dddvb/frontends/tda18212dd.c

936 lines
23 KiB
C

/*
* tda18212: Driver for the TDA18212 tuner
*
* Copyright (C) 2011-2013 Digital Devices GmbH
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 only, as published by the Free Software Foundation.
*
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
* Or, point your browser to http://www.gnu.org/copyleft/gpl.html
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/version.h>
#include <asm/div64.h>
#include <media/dvb_frontend.h>
#ifndef CHK_ERROR
#define CHK_ERROR(s) if ((status = s) < 0) break
#endif
#define MASTER_PSM_AGC1 0
#define MASTER_AGC1_6_15dB 1
#define SLAVE_PSM_AGC1 1
#define SLAVE_AGC1_6_15dB 0
/* 0 = 2 Vpp ... 2 = 1 Vpp, 7 = 0.5 Vpp */
#define IF_LEVEL_DVBC 2
#define IF_LEVEL_DVBT 2
enum {
ID_1 = 0x00,
ID_2 = 0x01,
ID_3 = 0x02,
THERMO_1,
THERMO_2,
POWER_STATE_1,
POWER_STATE_2,
INPUT_POWER_LEVEL,
IRQ_STATUS,
IRQ_ENABLE,
IRQ_CLEAR,
IRQ_SET,
AGC1_1,
AGC2_1,
AGCK_1,
RF_AGC_1,
IR_MIXER_1 = 0x10,
AGC5_1,
IF_AGC,
IF_1,
REFERENCE,
IF_FREQUENCY_1,
RF_FREQUENCY_1,
RF_FREQUENCY_2,
RF_FREQUENCY_3,
MSM_1,
MSM_2,
PSM_1,
DCC_1,
FLO_MAX,
IR_CAL_1,
IR_CAL_2,
IR_CAL_3 = 0x20,
IR_CAL_4,
VSYNC_MGT,
IR_MIXER_2,
AGC1_2,
AGC5_2,
RF_CAL_1,
RF_CAL_2,
RF_CAL_3,
RF_CAL_4,
RF_CAL_5,
RF_CAL_6,
RF_FILTER_1,
RF_FILTER_2,
RF_FILTER_3,
RF_BAND_PASS_FILTER,
CP_CURRENT = 0x30,
AGC_DET_OUT = 0x31,
RF_AGC_GAIN_1 = 0x32,
RF_AGC_GAIN_2 = 0x33,
IF_AGC_GAIN = 0x34,
POWER_1 = 0x35,
POWER_2 = 0x36,
MISC_1,
RFCAL_LOG_1,
RFCAL_LOG_2,
RFCAL_LOG_3,
RFCAL_LOG_4,
RFCAL_LOG_5,
RFCAL_LOG_6,
RFCAL_LOG_7,
RFCAL_LOG_8,
RFCAL_LOG_9 = 0x40,
RFCAL_LOG_10 = 0x41,
RFCAL_LOG_11 = 0x42,
RFCAL_LOG_12 = 0x43,
REG_MAX,
};
enum HF_Standard {
HF_None = 0, HF_B, HF_DK, HF_G, HF_I, HF_L, HF_L1, HF_MN, HF_FM_Radio,
HF_AnalogMax, HF_DVBT_6MHZ, HF_DVBT_7MHZ, HF_DVBT_8MHZ,
HF_DVBT, HF_ATSC, HF_DVBC_6MHZ, HF_DVBC_7MHZ,
HF_DVBC_8MHZ, HF_DVBC
};
struct SStandardParams {
s32 m_IFFrequency;
u32 m_BandWidth;
u8 m_IF_1; /* FF IF_HP_fc:2 IF_Notch:1 LP_FC_Offset:2 LP_FC:3 */
u8 m_IR_MIXER_2; /* 03 :6 HI_Pass:1 DC_Notch:1 */
u8 m_AGC1_1; /* 0F :4 AGC1_Top:4 */
u8 m_AGC2_1; /* 0F :4 AGC2_Top:4 */
/*EF RF_AGC_Adapt:1 RF_AGC_Adapt_Top:2 :1 RF_Atten_3dB:1 RF_AGC_Top:3 */
u8 m_RF_AGC_1_Low;
/*EF RF_AGC_Adapt:1 RF_AGC_Adapt_Top:2 :1 RF_Atten_3dB:1 RF_AGC_Top:3 */
