/* * ddbridge-mci.c: Digital Devices microcode interface * * Copyright (C) 2017 Digital Devices GmbH * Ralph Metzler * Marcus Metzler * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 only, as published by the Free Software Foundation. * * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * * You should have received a copy of the GNU General Public License * along with this program; if not, point your browser to * http://www.gnu.org/copyleft/gpl.html */ #include "ddbridge.h" #include "ddbridge-io.h" #include "ddbridge-mci.h" static LIST_HEAD(mci_list); static const u32 MCLK = (1550000000/12); static const u32 MAX_LDPC_BITRATE = (720000000); struct mci_base { struct list_head mci_list; void *key; struct ddb_link *link; struct completion completion; struct i2c_adapter *i2c; struct mutex i2c_lock; struct mutex tuner_lock; u8 adr; struct mutex mci_lock; int count; u8 tuner_use_count[4]; u8 assigned_demod[8]; u32 used_ldpc_bitrate[8]; u8 demod_in_use[8]; }; struct mci { struct mci_base *base; struct dvb_frontend fe; int nr; int demod; int tuner; int first_time_lock; int started; struct mci_result signal_info; }; static int mci_reset(struct mci *state) { struct ddb_link *link = state->base->link; u32 status = 0; u32 timeout = 40; ddblwritel(link, MCI_CONTROL_RESET, MCI_CONTROL); ddblwritel(link, 0, MCI_CONTROL + 4); /* 1= no internal init */ msleep(300); ddblwritel(link, 0, MCI_CONTROL); while(1) { status = ddblreadl(link, MCI_CONTROL); if ((status & MCI_CONTROL_READY) == MCI_CONTROL_READY) break; if (--timeout == 0) break; msleep(50); } if ((status & MCI_CONTROL_READY) == 0 ) return -1; if (link->ids.device == 0x0009) ddblwritel(link, SX8_TSCONFIG_MODE_NORMAL, SX8_TSCONFIG); return 0; } static int _mci_cmd_unlocked(struct mci *state, u32 *cmd, u32 cmd_len, u32 *res, u32 res_len) { struct ddb_link *link = state->base->link; u32 i, val; unsigned long stat; val = ddblreadl(link, MCI_CONTROL); if (val & (MCI_CONTROL_RESET | MCI_CONTROL_START_COMMAND)) return -EIO; if (cmd && cmd_len) for (i = 0; i < cmd_len; i++) ddblwritel(link, cmd[i], MCI_COMMAND + i * 4); val |= (MCI_CONTROL_START_COMMAND | MCI_CONTROL_ENABLE_DONE_INTERRUPT); ddblwritel(link, val, MCI_CONTROL); stat = wait_for_completion_timeout(&state->base->completion, HZ); if (stat == 0) { printk("MCI timeout\n"); return -EIO; } if (res && res_len) for (i = 0; i < res_len; i++) res[i] = ddblreadl(link, MCI_RESULT + i * 4); return 0; } static int mci_cmd_unlocked(struct mci *state, struct mci_command *command, struct mci_result *result) { u32 *cmd = (u32 *) command; u32 *res = (u32 *) result; return _mci_cmd_unlocked(state, cmd, sizeof(*command)/sizeof(u32), res, sizeof(*result)/sizeof(u32)); } static int mci_cmd(struct mci *state, struct mci_command *command, struct mci_result *result) { int stat; mutex_lock(&state->base->mci_lock); stat = _mci_cmd_unlocked(state, (u32 *)command, sizeof(*command)/sizeof(u32), (u32 *)result, sizeof(*result)/sizeof(u32)); mutex_unlock(&state->base->mci_lock); return stat; } static int _mci_cmd(struct mci *state, struct mci_command *command, u32 command_len, struct mci_result *result, u32 result_len) { int stat; mutex_lock(&state->base->mci_lock); stat = _mci_cmd_unlocked(state, (u32 *)command, command_len, (u32 *)result, result_len); mutex_unlock(&state->base->mci_lock); return stat; } static void mci_handler(void *priv) { struct mci_base *base = (struct mci_base *)priv; complete(&base->completion); } static const u8 dvbs2_bits_per_symbol[] = { 0, 0, 0, 0, /* S2 QPSK */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* S2 8PSK */ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, /* S2 16APSK */ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, /* S2 32APSK */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 4, 0, 2, 2, 2, 2, 2, 2, // S2X QPSK 