/* * Driver for the ST STV0910 DVB-S/S2 demodulator. * * Copyright (C) 2014-2017 Ralph Metzler * Marcus Metzler * developed for Digital Devices GmbH * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 only, as published by the Free Software Foundation. * * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * * You should have received a copy of the GNU General Public License * along with this program; if not, point your browser to * http://www.gnu.org/copyleft/gpl.html */ #include #include #include #include #include #include #include #include #include #include #include "stv0910.h" #include "stv0910_regs.h" #define EXT_CLOCK 30000000 #define TUNING_DELAY 200 #define BER_SRC_S 0x20 #define BER_SRC_S2 0x20 static LIST_HEAD(stvlist); enum receive_mode { RCVMODE_NONE, RCVMODE_DVBS, RCVMODE_DVBS2, RCVMODE_AUTO }; enum ScanMode { ColdStart, BlindScan }; enum dvbs2_fec_type { DVBS2_64K, DVBS2_16K }; enum dvbs2_modcod { DVBS2_DUMMY_PLF, DVBS2_QPSK_1_4, DVBS2_QPSK_1_3, DVBS2_QPSK_2_5, DVBS2_QPSK_1_2, DVBS2_QPSK_3_5, DVBS2_QPSK_2_3, DVBS2_QPSK_3_4, DVBS2_QPSK_4_5, DVBS2_QPSK_5_6, DVBS2_QPSK_8_9, DVBS2_QPSK_9_10, DVBS2_8PSK_3_5, DVBS2_8PSK_2_3, DVBS2_8PSK_3_4, DVBS2_8PSK_5_6, DVBS2_8PSK_8_9, DVBS2_8PSK_9_10, DVBS2_16APSK_2_3, DVBS2_16APSK_3_4, DVBS2_16APSK_4_5, DVBS2_16APSK_5_6, DVBS2_16APSK_8_9, DVBS2_16APSK_9_10, DVBS2_32APSK_3_4, DVBS2_32APSK_4_5, DVBS2_32APSK_5_6, DVBS2_32APSK_8_9, DVBS2_32APSK_9_10 }; enum fe_stv0910_modcod { FE_DUMMY_PLF, FE_QPSK_14, FE_QPSK_13, FE_QPSK_25, FE_QPSK_12, FE_QPSK_35, FE_QPSK_23, FE_QPSK_34, FE_QPSK_45, FE_QPSK_56, FE_QPSK_89, FE_QPSK_910, FE_8PSK_35, FE_8PSK_23, FE_8PSK_34, FE_8PSK_56, FE_8PSK_89, FE_8PSK_910, FE_16APSK_23, FE_16APSK_34, FE_16APSK_45, FE_16APSK_56, FE_16APSK_89, FE_16APSK_910, FE_32APSK_34, FE_32APSK_45, FE_32APSK_56, FE_32APSK_89, FE_32APSK_910 }; enum fe_stv0910_roll_off { FE_SAT_35, FE_SAT_25, FE_SAT_20, FE_SAT_15 }; static inline u32 muldiv32(u32 a, u32 b, u32 c) { u64 tmp64; tmp64 = (u64)a * (u64)b; do_div(tmp64, c); return (u32)tmp64; } struct stv_base { struct list_head stvlist; u8 adr; struct i2c_adapter *i2c; struct mutex i2c_lock; /* i2c gate lock */ struct mutex reg_lock; /* lock access to shared registers */ int count; u32 extclk; u32 mclk; }; struct stv { struct stv_base *base; struct dvb_frontend fe; int nr; u16 regoff; u8 i2crpt; u8 tscfgh; u8 tsgeneral; u8 tsspeed; u8 single; unsigned long tune_time; s32 search_range; u32 started; u32 demod_lock_time; enum receive_mode receive_mode; u32 demod_timeout; u32 fec_timeout; u32 first_time_lock; u8 demod; u32 symbol_rate; enum ScanMode TuneMode; enum fe_code_rate puncture_rate; enum fe_stv0910_modcod modcod; enum dvbs2_fec_type fec_type; u32 pilots; enum fe_stv0910_roll_off fe_roll_off; int is_standard_broadcast; int is_vcm; u32 cur_scrambling_code; u32 scrambling_code; u32 last_ber_numerator; u32 last_ber_denominator; u8 ber_scale; u8 vth[6]; unsigned long stat_time; }; struct slookup { s16 value; u16 reg_value; }; static int write_reg(struct stv *state, u16 reg, u8 val) { u8 data[3] = {reg >> 8, reg & 0xff, val}; struct i2c_msg msg = {.addr = state->base->adr, .flags = 0, .buf = data, .len = 3}; return (i2c_transfer(state->base->i2c, &msg, 1) == 1) ? 0 : -1; } #if 0 static int write_reg_off(struct stv *state, u16 reg, u8 val) { return write_reg(state, reg + state->regoff, val); } #endif static inline int i2c_read_regs16(struct i2c_adapter *adapter, u8 adr, u16 reg, u8 *val, int len) { u8 msg[2] = {reg >> 8, reg & 0xff}; struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0, .buf = msg, .len = 2}, {.addr = adr, .flags = I2C_M_RD, .buf = val, .len = len } }; return (i2c_transfer(adapter, msgs, 2) == 2) ? 0 : -1; } static int read_regs(struct stv *state, u16 reg, u8 *val, int len) { return i2c_read_regs16(state->base->i2c, state->base->adr, reg, val, len); } static int read_reg(struct stv *state, u16 reg, u8 *val) { return read_regs(state, reg, val, 1); } static int write_shared_reg(struct stv *state, u16 reg, u8 mask, u8 val) { int status; u8 tmp; mutex_lock(&state->base->reg_lock); status = read_reg(state, reg, &tmp); if (!status) status = write_reg(state, reg, (tmp & ~mask) | (val & mask)); mutex_unlock(&state->base->reg_lock); return status; } static int write_field(struct stv *state, u32 field, u8 val) { int status; u8 shift, mask, old, new; status = read_reg(state, field >> 16, &old); if (status) return status; mask = field & 0xff; shift = (field >> 12) & 0xf; new = ((val << shift) & mask) | (old & ~mask); if (new == old) return 0; return write_reg(state, field >> 16, new); } static int read_field(struct stv *state, u32 field, u8 *val) { int status; u8 shift, mask; status = read_reg(state, field >> 16, val); if (status) return status; mask = field & 0xff; shift = (field >> 12) & 0xf; *val = (*val & mask) >> shift; return status; } #define set_field(_reg, _val) \ write_field(state, state->nr ? FSTV0910_P2_##_reg : \ FSTV0910_P1_##_reg, _val) #define get_field(_reg, _val) \ read_field(state, state->nr ? FSTV0910_P2_##_reg : \ FSTV0910_P1_##_reg, _val) #define set_reg(_reg, _val) \ write_reg(state, state->nr ? RSTV0910_P2_##_reg : \ RSTV0910_P1_##_reg, _val) #define get_reg(_reg, _val) \ read_reg(state, state->nr ? RSTV0910_P2_##_reg : \ RSTV0910_P1_##_reg, _val) static const struct slookup s1_sn_lookup[] = { { 0, 9242 }, /* C/N= 0dB */ { 05, 9105 }, /* C/N=0.5dB */ { 10, 8950 }, /* C/N=1.0dB */ { 15, 8780 }, /* C/N=1.5dB */ { 20, 8566 }, /* C/N=2.0dB */ { 25, 8366 }, /* C/N=2.5dB */ { 30, 8146 }, /* C/N=3.0dB */ { 35, 7908 }, /* C/N=3.5dB */ { 40, 7666 }, /* C/N=4.0dB */ { 45, 7405 }, /* C/N=4.5dB */ { 50, 7136 }, /* C/N=5.0dB */ { 55, 6861 }, /* C/N=5.5dB */ { 60, 6576 }, /* C/N=6.0dB */ { 65, 6330 }, /* C/N=6.5dB */ { 70, 6048 }, /* C/N=7.0dB */ { 75, 5768 }, /* C/N=7.5dB */ { 80, 5492 }, /* C/N=8.0dB */ { 85, 5224 }, /* C/N=8.5dB */ { 90, 4959 }, /* C/N=9.0dB */ { 95, 4709 }, /* C/N=9.5dB */ { 100, 4467 }, /* C/N=10.0dB */ { 105, 4236 }, /* C/N=10.5dB */ { 110, 4013 }, /* C/N=11.0dB */ { 115, 3800 }, /* C/N=11.5dB */ { 120, 3598 }, /* C/N=12.0dB */ { 125, 3406 }, /* C/N=12.5dB */ { 130, 3225 }, /* C/N=13.0dB */ { 135, 3052 }, /* C/N=13.5dB */ { 140, 2889 }, /* C/N=14.0dB */ { 145, 2733 }, /* C/N=14.5dB */ { 150, 2587 }, /* C/N=15.0dB */ { 160, 2318 }, /* C/N=16.0dB */ { 170, 2077 }, /* C/N=17.0dB */ { 180, 1862 }, /* C/N=18.0dB */ { 190, 1670 }, /* C/N=19.0dB */ { 200, 1499 }, /* C/N=20.0dB */ { 210, 1347 }, /* C/N=21.0dB */ { 220, 1213 }, /* C/N=22.0dB */ { 230, 1095 }, /* C/N=23.0dB */ { 240, 992 }, /* C/N=24.0dB */ { 250, 900 }, /* C/N=25.0dB */ { 260, 826 }, /* C/N=26.0dB */ { 270, 758 }, /* C/N=27.0dB */ { 280, 702 }, /* C/N=28.0dB */ { 290, 653 }, /* C/N=29.0dB */ { 300, 613 }, /* C/N=30.0dB */ { 310, 579 }, /* C/N=31.0dB */ { 320, 550 }, /* C/N=32.0dB */ { 330, 526 }, /* C/N=33.0dB */ { 350, 490 }, /* C/N=33.0dB */ { 400, 445 }, /* C/N=40.0dB */ { 450, 430 }, /* C/N=45.0dB */ { 500, 426 }, /* C/N=50.0dB */ { 510, 425 }, /* C/N=51.0dB */ }; struct slookup s2_sn_lookup[] = { { -30, 13950 }, /* C/N=-2.5dB */ { -25, 13580 }, /* C/N=-2.5dB */ { -20, 13150 }, /* C/N=-2.0dB */ { -15, 12760 }, /* C/N=-1.5dB */ { -10, 12345 }, /* C/N=-1.0dB */ { -5, 11900 }, /* C/N=-0.5dB */ { 0, 11520 }, /* C/N= 0dB */ { 5, 11080 }, /* C/N= 0.5dB */ { 10, 10630 }, /* C/N= 1.0dB */ { 15, 10210 }, /* C/N= 1.5dB */ { 20, 9790 }, /* C/N= 2.0dB */ { 25, 9390 }, /* C/N= 2.5dB */ { 30, 8970 }, /* C/N= 3.0dB */ { 35, 8575 }, /* C/N= 3.5dB */ { 40, 8180 }, /* C/N= 4.0dB */ { 45, 7800 }, /* C/N= 4.5dB */ { 50, 7430 }, /* C/N= 5.0dB */ { 55, 7080 }, /* C/N= 5.5dB */ { 60, 6720 }, /* C/N= 6.0dB */ { 65, 6320 }, /* C/N= 6.5dB */ { 70, 6060 }, /* C/N= 7.0dB */ { 75, 5760 }, /* C/N= 7.5dB */ { 80, 5480 }, /* C/N= 8.0dB */ { 85, 5200 }, /* C/N= 8.5dB */ { 90, 4930 }, /* C/N= 9.0dB */ { 95, 4680 }, /* C/N= 9.5dB */ { 100, 4425 }, /* C/N=10.0dB */ { 105, 4210 }, /* C/N=10.5dB */ { 110, 3980 }, /* C/N=11.0dB */ { 115, 3765 }, /* C/N=11.5dB */ { 120, 3570 }, /* C/N=12.0dB */ { 125, 3315 }, /* C/N=12.5dB */ { 130, 3140 }, /* C/N=13.0dB */ { 135, 2980 }, /* C/N=13.5dB */ { 140, 2820 }, /* C/N=14.0dB */ { 145, 2670 }, /* C/N=14.5dB */ { 150, 2535 }, /* C/N=15.0dB */ { 160, 2270 }, /* C/N=16.0dB */ { 170, 2035 }, /* C/N=17.0dB */ { 180, 1825 }, /* C/N=18.0dB */ { 190, 1650 }, /* C/N=19.0dB */ { 200, 1485 }, /* C/N=20.0dB */ { 210, 1340 }, /* C/N=21.0dB */ { 220, 1212 }, /* C/N=22.0dB */ { 230, 1100 }, /* C/N=23.0dB */ { 240, 1000 }, /* C/N=24.0dB */ { 250, 910 }, /* C/N=25.0dB */ { 260, 836 }, /* C/N=26.0dB */ { 270, 772 }, /* C/N=27.0dB */ { 280, 718 }, /* C/N=28.0dB */ { 290, 671 }, /* C/N=29.0dB */ { 300, 635 }, /* C/N=30.0dB */ { 310, 602 }, /* C/N=31.0dB */ { 320, 575 }, /* C/N=32.0dB */ { 330, 550 }, /* C/N=33.0dB */ { 350, 517 }, /* C/N=35.0dB */ { 400, 480 }, /* C/N=40.0dB */ { 450, 466 }, /* C/N=45.0dB */ { 500, 464 }, /* C/N=50.0dB */ { 510, 463 }, /* C/N=51.0dB */ }; /********************************************************************* * Tracking carrier loop carrier QPSK 1/4 to 8PSK 9/10 long Frame *********************************************************************/ static const u8 s2car_loop[] = { /* Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff * 20MPon 20MPoff 30MPon 30MPoff */ /* FE_QPSK_14 */ 0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x2A, 0x1C, 0x3A, 0x3B, /* FE_QPSK_13 */ 0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x3A, 0x0C, 0x3A, 0x2B, /* FE_QPSK_25 */ 0x1C, 0x3C, 0x1B, 0x3C, 0x3A, 0x1C, 0x3A, 0x3B, 0x3A, 0x2B, /* FE_QPSK_12 */ 0x0C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B, /* FE_QPSK_35 */ 0x1C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B, /* FE_QPSK_23 */ 0x2C, 0x2C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B, /* FE_QPSK_34 */ 0x3C, 0x2C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B, /* FE_QPSK_45 */ 0x0D, 0x3C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B, /* FE_QPSK_56 */ 0x1D, 0x3C, 0x0C, 0x2C, 0x2B, 0x1C, 0x1B, 0x3B, 0x0B, 0x1B, /* FE_QPSK_89 */ 0x3D, 0x0D, 0x0C, 0x2C, 0x2B, 0x0C, 0x2B, 0x2B, 0x0B, 0x0B, /* FE_QPSK_910 */ 0x1E, 0x0D, 0x1C, 0x2C, 0x3B, 0x0C, 0x2B, 0x2B, 0x1B, 0x0B, /* FE_8PSK_35 */ 0x28, 0x09, 0x28, 0x09, 0x28, 0x09, 0x28, 0x08, 0x28, 0x27, /* FE_8PSK_23 */ 0x19, 0x29, 0x19, 0x29, 0x19, 0x29, 0x38, 0x19, 0x28, 0x09, /* FE_8PSK_34 */ 0x1A, 0x0B, 0x1A, 0x3A, 0x0A, 0x2A, 0x39, 0x2A, 0x39, 0x1A, /* FE_8PSK_56 */ 0x2B, 0x2B, 0x1B, 0x1B, 0x0B, 0x1B, 0x1A, 0x0B, 0x1A, 0x1A, /* FE_8PSK_89 */ 0x0C, 0x0C, 0x3B, 0x3B, 0x1B, 0x1B, 0x2A, 0x0B, 0x2A, 0x2A, /* FE_8PSK_910 */ 0x0C, 0x1C, 0x0C, 0x3B, 0x2B, 0x1B, 0x3A, 0x0B, 0x2A, 0x2A, /********************************************************************** * Tracking carrier loop carrier 16APSK 2/3 to 32APSK 9/10 long Frame **********************************************************************/ /* * Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff 20MPon * 20MPoff 30MPon 30MPoff */ /* FE_16APSK_23 */ 0x0A, 0x0A, 0x0A, 0x0A, 0x1A, 0x0A, 0x39, 0x0A, 0x29, 0x0A, /* FE_16APSK_34 */ 0x0A, 0x0A, 0x0A, 0x0A, 0x0B, 0x0A, 0x2A, 0x0A, 0x1A, 0x0A, /* FE_16APSK_45 */ 0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A, /* FE_16APSK_56 */ 0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A, /* FE_16APSK_89 */ 0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A, /* FE_16APSK_910 */ 0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A, /* FE_32APSK_34 */ 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, /* FE_32APSK_45 */ 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, /* FE_32APSK_56 */ 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, /* FE_32APSK_89 */ 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, /* FE_32APSK_910 */ 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, }; static u8 get_optim_cloop(struct stv *state, enum fe_stv0910_modcod modcod, u32 pilots) { int i = 0; if (modcod >= FE_32APSK_910) i = ((int)FE_32APSK_910 - (int)FE_QPSK_14) * 10; else if (modcod >= FE_QPSK_14) i = ((int)modcod - (int)FE_QPSK_14) * 10; if (state->symbol_rate <= 3000000) i += 0; else if (state->symbol_rate <= 7000000) i += 2; else if (state->symbol_rate <= 15000000) i += 4; else if (state->symbol_rate <= 25000000) i += 6; else i += 8; if (!pilots) i += 1; return s2car_loop[i]; } static int get_cur_symbol_rate(struct stv *state, u32 *psymbol_rate) { int status = 0; u8 symb_freq0; u8 symb_freq1; u8 symb_freq2; u8 symb_freq3; u8 tim_offs0; u8 tim_offs1; u8 tim_offs2; u32 symbol_rate; s32 timing_offset; *psymbol_rate = 0; if (!state->started) return status; read_reg(state, RSTV0910_P2_SFR3 + state->regoff, &symb_freq3); read_reg(state, RSTV0910_P2_SFR2 + state->regoff, &symb_freq2); read_reg(state, RSTV0910_P2_SFR1 + state->regoff, &symb_freq1); read_reg(state, RSTV0910_P2_SFR0 + state->regoff, &symb_freq0); read_reg(state, RSTV0910_P2_TMGREG2 + state->regoff, &tim_offs2); read_reg(state, RSTV0910_P2_TMGREG1 + state->regoff, &tim_offs1); read_reg(state, RSTV0910_P2_TMGREG0 + state->regoff, &tim_offs0); symbol_rate = ((u32)symb_freq3 << 24) | ((u32)symb_freq2 << 16) | ((u32)symb_freq1 << 8) | (u32)symb_freq0; timing_offset = ((u32)tim_offs2 << 16) | ((u32)tim_offs1 << 8) | (u32)tim_offs0; if ((timing_offset & (1 << 23)) != 0) timing_offset |= 0xFF000000; /* Sign extent */ symbol_rate = (u32)(((u64)symbol_rate * state->base->mclk) >> 32); timing_offset = (s32)(((s64)symbol_rate * (s64)timing_offset) >> 29); *psymbol_rate = symbol_rate + timing_offset; return 0; } static int get_signal_parameters(struct stv *state) { u8 tmp; if (!state->started) return -EINVAL; if (state->receive_mode == RCVMODE_DVBS2) { read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp); state->modcod = (enum fe_stv0910_modcod)((tmp & 0x7c) >> 2); state->pilots = (tmp & 0x01) != 0; state->fec_type = (enum dvbs2_fec_type)((tmp & 0x02) >> 1); #if 0 read_reg(state, RSTV0910_P2_TMGOBS + state->regoff, &rolloff); rolloff = rolloff >> 6; state->fe_roll_off = (enum fe_stv0910_roll_off)rolloff; #endif } else if (state->receive_mode == RCVMODE_DVBS) { read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp); state->puncture_rate = FEC_NONE; switch (tmp & 0x1F) { case 0x0d: state->puncture_rate = FEC_1_2; break; case 0x12: state->puncture_rate = FEC_2_3; break; case 0x15: state->puncture_rate = FEC_3_4; break; case 0x18: state->puncture_rate = FEC_5_6; break; case 0x1a: state->puncture_rate = FEC_7_8; break; } state->is_vcm = 0; state->is_standard_broadcast = 1; state->fe_roll_off = FE_SAT_35; } return 0; } static int tracking_optimization(struct stv *state) { u8 tmp; read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &tmp); tmp &= ~0xC0; switch (state->receive_mode) { case RCVMODE_DVBS: tmp |= 0x40; break; case RCVMODE_DVBS2: tmp |= 0x80; break; default: tmp |= 0xC0; break; } write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, tmp); if (state->receive_mode == RCVMODE_DVBS2) { /* Disable Reed-Solomon */ write_shared_reg(state, RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01, 0x03); if (state->fec_type == DVBS2_64K) { u8 aclc = get_optim_cloop(state, state->modcod, state->pilots); if (state->modcod <= FE_QPSK_910) { write_reg(state, RSTV0910_P2_ACLC2S2Q + state->regoff, aclc); } else if (state->modcod <= FE_8PSK_910) { write_reg(state, RSTV0910_P2_ACLC2S2Q + state->regoff, 0x2a); write_reg(state, RSTV0910_P2_ACLC2S28 + state->regoff, aclc); } else if (state->modcod <= FE_16APSK_910) { write_reg(state, RSTV0910_P2_ACLC2S2Q + state->regoff, 0x2a); write_reg(state, RSTV0910_P2_ACLC2S216A + state->regoff, aclc); } else if (state->modcod <= FE_32APSK_910) { write_reg(state, RSTV0910_P2_ACLC2S2Q + state->regoff, 0x2a); write_reg(state, RSTV0910_P2_ACLC2S232A + state->regoff, aclc); } } } return 0; } static s32 table_lookup(const struct slookup *table, int table_size, u16 reg_value) { s32 value; int imin = 0; int imax = table_size - 1; int i; s32 reg_diff; /* Assumes table[0].reg_value > table[imax].reg_value */ if (reg_value >= table[0].reg_value) { value = table[0].value; } else if (reg_value <= table[imax].reg_value) { value = table[imax].value; } else { while (imax - imin > 1) { i = (imax + imin) / 2; if ((table[imin].reg_value >= reg_value) && (reg_value >= table[i].reg_value)) imax = i; else imin = i; } reg_diff = table[imax].reg_value - table[imin].reg_value; value = table[imin].value; if (reg_diff != 0) value += ((s32)(reg_value - table[imin].reg_value) * (s32)(table[imax].value - table[imin].value)) / reg_diff; } return value; } static int get_signal_to_noise(struct stv *state, s32 *snr) { u8 data0; u8 data1; u16 data; int n_lookup; const struct slookup *lookup; *snr = 0; if (!state->started) return 0; if (state->receive_mode == RCVMODE_DVBS2) { read_reg(state, RSTV0910_P2_NNOSPLHT1 + state->regoff, &data1); read_reg(state, RSTV0910_P2_NNOSPLHT0 + state->regoff, &data0); n_lookup = ARRAY_SIZE(s2_sn_lookup); lookup = s2_sn_lookup; } else { read_reg(state, RSTV0910_P2_NNOSDATAT1 + state->regoff, &data1); read_reg(state, RSTV0910_P2_NNOSDATAT0 + state->regoff, &data0); n_lookup = ARRAY_SIZE(s1_sn_lookup); lookup = s1_sn_lookup; } data = (((u16)data1) << 8) | (u16)data0; *snr = table_lookup(lookup, n_lookup, data); return 0; } static int get_ber_s(struct stv *state, u32 *ber_numerator, u32 *ber_denominator) { u8 regs[3]; int status = read_regs(state, RSTV0910_P2_ERRCNT12 + state->regoff, regs, 3); if (status) return -1; if ((regs[0] & 0x80) == 0) { state->last_ber_denominator = 1ULL << ((state->ber_scale * 2) + 10 + 3); state->last_ber_numerator = ((u32)(regs[0] & 0x7f) << 16) | ((u32)regs[1] << 8) | regs[2]; if (state->last_ber_numerator < 256 && state->ber_scale < 6) { state->ber_scale += 1; status = write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff, 0x20 | state->ber_scale); } else if (state->last_ber_numerator > 1024 && state->ber_scale > 2) { state->ber_scale -= 1; status = write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff, 0x20 | state->ber_scale); } } *ber_numerator = state->last_ber_numerator; *ber_denominator = state->last_ber_denominator; return 0; } static u32 dvbs_nbch(enum dvbs2_modcod modcod, enum dvbs2_fec_type fec_type) { static const u32 nbch[][2] = { { 0, 0}, /* dummy */ {16200, 3240}, /* QPSK_1_4, */ {21600, 5400}, /* QPSK_1_3, */ {25920, 6480}, /* QPSK_2_5, */ {32400, 7200}, /* QPSK_1_2, */ {38880, 9720}, /* QPSK_3_5, */ {43200, 10800}, /* QPSK_2_3, */ {48600, 11880}, /* QPSK_3_4, */ {51840, 12600}, /* QPSK_4_5, */ {54000, 13320}, /* QPSK_5_6, */ {57600, 14400}, /* QPSK_8_9, */ {58320, 16000}, /* QPSK_9_10, */ {43200, 9720}, /* 8PSK_3_5, */ {48600, 10800}, /* 8PSK_2_3, */ {51840, 11880}, /* 8PSK_3_4, */ {54000, 13320}, /* 8PSK_5_6, */ {57600, 14400}, /* 8PSK_8_9, */ {58320, 16000}, /* 8PSK_9_10, */ {43200, 10800}, /* 16APSK_2_3, */ {48600, 11880}, /* 16APSK_3_4, */ {51840, 12600}, /* 16APSK_4_5, */ {54000, 13320}, /* 16APSK_5_6, */ {57600, 14400}, /* 16APSK_8_9, */ {58320, 16000}, /* 16APSK_9_10 */ {48600, 11880}, /* 32APSK_3_4, */ {51840, 