u8 m_RF_AGC_1_High;
u8 m_IR_MIXER_1; /* 0F :4 IR_mixer_Top:4 */
u8 m_AGC5_1; /* 1F :3 AGC5_Ana AGC5_Top:4 */
u8 m_AGCK_1; /* 0F :4 AGCK_Step:2 AGCK_Mode:2 */
u8 m_PSM_1; /* 20 :2 PSM_StoB:1 :5 */
bool m_AGC1_Freeze;
bool m_LTO_STO_immune;
};
#if 0
static struct SStandardParams
m_StandardTable[HF_DVBC_8MHZ - HF_DVBT_6MHZ + 1] = {
{ 3250000, 6000000, 0x20, 0x03, 0x00, 0x07, 0x2B,
0x2C, 0x0B, 0x0B, 0x02, 0x20, false, false }, /* HF_DVBT_6MHZ */
{ 3500000, 7000000, 0x31, 0x01, 0x00, 0x07, 0x2B,
0x2C, 0x0B, 0x0B, 0x02, 0x20, false, false }, /* HF_DVBT_7MHZ */
{ 4000000, 8000000, 0x22, 0x01, 0x00, 0x07, 0x2B,
0x2C, 0x0B, 0x0B, 0x02, 0x20, false, false }, /* HF_DVBT_8MHZ */
{ 0000000, 0, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, false, false }, /* HF_DVBT (Unused) */
{ 3250000, 6000000, 0x20, 0x03, 0x0A, 0x07, 0x6D,
0x6D, 0x0E, 0x0E, 0x02, 0x20, false, false }, /* HF_ATSC */
{ 3600000, 6000000, 0x10, 0x01, 0x00, 0x07, 0x83,
0x83, 0x0B, 0x0B, 0x02, 0x00, true , true }, /* HF_DVBC_6MHZ */
{ 5000000, 7000000, 0x93, 0x03, 0x00, 0x07, 0x83,
0x83, 0x0B, 0x0B, 0x02, 0x00, true , true },
/* HF_DVBC_7MHZ (not documented by NXP, use same settings as 8 MHZ) */
{ 5000000, 8000000, 0x43, 0x03, 0x00, 0x07, 0x83,
0x83, 0x0B, 0x0B, 0x02, 0x00, true , true }, /* HF_DVBC_8MHZ */
};
#else
static struct SStandardParams
m_StandardTable[HF_DVBC_8MHZ - HF_DVBT_6MHZ + 1] = {
{ 4000000, 6000000, 0x41, 0x03, 0x00, 0x07, 0x2B,
0x2C, 0x0B, 0x0B, 0x02, 0x20, false, false }, /* HF_DVBT_6MHZ */
{ 4500000, 7000000, 0x42, 0x03, 0x00, 0x07, 0x2B,
0x2C, 0x0B, 0x0B, 0x02, 0x20, false, false }, /* HF_DVBT_7MHZ */
{ 5000000, 8000000, 0x43, 0x03, 0x00, 0x07, 0x2B,
0x2C, 0x0B, 0x0B, 0x02, 0x20, false, false }, /* HF_DVBT_8MHZ */
/* ------------------------------ */
{ 0000000, 0, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, false, false }, /* HF_DVBT (Unused)*/
{ 3250000, 6000000, 0x20, 0x03, 0x0A, 0x07, 0x6D,
0x6D, 0x0E, 0x0E, 0x02, 0x20, false, false }, /* HF_ATSC */
{ 3600000, 6000000, 0x10, 0x01, 0x00, 0x07, 0x83,
0x83, 0x0B, 0x0B, 0x02, 0x00, true , true }, /* HF_DVBC_6MHZ */
{ 5000000, 7000000, 0x93, 0x03, 0x00, 0x07, 0x83,
0x83, 0x0B, 0x0B, 0x02, 0x00, true , true },
/* HF_DVBC_7MHZ (not documented by NXP, use same settings as 8 MHZ) */