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, // S2X 8PSK 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, // S2X 16APSK 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, // S2X 32APSK 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, // S2X 64APSK 7, 7, 7, 7, // S2X 128APSK 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // S2X 256APSK 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // S2X QPSK 3, 3, 3, 3, 3, 3, 3, 3, // S2X 8PSK 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, // S2X 16APSK 5, 5, 5, 5, // S2X 32APSK 3, 4, 5, 6, 8, 10, }; static void release(struct dvb_frontend *fe) { struct mci *state = fe->demodulator_priv; state->base->count--; if (state->base->count == 0) { list_del(&state->base->mci_list); kfree(state->base); } kfree(state); } static int get_info(struct dvb_frontend *fe) { int stat; struct mci *state = fe->demodulator_priv; struct mci_command cmd; cmd.command = SX8_CMD_GETSIGNALINFO; cmd.demod = state->demod; stat = mci_cmd(state, &cmd, &state->signal_info); return stat; } static int read_status(struct dvb_frontend *fe, enum fe_status *status) { int stat; struct mci *state = fe->demodulator_priv; struct mci_command cmd; u32 val; struct mci_result *res = (struct mci_result *)&val; cmd.command = SX8_CMD_GETSTATUS; cmd.demod = state->demod; stat = _mci_cmd(state, &cmd, 1, res, 1); if (stat) return stat; if (res->status == SX8_DEMOD_LOCKED) *status = 0x1f; else *status = 0; return stat; } static int mci_set_tuner(struct dvb_frontend *fe, u32 tuner, u32 on) { struct mci *state = fe->demodulator_priv; struct mci_command cmd; memset(&cmd, 0, sizeof(cmd)); cmd.tuner = state->tuner; cmd.command = on ? SX8_CMD_TUNER_ENABLE : SX8_CMD_TUNER_DISABLE; return mci_cmd(state, &cmd, NULL); } static int stop(struct dvb_frontend *fe) { struct mci *state = fe->demodulator_priv; struct mci_command cmd; u32 input = state->tuner; if (state->demod != 0xff) { memset(&cmd, 0, sizeof(cmd)); cmd.demod = state->demod; cmd.command = SX8_CMD_STOP; mci_cmd(state, &cmd, NULL); } mutex_lock(&state->base->tuner_lock); state->base->tuner_use_count[input]--; if (!state->base->tuner_use_count[input]) mci_set_tuner(fe, input, 0); state->base->demod_in_use[state->demod] = 0; state->base->used_ldpc_bitrate[state->nr] = 0; state->demod = 0xff; state->base->assigned_demod[state->nr] = 0xff; mutex_unlock(&state->base->tuner_lock); state->started = 0; return 0; } static int start(struct dvb_frontend *fe) { struct mci *state = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; static const u32 MAX_DEMOD_LDPC_BITRATE = (1550000000 / 6); u32 used_ldpc_bitrate = 0, free_ldpc_bitrate; struct mci_command cmd; u32 input = state->tuner; u32 bits_per_symbol = 3; int i, stat = 0; mutex_lock(&state->base->tuner_lock); for (i = 0; i < 8; i++) used_ldpc_bitrate += state->base->used_ldpc_bitrate[i]; if (used_ldpc_bitrate >= MAX_LDPC_BITRATE) { stat = -EBUSY; goto unlock; } free_ldpc_bitrate = MAX_LDPC_BITRATE - used_ldpc_bitrate; if (free_ldpc_bitrate > MAX_DEMOD_LDPC_BITRATE) free_ldpc_bitrate = MAX_DEMOD_LDPC_BITRATE; while (p->symbol_rate * bits_per_symbol > MAX_DEMOD_LDPC_BITRATE) bits_per_symbol--; if (bits_per_symbol < 2) { stat = -EBUSY; goto unlock; } i = (p->symbol_rate > MCLK / 2) ? 3 : 7; while (i >= 0 && state->base->demod_in_use[i]) i--; if (i < 0) { stat = -EBUSY; goto unlock; } state->base->demod_in_use[i] = 1; state->base->used_ldpc_bitrate[state->nr] = p->symbol_rate * bits_per_symbol; state->demod = state->base->assigned_demod[state->nr] = i; if (!state->base->tuner_use_count[input]) mci_set_tuner(fe, input, 1); state->base->tuner_use_count[input]++; unlock: mutex_unlock(&state->base->tuner_lock); if (stat) return stat; printk("frontend %u: tuner=%u demod=%u\n", state->nr, state->tuner, state->demod); cmd.command = SX8_CMD_SEARCH; cmd.dvbs2_search.flags = 3; /* S1 + S2 */ #if 1 /* Enable all Modcods up to bits_per_symbol */ cmd.dvbs2_search.s2_modulation_mask = (1 << (bits_per_symbol - 1)) - 1; #else /* Enable Modcods matching bits_per_symbol */ cmd.dvbs2_search.s2_modulation_mask = (1 << (bits_per_symbol - 2)); #endif cmd.dvbs2_search.retry = 255; /* forever */ cmd.dvbs2_search.frequency = p->frequency * 1000; cmd.dvbs2_search.symbol_rate = p->symbol_rate; cmd.tuner = state->tuner; cmd.demod = state->demod; cmd.output = state->nr; stat = mci_cmd(state, &cmd, NULL); return stat; } static int set_parameters(struct dvb_frontend *fe) { int stat = 0; struct mci *state = fe->demodulator_priv; if (state->started) stop(fe); stat = start(fe); if (!stat) { state->started = 1; state->first_time_lock = 1; state->signal_info.status = SX8_DEMOD_WAIT_SIGNAL; } return stat; } static int tune(struct dvb_frontend *fe, bool re_tune, unsigned int mode_flags, unsigned int *delay, enum fe_status *status) { int r; if (re_tune) { r = set_parameters(fe); if (r) return r; } r = read_status(fe, status); if (r) return r; if (*status & FE_HAS_LOCK) return 0; *delay = HZ / 10; return 0; } static int get_algo(struct dvb_frontend *fe) { return DVBFE_ALGO_HW; } static int set_input(struct dvb_frontend *fe, int input) { struct mci *state = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; state->tuner = p->input = input; printk("fe %u, input = %u\n", state->nr, input); return 0; } static int sleep(struct dvb_frontend *fe) { struct mci *state = fe->demodulator_priv; } static int get_snr(struct dvb_frontend *fe) { struct mci *state = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; s32 snr; p->cnr.len = 1; p->cnr.stat[0].scale = FE_SCALE_DECIBEL; p->cnr.stat[0].svalue = (s64) state->signal_info.dvbs2_signal_info.signal_to_noise * 100; return 0; } static int get_strength(struct dvb_frontend *fe) { struct mci *state = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; s32 str; str = 100000 - (state->signal_info.dvbs2_signal_info.channel_power * 10 + 108750); p->strength.len = 1; p->strength.stat[0].scale = FE_SCALE_DECIBEL; p->strength.stat[0].svalue = str; return 0; } static struct dvb_frontend_ops mci_ops = { .delsys = { SYS_DVBS, SYS_DVBS2 }, .info = { .name = "DVB-S/S2X", .frequency_min = 950000, .frequency_max = 2150000, .frequency_stepsize = 0, .frequency_tolerance = 0, .symbol_rate_min = 100000, .symbol_rate_max = 70000000, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_2G_MODULATION | FE_CAN_MULTISTREAM, }, .get_frontend_algo = get_algo, .tune = tune, .release = release, .read_status = read_status, .set_input = set_input, }; static struct mci_base *match_base(void *key) { struct mci_base *p; list_for_each_entry(p, &mci_list, mci_list) if (p->key == key) return p; return NULL; } static int probe(struct mci *state) { mci_reset(state); return 0; } struct dvb_frontend *ddb_mci_attach(struct ddb_input *input, int mci_type, int nr) { struct ddb_port *port = input->port; struct ddb *dev = port->dev; struct ddb_link *link = &dev->link[port->lnr]; struct mci_base *base; struct mci *state; void *key = mci_type ? (void *) port : (void *) link; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return NULL; base = match_base(key); if (base) { base->count++; state->base = base; } else { base = kzalloc(sizeof(*base), GFP_KERNEL); if (!base) goto fail; base->key = key; base->count = 1; base->link = link; mutex_init(&base->mci_lock); mutex_init(&base->tuner_lock); ddb_irq_set(dev, link->nr, 0, mci_handler, base); init_completion(&base->completion); state->base = base; if (probe(state) < 0) { kfree(base); goto fail; } list_add(&base->mci_list, &mci_list); } state->fe.ops = mci_ops; state->fe.demodulator_priv = state; state->nr = nr; state->tuner = nr; state->demod = nr; return &state->fe; fail: kfree(state); return NULL; }