12600}, /* 32APSK_4_5, */ {54000, 13320}, /* 32APSK_5_6, */ {57600, 14400}, /* 32APSK_8_9, */ {58320, 16000}, /* 32APSK_9_10 */ }; if (modcod >= DVBS2_QPSK_1_4 && modcod <= DVBS2_32APSK_9_10 && fec_type <= DVBS2_16K) return nbch[modcod][fec_type]; return 64800; } static int get_ber_s2(struct stv *state, u32 *ber_numerator, u32 *ber_denominator) { u8 regs[3]; int status = read_regs(state, RSTV0910_P2_ERRCNT12 + state->regoff, regs, 3); if (status) return -1; if ((regs[0] & 0x80) == 0) { state->last_ber_denominator = dvbs_nbch((enum dvbs2_modcod)state->modcod, state->fec_type) << (state->ber_scale * 2); state->last_ber_numerator = (((u32)regs[0] & 0x7f) << 16) | ((u32)regs[1] << 8) | regs[2]; if (state->last_ber_numerator < 256 && state->ber_scale < 6) { state->ber_scale += 1; write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff, 0x20 | state->ber_scale); } else if (state->last_ber_numerator > 1024 && state->ber_scale > 2) { state->ber_scale -= 1; write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff, 0x20 | state->ber_scale); } } *ber_numerator = state->last_ber_numerator; *ber_denominator = state->last_ber_denominator; return status; } static int get_ber(struct stv *state, u32 *ber_numerator, u32 *ber_denominator) { *ber_numerator = 0; *ber_denominator = 1; switch (state->receive_mode) { case RCVMODE_DVBS: return get_ber_s(state, ber_numerator, ber_denominator); case RCVMODE_DVBS2: return get_ber_s2(state, ber_numerator, ber_denominator); default: break; } return 0; } static int init(struct dvb_frontend *fe) { return 0; } static int set_mclock(struct stv *state, u32 master_clock) { u32 idf = 1; u32 odf = 4; u32 quartz = state->base->extclk / 1000000; u32 fphi = master_clock / 1000000; u32 ndiv = (fphi * odf * idf) / quartz; u32 cp = 7; u32 fvco; if (ndiv >= 7 && ndiv <= 71) cp = 7; else if (ndiv >= 72 && ndiv <= 79) cp = 8; else if (ndiv >= 80 && ndiv <= 87) cp = 9; else if (ndiv >= 88 && ndiv <= 95) cp = 10; else if (ndiv >= 96 && ndiv <= 103) cp = 11; else if (ndiv >= 104 && ndiv <= 111) cp = 12; else if (ndiv >= 112 && ndiv <= 119) cp = 13; else if (ndiv >= 120 && ndiv <= 127) cp = 14; else if (ndiv >= 128 && ndiv <= 135) cp = 15; else if (ndiv >= 136 && ndiv <= 143) cp = 16; else if (ndiv >= 144 && ndiv <= 151) cp = 17; else if (ndiv >= 152 && ndiv <= 159) cp = 18; else if (ndiv >= 160 && ndiv <= 167) cp = 19; else if (ndiv >= 168 && ndiv <= 175) cp = 20; else if (ndiv >= 176 && ndiv <= 183) cp = 21; else if (ndiv >= 184 && ndiv <= 191) cp = 22; else if (ndiv >= 192 && ndiv <= 199) cp = 23; else if (ndiv >= 200 && ndiv <= 207) cp = 24; else if (ndiv >= 208 && ndiv <= 215) cp = 25; else if (ndiv >= 216 && ndiv <= 223) cp = 26; else if (ndiv >= 224 && ndiv <= 225) cp = 27; write_reg(state, RSTV0910_NCOARSE, (cp << 3) | idf); write_reg(state, RSTV0910_NCOARSE2, odf); write_reg(state, RSTV0910_NCOARSE1, ndiv); fvco = (quartz * 2 * ndiv) / idf; state->base->mclk = fvco / (2 * odf) * 1000000; /*pr_info("ndiv = %d, MasterClock = %d\n", ndiv, state->base->mclk);*/ return 0; } static int stop(struct stv *state) { if (state->started) { u8 tmp; write_reg(state, RSTV0910_P2_TSCFGH + state->regoff, state->tscfgh | 0x01); read_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, &tmp); tmp &= ~0x01; /*release reset DVBS2 packet delin*/ write_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, tmp); /* Blind optim*/ write_reg(state, RSTV0910_P2_AGC2O + state->regoff, 0x5B); /* Stop the demod */ write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5c); state->started = 0; } state->receive_mode = RCVMODE_NONE; return 0; } static void set_pls(struct stv *state, u32 val) { if (val == state->cur_scrambling_code) return; write_reg(state, RSTV0910_P2_PLROOT0 + state->regoff, val & 0xff); write_reg(state, RSTV0910_P2_PLROOT1 + state->regoff, (val >> 8) & 0xff); write_reg(state, RSTV0910_P2_PLROOT2 + state->regoff, (val >> 16) & 0x0f); state->cur_scrambling_code = val; } static void set_isi(struct stv *state, u32 isi) { if (isi == NO_STREAM_ID_FILTER) return; if (isi == 0x80000000) { set_field(FORCE_CONTINUOUS, 1); set_field(TSOUT_NOSYNC, 1); } else { set_field(FILTER_EN, 1); write_reg(state, RSTV0910_P2_ISIENTRY + state->regoff, isi & 0xff); write_reg(state, RSTV0910_P2_ISIBITENA + state->regoff, 0xff); } set_field(ALGOSWRST, 1); set_field(ALGOSWRST, 0); } static void set_stream_modes(struct stv *state, struct dtv_frontend_properties *p) { u32 scrambling_code = 1; set_isi(state, p->stream_id); /* Backwards compatibility to API in CrazyCat tree. * PRBS X root cannot be 0, so this should always work. */ if ((p->stream_id != NO_STREAM_ID_FILTER) && (p->stream_id & 0xfffff00)) scrambling_code = 0xfffff & (p->stream_id >> 8); /* p->scrambling_sequence_index is always gold code ! */ scrambling_code = p->scrambling_sequence_index | 0x40000; set_pls(state, scrambling_code); } static int init_search_param(struct stv *state, struct dtv_frontend_properties *p) { set_field(FORCE_CONTINUOUS, 0); set_field(FRAME_MODE, 0); set_field(FILTER_EN, 0); set_field(TSOUT_NOSYNC, 0); set_field(TSFIFO_EMBINDVB, 0); set_field(TSDEL_SYNCBYTE, 0); set_reg(UPLCCST0, 0xe0); set_field(TSINS_TOKEN, 0); set_field(HYSTERESIS_THRESHOLD, 0); set_field(ISIOBS_MODE, 1); set_stream_modes(state, p); return 0; } static int enable_puncture_rate(struct stv *state, enum fe_code_rate rate) { u8 val; switch (rate) { case FEC_1_2: val = 0x01; break; case FEC_2_3: val = 0x02; break; case FEC_3_4: val = 0x04; break; case FEC_5_6: val = 0x08; break; case FEC_7_8: val = 0x20; break; case FEC_NONE: default: val = 0x2f; break; } return write_reg(state, RSTV0910_P2_PRVIT + state->regoff, val); } static int set_vth_default(struct stv *state) { state->vth[0] = 0xd7; state->vth[1] = 0x85; state->vth[2] = 0x58; state->vth[3] = 0x3a; state->vth[4] = 0x34; state->vth[5] = 0x28; write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]); write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]); write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]); write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]); write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]); write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]); return 0; } static int set_vth(struct stv *state) { static struct slookup vth_lookup_table[] = { {250, 8780}, /* C/N= 1.5dB */ {100, 7405}, /* C/N= 4.5dB */ {40, 6330}, /* C/N= 6.5dB */ {12, 5224}, /* C/N= 8.5dB */ {5, 4236}, /* C/N=10.5dB */ }; int i; u8 tmp[2]; int status = read_regs(state, RSTV0910_P2_NNOSDATAT1 + state->regoff, tmp, 2); u16 value = (tmp[0] << 8) | tmp[1]; s32 vth = table_lookup(vth_lookup_table, ARRAY_SIZE(vth_lookup_table), value); for (i = 0; i < 6; i += 1) if (state->vth[i] > vth) state->vth[i] = vth; write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]); write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]); write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]); write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]); write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]); write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]); return status; } static int start(struct stv *state, struct dtv_frontend_properties *p) { s32 freq; u8 reg_dmdcfgmd; u16 symb; if (p->symbol_rate < 100000 || p->symbol_rate > 70000000) return -EINVAL; state->receive_mode = RCVMODE_NONE; state->demod_lock_time = 0; /* Demod Stop */ if (state->started) write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5C); init_search_param(state, p); if (p->symbol_rate <= 1000000) { /*SR <=1Msps*/ state->demod_timeout = 3000; state->fec_timeout = 2000; } else if (p->symbol_rate <= 2000000) { /*1Msps < SR <=2Msps*/ state->demod_timeout = 2500; state->fec_timeout = 1300; } else if (p->symbol_rate <= 5000000) { /*2Msps< SR <=5Msps*/ state->demod_timeout = 1000; state->fec_timeout = 650; } else if (p->symbol_rate <= 10000000) { /*5Msps< SR <=10Msps*/ state->demod_timeout = 700; state->fec_timeout = 350; } else if (p->symbol_rate < 20000000) { /*10Msps< SR <=20Msps*/ state->demod_timeout = 400; state->fec_timeout = 200; } else { /*SR >=20Msps*/ state->demod_timeout = 300; state->fec_timeout = 200; } /* Set the Init Symbol rate*/ symb = muldiv32(p->symbol_rate, 65536, state->base->mclk); write_reg(state, RSTV0910_P2_SFRINIT1 + state->regoff, ((symb >> 8) & 0x7F)); write_reg(state, RSTV0910_P2_SFRINIT0 + state->regoff, (symb & 0xFF)); /*pr_info("symb = %u\n", symb);*/ state->demod |= 0x80; write_reg(state, RSTV0910_P2_DEMOD + state->regoff, state->demod); /* FE_STV0910_SetSearchStandard */ read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, ®_dmdcfgmd); write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, reg_dmdcfgmd |= 0xC0); write_shared_reg(state, RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01, 0x00); /* Disable DSS */ write_reg(state, RSTV0910_P2_FECM + state->regoff, 0x00); write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x2F); enable_puncture_rate(state, FEC_NONE); /* 8PSK 3/5, 8PSK 2/3 Poff tracking optimization WA*/ write_reg(state, RSTV0910_P2_ACLC2S2Q + state->regoff, 0x0B); write_reg(state, RSTV0910_P2_ACLC2S28 + state->regoff, 0x0A); write_reg(state, RSTV0910_P2_BCLC2S2Q + state->regoff, 0x84); write_reg(state, RSTV0910_P2_BCLC2S28 + state->regoff, 0x84); write_reg(state, RSTV0910_P2_CARHDR + state->regoff, 0x1C); write_reg(state, RSTV0910_P2_CARFREQ + state->regoff, 0x79); write_reg(state, RSTV0910_P2_ACLC2S216A + state->regoff, 0x29); write_reg(state, RSTV0910_P2_ACLC2S232A + state->regoff, 0x09); write_reg(state, RSTV0910_P2_BCLC2S216A + state->regoff, 0x84); write_reg(state, RSTV0910_P2_BCLC2S232A + state->regoff, 0x84); /* Reset CAR3, bug DVBS2->DVBS1 lock*/ /* Note: The bit is only pulsed -> no lock on shared register needed */ write_reg(state, RSTV0910_TSTRES0, state->nr ? 0x04 : 0x08); write_reg(state, RSTV0910_TSTRES0, 0); set_vth_default(state); /* Reset demod */ write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F); write_reg(state, RSTV0910_P2_CARCFG + state->regoff, 0x46); if (p->symbol_rate <= 5000000) freq = (state->search_range / 2000) + 80; else freq = (state->search_range / 2000) + 1600; freq = (freq << 16) / (state->base->mclk / 1000); write_reg(state, RSTV0910_P2_CFRUP1 + state->regoff, (freq >> 8) & 0xff); write_reg(state, RSTV0910_P2_CFRUP0 + state->regoff, (freq & 0xff)); /*CFR Low Setting*/ freq = -freq; write_reg(state, RSTV0910_P2_CFRLOW1 + state->regoff, (freq >> 8) & 0xff); write_reg(state, RSTV0910_P2_CFRLOW0 + state->regoff, (freq & 0xff)); /* init the demod frequency offset to 0 */ write_reg(state, RSTV0910_P2_CFRINIT1 + state->regoff, 0); write_reg(state, RSTV0910_P2_CFRINIT0 + state->regoff, 0); write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F); /* Trigger acq */ write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, state->TuneMode == BlindScan ? 0x00 : 0x15); state->demod_lock_time += TUNING_DELAY; state->started = 1; return 0; } static int init_diseqc(struct stv *state) { u16 offs = state->nr ? 0x40 : 0; /* Address offset */ u8 freq = ((state->base->mclk + 11000 * 32) / (22000 * 32)); write_reg(state, RSTV0910_P1_DISRXCFG + offs, 0x05); //write_reg(state, RSTV0910_P1_DISRXF220 + offs, 0x69); 2b? write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0xBA); /* Reset = 1 */ write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A); /* Reset = 0 */ write_reg(state, RSTV0910_P1_DISTXF22 + offs, freq); return 0; } static int probe(struct stv *state) { u8 id; state->receive_mode = RCVMODE_NONE; state->started = 0; if (read_reg(state, RSTV0910_MID, &id) < 0) return -EINVAL; if (id != 0x51) return -EINVAL; /* pr_info("stv0910: found STV0910 id=0x%02x\n", id); */ /* Configure the I2C repeater to off */ write_reg(state, RSTV0910_P1_I2CRPT, 0x24); /* Configure the I2C repeater to off */ write_reg(state, RSTV0910_P2_I2CRPT, 0x24); /* Set the I2C to oversampling ratio */ write_reg(state, RSTV0910_I2CCFG, 0x88); /* state->i2ccfg */ write_reg(state, RSTV0910_OUTCFG, 0x00); /* OUTCFG */ write_reg(state, RSTV0910_PADCFG, 0x05); /* RFAGC Pads Dev = 05 */ write_reg(state, RSTV0910_SYNTCTRL, 0x02); /* SYNTCTRL */ write_reg(state, RSTV0910_TSGENERAL, state->tsgeneral); /* TSGENERAL */ write_reg(state, RSTV0910_CFGEXT, 0x02); /* CFGEXT */ if (state->single) write_reg(state, RSTV0910_GENCFG, 0x14); /* GENCFG */ else write_reg(state, RSTV0910_GENCFG, 0x15); /* GENCFG */ write_reg(state, RSTV0910_P1_TNRCFG2, 0x02); /* IQSWAP = 0 */ write_reg(state, RSTV0910_P2_TNRCFG2, 0x82); /* IQSWAP = 1 */ write_reg(state, RSTV0910_P1_CAR3CFG, 0x02); write_reg(state, RSTV0910_P2_CAR3CFG, 0x02); write_reg(state, RSTV0910_P1_DMDCFG4, 