{ 5000000, 8000000, 0x43, 0x03, 0x00, 0x07, 0x83,
0x83, 0x0B, 0x0B, 0x02, 0x00, true , true }, /* HF_DVBC_8MHZ */
};
#endif
struct tda_state {
struct i2c_adapter *i2c;
u8 adr;
enum HF_Standard m_Standard;
u32 m_Frequency;
u32 IF;
bool m_isMaster;
bool m_bPowerMeasurement;
bool m_bLTEnable;
bool m_bEnableFreeze;
u16 m_ID;
s32 m_SettlingTime;
u8 m_IFLevelDVBC;
u8 m_IFLevelDVBT;
u8 Regs[REG_MAX];
u8 m_LastPowerLevel;
};
static int i2c_readn(struct i2c_adapter *adapter, u8 adr, u8 *data, int len)
{
struct i2c_msg msgs[1] = {{.addr = adr, .flags = I2C_M_RD,
.buf = data, .len = len} };
return (i2c_transfer(adapter, msgs, 1) == 1) ? 0 : -1;
}
static int i2c_read(struct i2c_adapter *adap,
u8 adr, u8 *msg, int len, u8 *answ, int alen)
{
struct i2c_msg msgs[2] = { { .addr = adr, .flags = 0,
.buf = msg, .len = len},
{ .addr = adr, .flags = I2C_M_RD,
.buf = answ, .len = alen } };
if (i2c_transfer(adap, msgs, 2) != 2) {
pr_err("tda18212dd: i2c_read error\n");
return -1;
}
return 0;
}
static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len)
{
struct i2c_msg msg = {.addr = adr, .flags = 0,
.buf = data, .len = len};
if (i2c_transfer(adap, &msg, 1) != 1) {
pr_err("tda18212: i2c_write error\n");
return -1;
}
return 0;
}
static int write_regs(struct tda_state *state,
u8 SubAddr, u8 *Regs, u16 nRegs)
{
u8 data[REG_MAX + 1];
data[0] = SubAddr;
memcpy(data + 1, Regs, nRegs);
return i2c_write(state->i2c, state->adr, data, nRegs + 1);
}
static int write_reg(struct tda_state *state, u8 SubAddr, u8 Reg)
{
u8 msg[2] = {SubAddr, Reg};
return i2c_write(state->i2c, state->adr, msg, 2);
}
static int Read(struct tda_state *state, u8 *Regs)
{
return i2c_readn(state->i2c, state->adr, Regs, REG_MAX);
}
static int update_regs(struct tda_state *state, u8 RegFrom, u8 RegTo)
{
return write_regs(state, RegFrom,
&state->Regs[RegFrom], RegTo-RegFrom + 1);
}
static int update_reg(struct tda_state *state, u8 Reg)
{
return write_reg(state, Reg, state->Regs[Reg]);
}
static int read_regs(struct tda_state *state,
u8 SubAddr, u8 *Regs, u16 nRegs)
{
return i2c_read(state->i2c, state->adr,
&SubAddr, 1, Regs, nRegs);
}
static int read_reg(struct tda_state *state,
u8 SubAddr, u8 *Reg)
{
return i2c_read(state->i2c, state->adr,
&SubAddr, 1, Reg, 1);
}
static int read_reg1(struct tda_state *state, u8 Reg)
