1
0
mirror of https://github.com/DigitalDevices/dddvb.git synced 2023-10-10 13:37:43 +02:00
dddvb/frontends/cxd2843.c
Ralph Metzler 4435efeab5 - initialize SNR values to 0
- check for 0 in register values so that log function does not throw kernel warnings
2016-10-10 00:16:10 +02:00

2478 lines
62 KiB
C

/*
* Driver for the Sony CXD2843ER DVB-T/T2/C/C2 demodulator.
* Also supports the CXD2837ER DVB-T/T2/C, the
* CXD2838ER ISDB-T demodulator and the
* CXD2854 DVB-T/T2/C/C2 ISDB-T demodulator.
*
* Copyright (C) 2013-2016 Digital Devices GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 only, as published by the Free Software Foundation.
*
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
* Or, point your browser to http://www.gnu.org/copyleft/gpl.html
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/version.h>
#include <linux/mutex.h>
#include <asm/div64.h>
#include "dvb_frontend.h"
#include "dvb_math.h"
#include "cxd2843.h"
#define Log10x100(x) ((s32)(((((u64) intlog2(x) * 0x1e1a5e2e) >> 47 ) + 1) >> 1))
#define USE_ALGO 1
enum demod_type { CXD2843, CXD2837, CXD2838, CXD2854 };
enum demod_state { Unknown, Shutdown, Sleep, ActiveT,
ActiveT2, ActiveC, ActiveC2, ActiveIT };
enum t2_profile { T2P_Base, T2P_Lite };
enum omode { OM_NONE, OM_DVBT, OM_DVBT2, OM_DVBC,
OM_QAM_ITU_C, OM_DVBC2, OM_ISDBT };
struct cxd_state {
struct dvb_frontend frontend;
struct i2c_adapter *i2c;
struct mutex mutex;
u8 adrt;
u8 curbankt;
u8 adrx;
u8 curbankx;
enum demod_type type;
enum demod_state state;
enum t2_profile T2Profile;
enum omode omode;
u8 IF_FS;
int ContinuousClock;
int SerialMode;
u8 SerialClockFrequency;
u32 LockTimeout;
u32 TSLockTimeout;
u32 L1PostTimeout;
u32 DataSliceID;
int FirstTimeLock;
u32 plp;
u32 last_status;
u32 bandwidth;
u32 bw;
unsigned long tune_time;
u32 LastBERNumerator;
u32 LastBERDenominator;
u8 BERScaleMax;
u8 is2k14;
u8 is24MHz;
};
static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len)
{
struct i2c_msg msg = {
.addr = adr, .flags = 0, .buf = data, .len = len};
if (i2c_transfer(adap, &msg, 1) != 1) {
pr_err("cxd2843: i2c_write error\n");
return -1;
}
return 0;
}
static int writeregs(struct cxd_state *state, u8 adr, u8 reg,
u8 *regd, u16 len)
{
u8 data[len + 1];
data[0] = reg;
memcpy(data + 1, regd, len);
return i2c_write(state->i2c, adr, data, len + 1);
}
static int writereg(struct cxd_state *state, u8 adr, u8 reg, u8 dat)
{
u8 mm[2] = {reg, dat};
return i2c_write(state->i2c, adr, mm, 2);
}
static int i2c_read(struct i2c_adapter *adap,
u8 adr, u8 *msg, int len, u8 *answ, int alen)
{
struct i2c_msg msgs[2] = { { .addr = adr, .flags = 0,
.buf = msg, .len = len},
{ .addr = adr, .flags = I2C_M_RD,
.buf = answ, .len = alen } };
if (i2c_transfer(adap, msgs, 2) != 2) {
pr_err("cxd2843: i2c_read error\n");
return -1;
}
return 0;
}
static int readregs(struct cxd_state *state, u8 adr, u8 reg,
u8 *val, int count)
{
return i2c_read(state->i2c, adr, &reg, 1, val, count);
}
static int readregst_unlocked(struct cxd_state *cxd, u8 bank,
u8 Address, u8 *pValue, u16 count)
{
int status = 0;
if (bank != 0xFF && cxd->curbankt != bank) {
status = writereg(cxd, cxd->adrt, 0, bank);
if (status < 0) {
cxd->curbankt = 0xFF;
return status;
}
cxd->curbankt = bank;
}