0x04); write_reg(state, RSTV0910_P2_DMDCFG4, 0x04); write_reg(state, RSTV0910_TSTRES0, 0x80); /* LDPC Reset */ write_reg(state, RSTV0910_TSTRES0, 0x00); write_reg(state, RSTV0910_P1_TSPIDFLT1, 0x00); write_reg(state, RSTV0910_P2_TSPIDFLT1, 0x00); write_reg(state, RSTV0910_P1_TMGCFG2, 0x80); write_reg(state, RSTV0910_P2_TMGCFG2, 0x80); set_mclock(state, 135000000); /* TS output */ write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01); write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh); write_reg(state, RSTV0910_P1_TSCFGM, 0xC0); /* Manual speed */ write_reg(state, RSTV0910_P1_TSCFGL, 0x60); write_reg(state, RSTV0910_P1_TSSPEED, state->tsspeed); write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01); write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh); write_reg(state, RSTV0910_P2_TSCFGM, 0xC0); /* Manual speed */ write_reg(state, RSTV0910_P2_TSCFGL, 0x60); write_reg(state, RSTV0910_P2_TSSPEED, state->tsspeed); /* Reset stream merger */ write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01); write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01); write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh); write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh); write_reg(state, RSTV0910_P1_I2CRPT, state->i2crpt); write_reg(state, RSTV0910_P2_I2CRPT, state->i2crpt); write_reg(state, RSTV0910_P1_TSINSDELM, 0x17); write_reg(state, RSTV0910_P1_TSINSDELL, 0xff); write_reg(state, RSTV0910_P2_TSINSDELM, 0x17); write_reg(state, RSTV0910_P2_TSINSDELL, 0xff); init_diseqc(state); return 0; } static int gate_ctrl(struct dvb_frontend *fe, int enable) { struct stv *state = fe->demodulator_priv; u8 i2crpt = state->i2crpt & ~0x86; int stat; if (enable) { mutex_lock(&state->base->i2c_lock); i2crpt |= 0x80; } else i2crpt |= 0x02; stat = write_reg(state, state->nr ? RSTV0910_P2_I2CRPT : RSTV0910_P1_I2CRPT, i2crpt); if (stat < 0) if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock))) mutex_unlock(&state->base->i2c_lock); state->i2crpt = i2crpt; if (!enable) if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock))) mutex_unlock(&state->base->i2c_lock); return stat; } static void release(struct dvb_frontend *fe) { struct stv *state = fe->demodulator_priv; state->base->count--; if (state->base->count == 0) { list_del(&state->base->stvlist); kfree(state->base); } kfree(state); } static int set_parameters(struct dvb_frontend *fe) { int stat = 0; struct stv *state = fe->demodulator_priv; u32 IF; struct dtv_frontend_properties *p = &fe->dtv_property_cache; stop(state); if (fe->ops.tuner_ops.get_if_frequency) fe->ops.tuner_ops.get_if_frequency(fe, &IF); state->TuneMode = p->symbol_rate & 1 ? BlindScan : ColdStart; p->symbol_rate &= ~(0x1); state->symbol_rate = p->symbol_rate; if (state->TuneMode == BlindScan) p->symbol_rate = max((u32)(p->symbol_rate + p->symbol_rate/4), (u32)70000000); if (fe->ops.tuner_ops.set_params) fe->ops.tuner_ops.set_params(fe); stat = start(state, p); return stat; } static int get_frequency_offset(struct stv *state, s32 *off) { u8 cfr0, cfr1, cfr2; s32 derot; read_reg(state, RSTV0910_P2_CFR2 + state->regoff, &cfr2); read_reg(state, RSTV0910_P2_CFR1 + state->regoff, &cfr1); read_reg(state, RSTV0910_P2_CFR0 + state->regoff, &cfr0); derot = ((u32)cfr2 << 16) | ((u32)cfr1 << 8) | cfr0; if (derot & (1 << 23)) derot |= 0xFF000000; *off = (s32)(((s64)derot * (s64)state->base->mclk) >> 24); //pr_info("foff = %d\n", *off); return 0; } static int get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *p) { struct stv *state = fe->demodulator_priv; u8 tmp; if (state->receive_mode == RCVMODE_DVBS2) { u32 mc; enum fe_modulation modcod2mod[0x20] = { QPSK, QPSK, QPSK, QPSK, QPSK, QPSK, QPSK, QPSK, QPSK, QPSK, QPSK, QPSK, PSK_8, PSK_8, PSK_8, PSK_8, PSK_8, PSK_8, APSK_16, APSK_16, APSK_16, APSK_16, APSK_16, APSK_16, APSK_32, APSK_32, APSK_32, APSK_32, APSK_32, }; enum fe_code_rate modcod2fec[0x20] = { FEC_NONE, FEC_1_4, FEC_1_3, FEC_2_5, FEC_1_2, FEC_3_5, FEC_2_3, FEC_3_4, FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10, FEC_3_5, FEC_2_3, FEC_3_4, FEC_5_6, FEC_8_9, FEC_9_10, FEC_2_3, FEC_3_4, FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10, FEC_3_4, FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10 }; enum fe_rolloff ro2ro[4] = { ROLLOFF_35, ROLLOFF_25, ROLLOFF_20, ROLLOFF_15, }; read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp); mc = ((tmp & 0x7c) >> 2); p->pilot = (tmp & 0x01) ? PILOT_ON : PILOT_OFF; p->modulation = modcod2mod[mc]; p->fec_inner = modcod2fec[mc]; p->rolloff = ro2ro[state->fe_roll_off]; } else if (state->receive_mode == RCVMODE_DVBS) { read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp); switch (tmp & 0x1f) { case 0x0d: p->fec_inner = FEC_1_2; break; case 0x12: p->fec_inner = FEC_2_3; break; case 0x15: p->fec_inner = FEC_3_4; break; case 0x18: p->fec_inner = FEC_5_6; break; case 0x1a: p->fec_inner = FEC_7_8; break; default: p->fec_inner = FEC_NONE; break; } p->modulation = QPSK; p->rolloff = ROLLOFF_35; } if (state->receive_mode != RCVMODE_NONE) { u32 symbolrate = 0; get_cur_symbol_rate(state, &symbolrate); p->symbol_rate = symbolrate; } return 0; } static int manage_matype_info(struct stv *state) { if (!state->started) return -1; if (state->receive_mode == RCVMODE_DVBS2) { u8 bbheader[2]; read_regs(state, RSTV0910_P2_MATSTR1 + state->regoff, bbheader, 2); state->fe_roll_off = (enum fe_stv0910_roll_off)(bbheader[0] & 0x03); state->is_vcm = (bbheader[0] & 0x10) == 0; state->is_standard_broadcast = (bbheader[0] & 0xFC) == 0xF0; } else if (state->receive_mode == RCVMODE_DVBS) { state->is_vcm = 0; state->is_standard_broadcast = 1; state->fe_roll_off = FE_SAT_35; } return 0; } static int read_snr(struct dvb_frontend *fe, u16 *snr); static int read_signal_strength(struct dvb_frontend *fe, u16 *strength); static int read_ber(struct dvb_frontend *fe, u32 *ber); static int read_status(struct dvb_frontend *fe, enum fe_status *status) { struct stv *state = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; u8 dmdstate = 0; enum receive_mode cur_receive_mode = RCVMODE_NONE; u32 fec_lock = 0; u16 val; u32 ber; s32 foff; *status = 0; read_reg(state, RSTV0910_P2_DMDSTATE + state->regoff, &dmdstate); if (dmdstate & 0x40) { u8 dstatus = 0; read_reg(state, RSTV0910_P2_DSTATUS + state->regoff, &dstatus); if (dstatus & 