{
return read_reg(state, Reg, &state->Regs[Reg]);
}
static void init_state(struct tda_state *state)
{
u32 ulIFLevelDVBC = IF_LEVEL_DVBC;
u32 ulIFLevelDVBT = IF_LEVEL_DVBT;
u32 ulPowerMeasurement = 1;
u32 ulLTEnable = 1;
u32 ulEnableFreeze = 0;
state->m_Frequency = 0;
state->m_isMaster = true;
state->m_ID = 0;
state->m_LastPowerLevel = 0xFF;
state->m_IFLevelDVBC = (ulIFLevelDVBC & 0x07);
state->m_IFLevelDVBT = (ulIFLevelDVBT & 0x07);
state->m_bPowerMeasurement = (ulPowerMeasurement != 0);
state->m_bLTEnable = (ulLTEnable != 0);
state->m_bEnableFreeze = (ulEnableFreeze != 0);
}
static int StartCalibration(struct tda_state *state)
{
int status = 0;
do {
state->Regs[POWER_2] &= ~0x02; /* RSSI CK = 31.25 kHz */
CHK_ERROR(update_reg(state, POWER_2));
/* AGC1 Do Step = 2 */
state->Regs[AGC1_2] = (state->Regs[AGC1_2] & ~0x60) | 0x40;
CHK_ERROR(update_reg(state, AGC1_2)); /* AGC */
/* AGC2 Do Step = 1 */
state->Regs[RF_FILTER_3] =
(state->Regs[RF_FILTER_3] & ~0xC0) | 0x40;
CHK_ERROR(update_reg(state, RF_FILTER_3));
/* AGCs Assym Up Step = 3 // Datasheet sets all bits to 1! */
state->Regs[AGCK_1] |= 0xC0;
CHK_ERROR(update_reg(state, AGCK_1));
/* AGCs Assym Do Step = 2 */
state->Regs[AGC5_1] = (state->Regs[AGC5_1] & ~0x60) | 0x40;
CHK_ERROR(update_reg(state, AGC5_1));
state->Regs[IRQ_CLEAR] |= 0x80; /* Reset IRQ */
CHK_ERROR(update_reg(state, IRQ_CLEAR));
state->Regs[MSM_1] = 0x3B; /* Set Calibration */
state->Regs[MSM_2] = 0x01; /* Start MSM */
CHK_ERROR(update_regs(state, MSM_1, MSM_2));
state->Regs[MSM_2] = 0x00;
} while (0);
return status;
}
static int FinishCalibration(struct tda_state *state)
{
int status = 0;
u8 RFCal_Log[12];
do {
u8 IRQ = 0;
int Timeout = 150; /* 1.5 s */
while (true) {
CHK_ERROR(read_reg(state, IRQ_STATUS, &IRQ));
if ((IRQ & 0x80) != 0)
break;
Timeout -= 1;
if (Timeout == 0) {
status = -1;
break;
}
usleep_range(10000, 12000);
}
CHK_ERROR(status);
state->Regs[FLO_MAX] = 0x0A;
CHK_ERROR(update_reg(state, FLO_MAX));
state->Regs[AGC1_1] &= ~0xC0;
if (state->m_bLTEnable)
state->Regs[AGC1_1] |= 0x80; /* LTEnable */
state->Regs[AGC1_1] |= (state->m_isMaster ?
MASTER_AGC1_6_15dB :
SLAVE_AGC1_6_15dB) << 6;
CHK_ERROR(update_reg(state, AGC1_1));
state->Regs[PSM_1] &= ~0xC0;
state->Regs[PSM_1] |= (state->m_isMaster ?