status = readregs(cxd, cxd->adrt, Address, pValue, count);
return status;
}
static int readregst(struct cxd_state *cxd, u8 Bank,
u8 Address, u8 *pValue, u16 count)
{
int status;
mutex_lock(&cxd->mutex);
status = readregst_unlocked(cxd, Bank, Address, pValue, count);
mutex_unlock(&cxd->mutex);
return status;
}
static int readregsx_unlocked(struct cxd_state *cxd, u8 Bank,
u8 Address, u8 *pValue, u16 count)
{
int status = 0;
if (Bank != 0xFF && cxd->curbankx != Bank) {
status = writereg(cxd, cxd->adrx, 0, Bank);
if (status < 0) {
cxd->curbankx = 0xFF;
return status;
}
cxd->curbankx = Bank;
}
status = readregs(cxd, cxd->adrx, Address, pValue, count);
return status;
}
static int readregsx(struct cxd_state *cxd, u8 Bank,
u8 Address, u8 *pValue, u16 count)
{
int status;
mutex_lock(&cxd->mutex);
status = readregsx_unlocked(cxd, Bank, Address, pValue, count);
mutex_unlock(&cxd->mutex);
return status;
}
static int writeregsx_unlocked(struct cxd_state *cxd, u8 Bank,
u8 Address, u8 *pValue, u16 count)
{
int status = 0;
if (Bank != 0xFF && cxd->curbankx != Bank) {
status = writereg(cxd, cxd->adrx, 0, Bank);
if (status < 0) {
cxd->curbankx = 0xFF;
return status;
}
cxd->curbankx = Bank;
}
status = writeregs(cxd, cxd->adrx, Address, pValue, count);
return status;
}
static int writeregsx(struct cxd_state *cxd, u8 Bank, u8 Address,
u8 *pValue, u16 count)
{
int status;
mutex_lock(&cxd->mutex);
status = writeregsx_unlocked(cxd, Bank, Address, pValue, count);
mutex_unlock(&cxd->mutex);
return status;
}
static int writeregx(struct cxd_state *cxd, u8 Bank, u8 Address, u8 val)
{
return writeregsx(cxd, Bank, Address, &val, 1);
}
static int writeregst_unlocked(struct cxd_state *cxd, u8 Bank,
u8 Address, u8 *pValue, u16 count)
{
int status = 0;
if (Bank != 0xFF && cxd->curbankt != Bank) {
status = writereg(cxd, cxd->adrt, 0, Bank);
if (status < 0) {
cxd->curbankt = 0xFF;
return status;
}
cxd->curbankt = Bank;
}
status = writeregs(cxd, cxd->adrt, Address, pValue, count);
return status;
}
static int writeregst(struct cxd_state *cxd, u8 Bank, u8 Address,
u8 *pValue, u16 count)
{
int status;
mutex_lock(&cxd->mutex);
status = writeregst_unlocked(cxd, Bank, Address, pValue, count);
mutex_unlock(&cxd->mutex);
return status;
}
static int writeregt(struct cxd_state *cxd, u8 Bank, u8 Address, u8 val)
{
return writeregst(cxd, Bank, Address, &val, 1);
}
static int writebitsx(struct cxd_state *cxd, u8 Bank, u8 Address,
u8 Value, u8 Mask)
{
int status = 0;
u8 tmp;
mutex_lock(&cxd->mutex);
status = readregsx_unlocked(cxd, Bank, Address, &tmp, 1);
if (status < 0)
return status;
tmp = (tmp & ~Mask) | Value;
status = writeregsx_unlocked(cxd, Bank, Address, &tmp, 1);
mutex_unlock(&cxd->mutex);
return status;
}
static int writebitst(struct cxd_state *cxd, u8 Bank, u8 Address,
u8 Value, u8 Mask)
{
int status = 0;
u8 Tmp = 0x00;
mutex_lock(&cxd->mutex);
status = readregst_unlocked(cxd, Bank, Address, &Tmp, 1);
if (status < 0)
return status;
Tmp = (Tmp & ~Mask) | Value;
status = writeregst_unlocked(cxd, Bank, Address, &Tmp, 1);
mutex_unlock(&cxd->mutex);
return status;
}
static int freeze_regst(struct cxd_state *cxd)
{
mutex_lock(&cxd->mutex);
return writereg(cxd, cxd->adrt, 1, 1);
}
static int unfreeze_regst(struct cxd_state *cxd)