0x08) cur_receive_mode = (dmdstate & 0x20) ? RCVMODE_DVBS : RCVMODE_DVBS2; } if (cur_receive_mode == RCVMODE_NONE) { set_vth(state); /*if( Time >= state->demod_timeout ) **pLockStatus = NEVER_LOCK; */ goto get_stat; } *status = (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC); if (state->receive_mode == RCVMODE_NONE) { state->receive_mode = cur_receive_mode; state->demod_lock_time = jiffies; state->first_time_lock = 1; get_signal_parameters(state); tracking_optimization(state); #if 0 if (cur_receive_mode == RCVMODE_DVBS2 && state->pilots && (m_modcod == FE_8PSK_23 || m_modcod == FE_8PSK_35)) { u32 cn; get_signal_to_noise(&cn); if (cn < 80) { write_reg(RSTV0910_P2_CARHDR + state->regoff, 0x04); write_reg(RSTV0910_P2_BCLC2S28 + state->regoff, 0x31); } } #endif write_reg(state, RSTV0910_P2_TSCFGH + state->regoff, state->tscfgh); usleep_range(3000, 4000); write_reg(state, RSTV0910_P2_TSCFGH + state->regoff, state->tscfgh | 0x01); write_reg(state, RSTV0910_P2_TSCFGH + state->regoff, state->tscfgh); } if (dmdstate & 0x40) { if (state->receive_mode == RCVMODE_DVBS2) { u8 pdel; read_reg(state, RSTV0910_P2_PDELSTATUS1 + state->regoff, &pdel); fec_lock = (pdel & 0x02) != 0; } else { u8 vstatus; read_reg(state, RSTV0910_P2_VSTATUSVIT + state->regoff, &vstatus); fec_lock = (vstatus & 0x08) != 0; } } if (fec_lock) { *status |= FE_HAS_LOCK; if (state->first_time_lock) { u8 tmp; state->first_time_lock = 0; manage_matype_info(state); #if 0 u32 bitrate = get_bitrate(&bitrate); u8 new_tsspeed = (bitrate > 67000000) ? 0x30 : 0x40; if (new_tsspeed != state->tsspeed) { write_reg(state, RSTV0910_P2_TSSPEED + state->regoff, new_tsspeed); state->tsspeed = new_tsspeed; } #endif if (state->receive_mode == RCVMODE_DVBS2) { /* FSTV0910_P2_MANUALSX_ROLLOFF, * FSTV0910_P2_MANUALS2_ROLLOFF = 0 */ state->demod &= ~0x84; write_reg(state, RSTV0910_P2_DEMOD + state->regoff, state->demod); read_reg(state, RSTV0910_P2_PDELCTRL2 + state->regoff, &tmp); /*reset DVBS2 packet delinator error counter */ tmp |= 0x40; write_reg(state, RSTV0910_P2_PDELCTRL2 + state->regoff, tmp); /*reset DVBS2 packet delinator error counter */ tmp &= ~0x40; write_reg(state, RSTV0910_P2_PDELCTRL2 + state->regoff, tmp); state->ber_scale = 2; state->last_ber_numerator = 0; state->last_ber_denominator = 1; /* force to PRE BCH Rate */ write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff, BER_SRC_S2 | state->ber_scale); } else { state->ber_scale = 2; state->last_ber_numerator = 0; state->last_ber_denominator = 1; /* force to PRE RS Rate */ write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff, BER_SRC_S | state->ber_scale); } /* Reset the Total packet counter */ write_reg(state, RSTV0910_P2_FBERCPT4 + state->regoff, 0x00); /* Reset the packet Error counter2 (and Set it to * infinite error count mode ) */ write_reg(state, RSTV0910_P2_ERRCTRL2 + state->regoff, 0xc1); set_vth_default(state); if (state->receive_mode == RCVMODE_DVBS) enable_puncture_rate(state, state->puncture_rate); } /* Use highest signaled ModCod for quality */ if (state->is_vcm) { u8 tmp; enum fe_stv0910_modcod modcod; read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp); modcod = (enum fe_stv0910_modcod)((tmp & 0x7c) >> 2); if (modcod > state->modcod) state->modcod = modcod; } } get_stat: if (time_in_range(state->stat_time, jiffies, jiffies + HZ)) return 0; state->stat_time = jiffies + HZ; read_signal_strength(fe, &val); if (*status & FE_HAS_CARRIER) read_snr(fe, &val); else p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; if (*status & FE_HAS_VITERBI) { read_ber(fe, &ber); } else { p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; } get_frequency_offset(state, &foff); return 0; } static int tune(struct dvb_frontend *fe, bool re_tune, unsigned int mode_flags, unsigned int *delay, enum fe_status *status) { struct stv *state = fe->demodulator_priv; int r; if (re_tune) { r = set_parameters(fe); if (r) return r; state->tune_time = jiffies; } r = read_status(fe, status); if (r) return r; if (*status & FE_HAS_LOCK) return 0; *delay = HZ / 10; return 0; } static enum dvbfe_algo get_algo(struct dvb_frontend *fe) { return DVBFE_ALGO_HW; } static int set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone) { struct stv *state = fe->demodulator_priv; u16 offs = state->nr ? 0x40 : 0; switch (tone) { case SEC_TONE_ON: return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x38); case SEC_TONE_OFF: return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3a); default: break; } return -EINVAL; } static int wait_dis(struct stv *state, u8 flag, u8 val) { int i; u8 stat; u16 offs = state->nr ? 0x40 : 0; for (i = 0; i < 10; i++) { read_reg(state, RSTV0910_P1_DISTXSTATUS + offs, &stat); if ((stat & flag) == val) return 0; usleep_range(10000, 11000); } return -1; } static int clear_slave(struct dvb_frontend *fe) { struct stv *state = fe->demodulator_priv; u8 n, d, done; get_field(RXEND, &done); get_reg(DISRXBYTES, &n); //printk("clear: done = %u, %u fifo bytes\n", done, n); for (get_reg(DISRXBYTES, &n); n; n--) get_reg(DISRXFIFO, &d); return 0; } static int send_master_cmd(struct dvb_frontend *fe, struct dvb_diseqc_master_cmd *cmd) { struct stv *state = fe->demodulator_priv; int i; clear_slave(fe); set_field(DISRX_ON, 0); set_reg(DISTXCFG, 0x3e); for (i = 0; i < cmd->msg_len; i++) { wait_dis(state, 0x40, 0x00); set_reg(DISTXFIFO, cmd->msg[i]); } set_reg(DISTXCFG, 0x3a); wait_dis(state, 0x20, 0x20); set_field(DISRX_ON, 1); return 0; } static int recv_slave_reply(struct dvb_frontend *fe, struct dvb_diseqc_slave_reply *reply) { struct stv *state = fe->demodulator_priv; int i, to, flag = 0, max = sizeof(reply->msg); u8 done, val, n = 0; #if 0 get_reg(DISRXBYTES, &val); get_field(RXEND, &done); printk("slave: done = %u, %u fifo bytes\n", done, val); #endif to = reply->timeout; if (to < 0) { to = 100; flag = 1; } else if (to > 5000) to = 100; reply->msg_len = 0; for (i = 0; i < to; i += 10) { get_reg(DISRXBYTES, &val); if (flag && val) break; get_field(RXEND, &done); if (val >= max || done) break; msleep(10); } get_reg(DISRXBYTES, &val); //printk("done = %u, %u fifo bytes, i=%u\n", done, val, i); if (i == to && !val) return -EIO; if (done && !val) return -EIO; for (i = 100; i; i--) { get_field(RXEND, &done); for (get_reg(DISRXBYTES, &n); n; n--) { if (reply->msg_len == max) return 