MASTER_PSM_AGC1 : SLAVE_PSM_AGC1) << 6;
CHK_ERROR(update_reg(state, PSM_1));
state->Regs[REFERENCE] |= 0x03; /* XTOUT = 3 */
CHK_ERROR(update_reg(state, REFERENCE));
CHK_ERROR(read_regs(state, RFCAL_LOG_1,
RFCal_Log, sizeof(RFCal_Log)));
} while (0);
return status;
}
static int PowerOn(struct tda_state *state)
{
state->Regs[POWER_STATE_2] &= ~0x0F;
update_reg(state, POWER_STATE_2);
/* Digital clock source = Sigma Delta */
state->Regs[REFERENCE] |= 0x40;
update_reg(state, REFERENCE);
return 0;
}
static int Standby(struct tda_state *state)
{
int status = 0;
do {
/* Digital clock source = Quarz */
state->Regs[REFERENCE] &= ~0x40;
CHK_ERROR(update_reg(state, REFERENCE));
state->Regs[POWER_STATE_2] &= ~0x0F;
state->Regs[POWER_STATE_2] |= state->m_isMaster ? 0x08 : 0x0E;
CHK_ERROR(update_reg(state, POWER_STATE_2));
} while (0);
return status;
}
static int attach_init(struct tda_state *state)
{
int stat = 0;
u8 Id[2];
u8 PowerState = 0x00;
state->m_Standard = HF_None;
/* first read after cold reset sometimes fails on some cards,
try twice */
stat = read_regs(state, ID_1, Id, sizeof(Id));
stat = read_regs(state, ID_1, Id, sizeof(Id));
if (stat < 0)
return -1;
state->m_ID = ((Id[0] & 0x7F) << 8) | Id[1];
state->m_isMaster = ((Id[0] & 0x80) != 0);
if (!state->m_isMaster)
state->m_bLTEnable = false;
if (state->m_ID != 18212)
return -1;
stat = read_reg(state, POWER_STATE_1 , &PowerState);
if (stat < 0)
return stat;
if (state->m_isMaster) {
if (PowerState & 0x02) {
/* msleep for XTAL Calibration
(on a PC this should be long done) */
u8 IRQStatus = 0;
int Timeout = 10;
while (Timeout > 0) {
read_reg(state, IRQ_STATUS, &IRQStatus);
if (IRQStatus & 0x20)
break;
Timeout -= 1;
usleep_range(10000, 12000);
}
if ((IRQStatus & 0x20) == 0)
stat = -ETIMEDOUT;
}
} else {
write_reg(state, FLO_MAX, 0x00);
write_reg(state, CP_CURRENT, 0x68);
}
Read(state, state->Regs);
PowerOn(state);
StartCalibration(state);
FinishCalibration(state);
Standby(state);
#if 0
{
u8 RFCal_Log[12];
read_regs(state, RFCAL_LOG_1, RFCal_Log, sizeof(RFCal_Log));
pr_info("RFCal Log: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n",
RFCal_Log[0], RFCal_Log[1],
RFCal_Log[2], RFCal_Log[3],
RFCal_Log[4], RFCal_Log[5],
RFCal_Log[6], RFCal_Log[7],
RFCal_Log[8], RFCal_Log[9],
RFCal_Log[10], RFCal_Log[11]);
}
#endif
return stat;
}
static int PowerMeasurement(struct tda_state *state, u8 *pPowerLevel)
{
int status = 0;
do {
u8 IRQ = 0;
int Timeout = 70; /* 700 ms */
state->Regs[IRQ_CLEAR] |= 0x80; /* Reset IRQ */
CHK_ERROR(update_reg(state, IRQ_CLEAR));
state->Regs[MSM_1] = 0x80; /* power measurement */
state->Regs[MSM_2] = 0x01; /* Start MSM */
CHK_ERROR(update_regs(state, MSM_1, MSM_2));
state->Regs[MSM_2] = 0x00;
while (true) {
CHK_ERROR(read_reg(state, IRQ_STATUS, &IRQ));
if ((IRQ & 0x80) != 0)
break;
Timeout -= 1;
if (Timeout == 0) {
status = -1;
break;
}
usleep_range(10000, 12000);
}
CHK_ERROR(status);
CHK_ERROR(read_reg1(state, INPUT_POWER_LEVEL));
*pPowerLevel = state->Regs[INPUT_POWER_LEVEL] & 0x7F;
if (*pPowerLevel > 110)
*pPowerLevel = 110;
} while (0);
return status;
}
static int SetFrequency(struct tda_state *state, u32 Frequency,
enum HF_Standard Standard)
{
int status = 0;
struct SStandardParams *StandardParams;
u32 f = Frequency / 1000;
u8 IRQ = 0;
int Timeout = 25; /* 250 ms */
u32 fRatio = Frequency / 16000000;
u32 fDelta = Frequency - fRatio * 16000000;
if (Standard < HF_DVBT_6MHZ || Standard > HF_DVBC_8MHZ)
return -EINVAL;
StandardParams = &m_StandardTable[Standard - HF_DVBT_6MHZ];
if (StandardParams->m_IFFrequency == 0)
return -EINVAL;
state->m_Standard = HF_None;
state->m_Frequency = 0;
do {
/* IF Level */
state->Regs[IF_AGC] = (Standard >= HF_DVBC_6MHZ) ?
