddblreadl(link, INTERRUPT_STATUS); dev_err(state->base->link->dev->dev, "MCI timeout\n"); val = ddblreadl(link, MCI_CONTROL); if (val == 0xffffffff) { dev_err(state->base->link->dev->dev, "Lost PCIe link!\n"); return -EIO; } else { dev_err(state->base->link->dev->dev, "DDBridge IRS %08x link %u\n", istat, link->nr); if (istat & 1) ddblwritel(link, istat, INTERRUPT_ACK); if (link->nr) ddbwritel(link->dev, 0xffffff, INTERRUPT_ACK); } } if (res && res_len) for (i = 0; i < res_len; i++) res[i] = ddblreadl(link, MCI_RESULT + i * 4); return 0; } int ddb_mci_cmd_unlocked(struct mci *state, struct mci_command *command, struct mci_result *result) { u32 *cmd = (u32 *) command; u32 *res = (u32 *) result; return ddb_mci_cmd_raw_unlocked(state, cmd, sizeof(*command)/sizeof(u32), res, sizeof(*result)/sizeof(u32)); } int ddb_mci_cmd(struct mci *state, struct mci_command *command, struct mci_result *result) { int stat; struct mci_result res; if (!result) result = &res; mutex_lock(&state->base->mci_lock); stat = ddb_mci_cmd_raw_unlocked(state, (u32 *)command, sizeof(*command)/sizeof(u32), (u32 *)result, sizeof(*result)/sizeof(u32)); mutex_unlock(&state->base->mci_lock); if (command && result && (result->status & 0x80)) dev_warn(state->base->link->dev->dev, "mci_command 0x%02x, error=0x%02x\n", command->command, result->status); return stat; } int ddb_mci_cmd_raw(struct mci *state, struct mci_command *command, u32 command_len, struct mci_result *result, u32 result_len) { int stat; mutex_lock(&state->base->mci_lock); stat = ddb_mci_cmd_raw_unlocked(state, (u32 *)command, command_len, (u32 *)result, result_len); mutex_unlock(&state->base->mci_lock); return stat; } #if 0 static int ddb_mci_get_iq(struct mci *mci, u32 demod, s16 *i, s16 *q) { int stat; struct mci_command cmd; struct mci_result res; memset(&cmd, 0, sizeof(cmd)); memset(&res, 0, sizeof(res)); cmd.command = MCI_CMD_GET_IQSYMBOL; cmd.demod = demod; stat = ddb_mci_cmd(mci, &cmd, &res); if (!stat) { *i = res.iq_symbol.i; *q = res.iq_symbol.q; } return stat; } #endif int ddb_mci_get_status(struct mci *mci, struct mci_result *res) { struct mci_command cmd; cmd.command = MCI_CMD_GETSTATUS; cmd.demod = mci->demod; return ddb_mci_cmd_raw(mci, &cmd, 1, res, 1); } int ddb_mci_get_snr(struct dvb_frontend *fe) { struct mci *mci = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; p->cnr.len = 1; p->cnr.stat[0].scale = FE_SCALE_DECIBEL; p->cnr.stat[0].svalue = (s64) mci->signal_info.dvbs2_signal_info.signal_to_noise * 10; return 0; } int ddb_mci_get_strength(struct dvb_frontend *fe) { struct mci *mci = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; s32 str; str = mci->signal_info.dvbs2_signal_info.channel_power * 10; p->strength.len = 1; p->strength.stat[0].scale = FE_SCALE_DECIBEL; p->strength.stat[0].svalue = str; return 0; } int ddb_mci_get_info(struct mci *mci) { int stat; struct mci_command cmd; memset(&cmd, 0, sizeof(cmd)); cmd.command = MCI_CMD_GETSIGNALINFO; cmd.demod = mci->demod; stat = ddb_mci_cmd(mci, &cmd, &mci->signal_info); return stat; } /****************************************************************************/ /****************************************************************************/ void ddb_mci_proc_info(struct mci *mci, struct dtv_frontend_properties *p) { const enum fe_modulation modcod2mod[0x20] = { QPSK, QPSK, QPSK, QPSK, QPSK, QPSK, QPSK, QPSK, QPSK, QPSK, QPSK, QPSK, PSK_8, PSK_8, PSK_8, PSK_8, PSK_8, PSK_8, APSK_16, APSK_16, APSK_16, APSK_16, APSK_16, APSK_16, APSK_32, APSK_32, APSK_32, APSK_32, APSK_32, }; const enum fe_code_rate modcod2fec[0x20] = { FEC_NONE, FEC_1_4, FEC_1_3, FEC_2_5, FEC_1_2, FEC_3_5, FEC_2_3, FEC_3_4, FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10, FEC_3_5, FEC_2_3, FEC_3_4, FEC_5_6, FEC_8_9, FEC_9_10, FEC_2_3, FEC_3_4, FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10, FEC_3_4, FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10, FEC_NONE, FEC_NONE, FEC_NONE, }; const