0; get_reg(DISRXFIFO, &reply->msg[reply->msg_len++]); } if (!n || done) break; msleep(10); } if (!i) return -EIO; return 0; } static int send_burst(struct dvb_frontend *fe, enum fe_sec_mini_cmd burst) { #if 0 struct stv *state = fe->demodulator_priv; u8 value; if (burst == SEC_MINI_A) { set_reg(DISTXCFG, 0x3f); value = 0x00; } else { set_reg(DISTXCFG, 0x3e); value = 0xff; } wait_dis(state, 0x40, 0x00); set_reg(DISTXFIFO, value); set_reg(DISTXCFG, 0x3a); wait_dis(state, 0x20, 0x20); #endif return 0; } static int sleep(struct dvb_frontend *fe) { struct stv *state = fe->demodulator_priv; stop(state); return 0; } static int read_snr(struct dvb_frontend *fe, u16 *snr) { struct stv *state = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; s32 snr32; *snr = 0; if (get_signal_to_noise(state, &snr32)) return -EIO; *snr = snr32; p->cnr.len = 1; p->cnr.stat[0].scale = FE_SCALE_DECIBEL; p->cnr.stat[0].svalue = 100 * (s64)snr32; return 0; } static int read_ber(struct dvb_frontend *fe, u32 *ber) { struct stv *state = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; u32 n, d; get_ber(state, &n, &d); if (d) *ber = n / d; else *ber = 0; p->pre_bit_error.len = 1; p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER; p->pre_bit_error.stat[0].uvalue = n; p->pre_bit_count.len = 1; p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER; p->pre_bit_count.stat[0].uvalue = d; return 0; } static s32 log10x100(u32 x) { static const u32 lookup_table[100] = { 101157945, 103514217, 105925373, 108392691, 110917482, 113501082, 116144861, 118850223, 121618600, 124451461, 127350308, 130316678, 133352143, 136458314, 139636836, 142889396, 146217717, 149623566, 153108746, 156675107, 160324539, 164058977, 167880402, 171790839, 175792361, 179887092, 184077200, 188364909, 192752491, 197242274, 201836636, 206538016, 211348904, 216271852, 221309471, 226464431, 231739465, 237137371, 242661010, 248313311, 254097271, 260015956, 266072506, 272270131, 278612117, 285101827, 291742701, 298538262, 305492111, 312607937, 319889511, 327340695, 334965439, 342767787, 350751874, 358921935, 367282300, 375837404, 384591782, 393550075, 402717034, 412097519, 421696503, 431519077, 441570447, 451855944, 462381021, 473151259, 484172368, 495450191, 506990708, 518800039, 530884444, 543250331, 555904257, 568852931, 582103218, 595662144, 609536897, 623734835, 638263486, 653130553, 668343918, 683911647, 699841996, 716143410, 732824533, 749894209, 767361489, 785235635, 803526122, 822242650, 841395142, 860993752, 881048873, 901571138, 922571427, 944060876, 966050879, 988553095, }; s32 y; int i; if (x == 0) return 0; y = 800; if (x >= 1000000000) { x /= 10; y += 100; } while (x < 100000000) { x *= 10; y -= 100; } i = 0; while (i < 100 && x > lookup_table[i]) i += 1; y += i; return y; } static int read_signal_strength(struct dvb_frontend *fe, u16 *strength) { struct stv *state = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; u8 reg[2]; s32 bbgain; s32 power = 0; int i; read_regs(state, RSTV0910_P2_AGCIQIN1 + state->regoff, reg, 2); *strength = (((u32)reg[0]) << 8) | reg[1]; for (i = 0; i < 5; i += 1) { read_regs(state, RSTV0910_P2_POWERI + state->regoff, reg, 2); power += (u32)reg[0] * (u32)reg[0] + (u32)reg[1] * (u32)reg[1]; usleep_range(3000, 4000); } power /= 5; bbgain = (465 - log10x100(power)) * 10; if (fe->ops.tuner_ops.get_rf_strength) fe->ops.tuner_ops.get_rf_strength(fe, strength); else *strength = 0; if (bbgain < (s32)*strength) *strength -= bbgain; else *strength = 0; p->strength.len = 1; p->strength.stat[0].scale = FE_SCALE_DECIBEL; p->strength.stat[0].svalue = 10 * (s64)(s16)*strength - 108750; /* *strength is in hundredth dBuv, svalue is in thousandth dBm */ return 0; } static int read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) { /* struct stv *state = fe->demodulator_priv; */ return 0; } static struct dvb_frontend_ops stv0910_ops = { .delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS }, .info = { .name = "STV0910", .frequency_min_hz = 950000000, .frequency_max_hz = 2150000000, .frequency_stepsize_hz = 0, .frequency_tolerance_hz = 0, .symbol_rate_min = 100000, .symbol_rate_max = 70000000, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_2G_MODULATION | FE_CAN_MULTISTREAM, }, .init = init, .sleep = sleep, .release = release, .i2c_gate_ctrl = gate_ctrl, .get_frontend_algo = get_algo, .get_frontend = get_frontend, .tune = tune, .read_status = read_status, .set_tone = set_tone, .diseqc_send_master_cmd = send_master_cmd, .diseqc_send_burst = send_burst, .diseqc_recv_slave_reply = recv_slave_reply, .read_snr = read_snr, .read_ber = read_ber, .read_signal_strength = read_signal_strength, .read_ucblocks = read_ucblocks, }; static struct stv_base *match_base(struct i2c_adapter *i2c, u8 adr) { struct stv_base *p; list_for_each_entry(p, &stvlist, stvlist) if (p->i2c == i2c && p->adr == adr) return p; return NULL; } struct dvb_frontend *stv0910_attach(struct i2c_adapter *i2c, struct stv0910_cfg *cfg, int nr) { struct stv *state; struct stv_base *base; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return NULL; state->tscfgh = 0x20 | (cfg->parallel ? 0 : 0x40); state->tsgeneral = (cfg->parallel == 2) ? 0x02 : 0x00; state->i2crpt = 0x0A | ((cfg->rptlvl & 0x07) << 4); state->tsspeed = cfg->parallel ? 0x10 : 0x28; if (cfg->tsspeed) state->tsspeed = cfg->tsspeed; state->nr = nr; state->regoff = state->nr ? 0 : 0x200; state->search_range = 16000000; state->demod = 0x10; /* Inversion : Auto with reset to 0 */ state->receive_mode = RCVMODE_NONE; state->cur_scrambling_code = 0xffffffff; state->single = cfg->single ? 1 : 0; base = match_base(i2c, cfg->adr); if (base) { base->count++; state->base = base; } else { base = kzalloc(sizeof(*base), GFP_KERNEL); if (!base) goto fail; base->i2c = i2c; base->adr = cfg->adr; base->count = 1; base->extclk = cfg->clk ? cfg->clk : 30000000; mutex_init(&base->i2c_lock); mutex_init(&base->reg_lock); state->base = base; if (probe(state) < 0) { kfree(base); goto fail; } list_add(&base->stvlist, &stvlist); } state->fe.ops = stv0910_ops; state->fe.demodulator_priv = state; state->nr = nr; return &state->fe; fail: kfree(state); return NULL; } EXPORT_SYMBOL_GPL(stv0910_attach); MODULE_DESCRIPTION("STV0910 DVB-S/S2 demodulator driver"); MODULE_AUTHOR("Ralph und Marcus Metzler, Manfred Voelkel"); MODULE_LICENSE("GPL v2");