state->m_IFLevelDVBC : state->m_IFLevelDVBT;
CHK_ERROR(update_reg(state, IF_AGC));
/* Standard setup */
state->Regs[IF_1] = StandardParams->m_IF_1;
CHK_ERROR(update_reg(state, IF_1));
state->Regs[IR_MIXER_2] = (state->Regs[IR_MIXER_2] & ~0x03) |
StandardParams->m_IR_MIXER_2;
CHK_ERROR(update_reg(state, IR_MIXER_2));
state->Regs[AGC1_1] = (state->Regs[AGC1_1] & ~0x0F) |
StandardParams->m_AGC1_1;
CHK_ERROR(update_reg(state, AGC1_1));
state->Regs[AGC2_1] = (state->Regs[AGC2_1] & ~0x0F) |
StandardParams->m_AGC2_1;
CHK_ERROR(update_reg(state, AGC2_1));
state->Regs[RF_AGC_1] &= ~0xEF;
if (Frequency < 291000000)
state->Regs[RF_AGC_1] |= StandardParams->m_RF_AGC_1_Low;
else
state->Regs[RF_AGC_1] |=
StandardParams->m_RF_AGC_1_High;
CHK_ERROR(update_reg(state, RF_AGC_1));
state->Regs[IR_MIXER_1] =
(state->Regs[IR_MIXER_1] & ~0x0F) |
StandardParams->m_IR_MIXER_1;
CHK_ERROR(update_reg(state, IR_MIXER_1));
state->Regs[AGC5_1] = (state->Regs[AGC5_1] & ~0x1F) |
StandardParams->m_AGC5_1;
CHK_ERROR(update_reg(state, AGC5_1));
state->Regs[AGCK_1] = (state->Regs[AGCK_1] & ~0x0F) |
StandardParams->m_AGCK_1;
CHK_ERROR(update_reg(state, AGCK_1));
state->Regs[PSM_1] = (state->Regs[PSM_1] & ~0x20) |
StandardParams->m_PSM_1;
CHK_ERROR(update_reg(state, PSM_1));
state->Regs[IF_FREQUENCY_1] = (StandardParams->m_IFFrequency /
50000);
CHK_ERROR(update_reg(state, IF_FREQUENCY_1));
if (state->m_isMaster && StandardParams->m_LTO_STO_immune) {
u8 tmp;
u8 RF_Filter_Gain;
CHK_ERROR(read_reg(state, RF_AGC_GAIN_1, &tmp));
RF_Filter_Gain = (tmp & 0x30) >> 4;
state->Regs[RF_FILTER_1] =
(state->Regs[RF_FILTER_1] & ~0x0C) |
(RF_Filter_Gain << 2);
CHK_ERROR(update_reg(state, RF_FILTER_1));
state->Regs[RF_FILTER_1] |= 0x10; /* Force */
CHK_ERROR(update_reg(state, RF_FILTER_1));
while (RF_Filter_Gain != 0) {
RF_Filter_Gain -= 1;
state->Regs[RF_FILTER_1] =
(state->Regs[RF_FILTER_1] & ~0x0C) |
(RF_Filter_Gain << 2);
CHK_ERROR(update_reg(state, RF_FILTER_1));
usleep_range(10000, 12000);
}
CHK_ERROR(status);
state->Regs[RF_AGC_1] |= 0x08;
CHK_ERROR(update_reg(state, RF_AGC_1));
}
state->Regs[IRQ_CLEAR] |= 0x80; /* Reset IRQ */
CHK_ERROR(update_reg(state, IRQ_CLEAR));
CHK_ERROR(PowerOn(state));
state->Regs[RF_FREQUENCY_1] = ((f >> 16) & 0xFF);
state->Regs[RF_FREQUENCY_2] = ((f >> 8) & 0xFF);
state->Regs[RF_FREQUENCY_3] = (f & 0xFF);
CHK_ERROR(update_regs(state, RF_FREQUENCY_1, RF_FREQUENCY_3));
state->Regs[MSM_1] = 0x41; /* Tune */
state->Regs[MSM_2] = 0x01; /* Start MSM */
CHK_ERROR(update_regs(state, MSM_1, MSM_2));
state->Regs[MSM_2] = 0x00;
while (true) {
CHK_ERROR(read_reg(state, IRQ_STATUS, &IRQ));
if ((IRQ & 0x80) != 0)
break;
Timeout -= 1;
if (Timeout == 0) {
status = -1;
break;
}
usleep_range(10000, 12000);
}
CHK_ERROR(status);
if (state->m_isMaster && StandardParams->m_LTO_STO_immune) {