enum fe_code_rate dvbs_fec_lut[8] = { FEC_1_2, FEC_2_3, FEC_3_4, FEC_5_6, FEC_NONE, FEC_7_8, FEC_NONE, FEC_NONE, }; const enum fe_rolloff ro_lut[8] = { ROLLOFF_35, ROLLOFF_25, ROLLOFF_20, ROLLOFF_10, ROLLOFF_5, ROLLOFF_15, ROLLOFF_35, ROLLOFF_35 }; p->frequency = mci->signal_info.dvbs2_signal_info.frequency; switch (p->delivery_system) { default: case SYS_DVBS: case SYS_DVBS2: { u32 pls_code = mci->signal_info.dvbs2_signal_info.pls_code; p->frequency = mci->signal_info.dvbs2_signal_info.frequency / 1000; p->delivery_system = (mci->signal_info.dvbs2_signal_info.standard == 2) ? SYS_DVBS2 : SYS_DVBS; if (mci->signal_info.dvbs2_signal_info.standard == 2) { u32 modcod = (0x7c & pls_code) >> 2; p->delivery_system = SYS_DVBS2; p->rolloff = ro_lut[mci->signal_info.dvbs2_signal_info.roll_off & 7]; p->pilot = (pls_code & 1) ? PILOT_ON : PILOT_OFF; p->fec_inner = modcod2fec[modcod]; p->modulation = modcod2mod[modcod]; p->transmission_mode = pls_code; } else { p->delivery_system = SYS_DVBS; p->rolloff = ROLLOFF_35; p->pilot = PILOT_OFF; p->fec_inner = dvbs_fec_lut[pls_code & 7]; p->modulation = QPSK; } break; } case SYS_DVBC_ANNEX_A: break; case SYS_DVBT: break; case SYS_DVBT2: break; case SYS_DVBC2: break; case SYS_ISDBT: break; } p->pre_bit_error.len = 1; p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER; p->pre_bit_error.stat[0].uvalue = mci->signal_info.dvbs2_signal_info.ber_numerator; p->pre_bit_count.len = 1; p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER; p->pre_bit_count.stat[0].uvalue = mci->signal_info.dvbs2_signal_info.ber_denominator; p->block_error.len = 1; p->block_error.stat[0].scale = FE_SCALE_COUNTER; p->block_error.stat[0].uvalue = mci->signal_info.dvbs2_signal_info.packet_errors; p->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->cnr.len = 1; p->cnr.stat[0].scale = FE_SCALE_DECIBEL; p->cnr.stat[0].svalue = (s64) mci->signal_info.dvbs2_signal_info.signal_to_noise * 10; p->strength.len = 1; p->strength.stat[0].scale = FE_SCALE_DECIBEL; p->strength.stat[0].svalue = mci->signal_info.dvbs2_signal_info.channel_power * 10; } static void mci_handler(void *priv) { struct mci_base *base = (struct mci_base *)priv; complete(&base->completion); } static struct mci_base *match_base(void *key) { struct mci_base *p; list_for_each_entry(p, &mci_list, mci_list) if (p->key == key) return p; return NULL; } static int probe(struct mci *state) { mci_reset(state); return 0; } struct dvb_frontend *ddb_mci_attach(struct ddb_input *input, struct mci_cfg *cfg, int nr, int tuner) { struct ddb_port *port = input->port; struct ddb *dev = port->dev; struct ddb_link *link = &dev->link[port->lnr]; struct mci_base *base; struct mci *state; void *key = cfg->type ? (void *) port : (void *) link; state = kzalloc(cfg->state_size, GFP_KERNEL); if (!state) return NULL; base = match_base(key); if (base) { base->count++; state->base = base; } else { base = kzalloc(cfg->base_size, GFP_KERNEL); if (!base) goto fail; base->key = key; base->count = 1; base->link = link; mutex_init(&base->mci_lock); mutex_init(&base->tuner_lock); ddb_irq_set(dev, link->nr, 0, mci_handler, base); init_completion(&base->completion); state->base = base; if (probe(state) < 0) { kfree(base); goto fail; } list_add(&base->mci_list, &mci_list); if (cfg->base_init) cfg->base_init(base); } memcpy(&state->fe.ops, cfg->fe_ops, sizeof(struct dvb_frontend_ops)); state->fe.demodulator_priv = state; state->nr = nr; state->demod = nr; state->tuner = tuner; state->input = input; if (cfg->init) cfg->init(state); return &state->fe; fail: kfree(state); return NULL; }