state->Regs[RF_AGC_1] &= ~0x08;
CHK_ERROR(update_reg(state, RF_AGC_1));
msleep(50);
state->Regs[RF_FILTER_1] &= ~0x10; /* remove force */
CHK_ERROR(update_reg(state, RF_FILTER_1));
}
/* Spur reduction */
if (Frequency < 72000000)
state->Regs[REFERENCE] |= 0x40; /* Set digital clock */
else if (Frequency < 104000000)
state->Regs[REFERENCE] &= ~0x40; /*Clear digital clock*/
else if (Frequency < 120000000)
state->Regs[REFERENCE] |= 0x40; /* Set digital clock */
else {
if (fDelta <= 8000000) {
/* Clear or set digital clock */
if (fRatio & 1)
state->Regs[REFERENCE] &= ~0x40;
else
state->Regs[REFERENCE] |= 0x40;
} else {
/* Set or clear digital clock */
if (fRatio & 1)
state->Regs[REFERENCE] |= 0x40;
else
state->Regs[REFERENCE] &= ~0x40;
}
}
CHK_ERROR(update_reg(state, REFERENCE));
if (StandardParams->m_AGC1_Freeze && state->m_bEnableFreeze) {
u8 tmp;
int AGC1GainMin = 0;
int nSteps = 10;
int Step = 0;
CHK_ERROR(read_reg(state, AGC1_2, &tmp));
if ((tmp & 0x80) == 0) {
state->Regs[AGC1_2] |= 0x80; /* Loop off */
CHK_ERROR(update_reg(state, AGC1_2));
state->Regs[AGC1_2] |= 0x10; /* Force gain */
CHK_ERROR(update_reg(state, AGC1_2));
}
/* Adapt */
if (state->Regs[AGC1_1] & 0x40) { /* AGC1_6_15dB set */
AGC1GainMin = 6;
nSteps = 4;
}
while (Step < nSteps) {
int Down = 0;
int Up = 0, i;
u8 AGC1_Gain;
Step = Step + 1;
for (i = 0; i < 40; i += 1) {
CHK_ERROR(read_reg(state, AGC_DET_OUT,
&tmp));
Up += (tmp & 0x02) ? 1 : -4;
Down += (tmp & 0x01) ? 14 : -1;
usleep_range(1000, 2000);
}
CHK_ERROR(status);
AGC1_Gain = (state->Regs[AGC1_2] & 0x0F);
if (Up >= 15 && AGC1_Gain != 9) {
state->Regs[AGC1_2] =
(state->Regs[AGC1_2] & ~0x0F) |
(AGC1_Gain + 1);
CHK_ERROR(update_reg(state, AGC1_2));
} else if (Down >= 10 &&
AGC1_Gain != AGC1GainMin) {
state->Regs[AGC1_2] =
(state->Regs[AGC1_2] & ~0x0F) |
(AGC1_Gain - 1);
CHK_ERROR(update_reg(state, AGC1_2));
} else
Step = nSteps;
}
} else {
state->Regs[AGC1_2] &= ~0x10; /* unforce gain */
CHK_ERROR(update_reg(state, AGC1_2));
state->Regs[AGC1_2] &= ~0x80; /* Loop on */
CHK_ERROR(update_reg(state, AGC1_2));
}
state->m_Standard = Standard;
state->m_Frequency = Frequency;
if (state->m_bPowerMeasurement)
PowerMeasurement(state, &state->m_LastPowerLevel);
} while (0);
return status;
}
static int sleep(struct dvb_frontend *fe)
{
struct tda_state *state = fe->tuner_priv;
Standby(state);
write_reg(state, THERMO_2, 0x01);
read_reg1(state, THERMO_1);
write_reg(state, THERMO_2, 0x00);
/* printk("sleep: temp = %u\n", state->Regs[THERMO_1]); */
return 0;
}
static int init(struct dvb_frontend *fe)
{
/* struct tda_state *state = fe->tuner_priv; */
return 0;
}
static void release(struct dvb_frontend *fe)
{
kfree(fe->tuner_priv);
fe->tuner_priv = NULL;
}
static int set_params(struct dvb_frontend *fe)
{
struct tda_state *state = fe->tuner_priv;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
int status = 0;
int Standard;
u32 bw;
bw = (p->bandwidth_hz + 999999) / 1000000;
state->m_Frequency = p->frequency;
if (p->delivery_system == SYS_DVBT ||
p->delivery_system == SYS_DVBT2 ||
p->delivery_system == SYS_ISDBT ||
p->delivery_system == SYS_DVBC2) {
switch (bw) {
case 6:
Standard = HF_DVBT_6MHZ;
break;
case 7:
Standard = HF_DVBT_7MHZ;
break;
default:
case 8:
Standard = HF_DVBT_8MHZ;
break;
}
} else if (p->delivery_system == SYS_DVBC_ANNEX_A) {
switch (bw) {
case 6:
Standard = HF_DVBC_6MHZ;
break;
case 7:
Standard = HF_DVBC_7MHZ;
break;
default:
case 8:
Standard = HF_DVBC_8MHZ;
break;
}
} else
return -EINVAL;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
SetFrequency(state, state->m_Frequency, Standard);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
return status;
}
static int get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
struct tda_state *state = fe->tuner_priv;
*frequency = state->IF;
return 0;
}
static int get_rf_strength(struct dvb_frontend *fe, u16 *st)
{
struct tda_state *state = fe->tuner_priv;
*st = state->m_LastPowerLevel;
return 0;
}
static int get_if(struct dvb_frontend *fe, u32 *frequency)
{
struct tda_state *state = fe->tuner_priv;
state->IF = 0;
if (state->m_Standard < HF_DVBT_6MHZ ||
state->m_Standard > HF_DVBC_8MHZ)
return 0;
state->IF = m_StandardTable[state->m_Standard -
HF_DVBT_6MHZ].m_IFFrequency;
*frequency = state->IF;
return 0;
}
static int get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
{
/* struct tda_state *state = fe->tuner_priv; */
/* *bandwidth = priv->bandwidth; */
return 0;
}
static struct dvb_tuner_ops tuner_ops = {
.info = {
.name = "NXP TDA18212",
.frequency_min_hz = 47125000,
.frequency_max_hz = 865000000,
.frequency_step_hz = 62500
},
.init = init,
.sleep = sleep,
.set_params = set_params,
.release = release,
.get_frequency = get_frequency,
.get_if_frequency = get_if,
.get_bandwidth = get_bandwidth,
.get_rf_strength = get_rf_strength,
};
struct dvb_frontend *tda18212dd_attach(struct dvb_frontend *fe,
struct i2c_adapter *i2c, u8 adr)
{
struct tda_state *state;
int stat;
state = kzalloc(sizeof(struct tda_state), GFP_KERNEL);
if (!state)
return NULL;
state->adr = adr;
state->i2c = i2c;
memcpy(&fe->ops.tuner_ops, &tuner_ops, sizeof(struct dvb_tuner_ops));
init_state(state);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
stat = attach_init(state);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
if (stat < 0) {
kfree(state);
return 0;
}
fe->tuner_priv = state;
return fe;
}
EXPORT_SYMBOL_GPL(tda18212dd_attach);
MODULE_DESCRIPTION("TDA18212 driver");
MODULE_AUTHOR("Ralph Metzler, Manfred Voelkel");
MODULE_LICENSE("GPL v2");
/*
* Local variables:
* c-basic-offset: 8
* End:
*/