{
int status = 0;
status = writereg(cxd, cxd->adrt, 1, 0);
mutex_unlock(&cxd->mutex);
return status;
}
static inline u32 MulDiv32(u32 a, u32 b, u32 c)
{
u64 tmp64;
tmp64 = (u64)a * (u64)b;
do_div(tmp64, c);
return (u32) tmp64;
}
/* TPSData[0] [7:6] CNST[1:0] */
/* TPSData[0] [5:3] HIER[2:0] */
/* TPSData[0] [2:0] HRATE[2:0] */
/* TPSData[1] [7:5] LRATE[2:0] */
/* TPSData[1] [4:3] GI[1:0] */
/* TPSData[1] [2:1] MODE[1:0] */
/* TPSData[2] [7:6] FNUM[1:0] */
/* TPSData[2] [5:0] LENGTH_INDICATOR[5:0] */
/* TPSData[3] [7:0] CELLID[15:8] */
/* TPSData[4] [7:0] CELLID[7:0] */
/* TPSData[5] [5:0] RESERVE_EVEN[5:0] */
/* TPSData[6] [5:0] RESERVE_ODD[5:0] */
static int read_tps(struct cxd_state *state, u8 *tps)
{
if (state->last_status != 0x1f)
return -1;
freeze_regst(state);
readregst_unlocked(state, 0x10, 0x2f, tps, 7);
unfreeze_regst(state);
return 0;
}
/* Read DVBT2 OFDM Info */
/* OFDMInfo[0] [5] OFDM_MIXED */
/* OFDMInfo[0] [4] OFDM_MISO */
/* OFDMInfo[0] [2:0] OFDM_FFTSIZE[2:0] */
/* OFDMInfo[1] [6:4] OFDM_GI[2:0] */
/* OFDMInfo[1] [2:0] OFDM_PP[2:0] */
/* OFDMInfo[2] [4] OFDM_BWT_EXT */
/* OFDMInfo[2] [3:0] OFDM_PAPR[3:0] */
/* OFDMInfo[3] [3:0] OFDM_NDSYM[11:8] */
/* OFDMInfo[4] [7:0] OFDM_NDSYM[7:0] */
static int read_t2_ofdm_info(struct cxd_state *state, u8 *ofdm)
{
if (state->last_status != 0x1f)
return -1;
freeze_regst(state);
readregst_unlocked(state, 0x20, 0x5c, ofdm, 5);
unfreeze_regst(state);
return 0;
}
/* Read DVBT2 QAM,
Data PLP
0 [7:0] L1POST_PLP_ID[7:0]
1 [2:0] L1POST_PLP_TYPE[2:0]
2 [4:0] L1POST_PLP_PAYLOAD_TYPE[4:0]
3 [0] L1POST_FF_FLAG
4 [2:0] L1POST_FIRST_RF_IDX[2:0]
5 [7:0] L1POST_FIRST_FRAME_IDX[7:0]
6 [7:0] L1POST_PLP_GROUP_ID[7:0]
7 [2:0] L1POST_PLP_COD[2:0]
8 [2:0] L1POST_PLP_MOD[2:0]
9 [0] L1POST_PLP_ROTATION
10 [1:0] L1POST_PLP_FEC_TYPE[1:0]
11 [1:0] L1POST_PLP_NUM_BLOCKS_MAX[9:8]
12 [7:0] L1POST_PLP_NUM_BLOCKS_MAX[7:0]
13 [7:0] L1POST_FRAME_INTERVAL[7:0]
14 [7:0] L1POST_TIME_IL_LENGTH[7:0]
15 [0] L1POST_TIME_IL_TYPE
16 [0] L1POST_IN_BAND_FLAG
17 [7:0] L1POST_RESERVED_1[15:8]
18 [7:0] L1POST_RESERVED_1[7:0]
19-37 same for common PLP
*/
static int read_t2_tlp_info(struct cxd_state *state, u8 off, u8 count, u8 *tlp)
{
if (state->last_status != 0x1f)
return -1;
freeze_regst(state);
readregst_unlocked(state, 0x22, 0x54 + off, tlp, count);
unfreeze_regst(state);
return 0;
}
static void Active_to_Sleep(struct cxd_state *state)
{
if (state->state <= Sleep)
return;
writeregt(state, 0x00, 0xC3, 0x01); /* Disable TS */
writeregt(state, 0x00, 0x80, 0x3F); /* Enable HighZ 1 */
writeregt(state, 0x00, 0x81, 0xFF); /* Enable HighZ 2 */
writeregx(state, 0x00, 0x18, 0x01); /* Disable ADC 4 */
writeregt(state, 0x00, 0x43, 0x0A); /* Disable ADC 2 */
writeregt(state, 0x00, 0x41, 0x0A); /* Disable ADC 1 */
writeregt(state, 0x00, 0x30, 0x00); /* Disable ADC Clock */
writeregt(state, 0x00, 0x59, 0x00); /* Disable RF Monitor ADC */
writeregt(state, 0x00, 0x2F, 0x00); /* Disable RF Monitor Clock */
writeregt(state, 0x00, 0x2C, 0x00); /* Disable Demod Clock */
state->state = Sleep;
}
static void ActiveT2_to_Sleep(struct cxd_state *state)
{
if (state->state <= Sleep)
return;
writeregt(state, 0x00, 0xC3, 0x01); /* Disable TS */
writeregt(state, 0x00, 0x80, 0x3F); /* Enable HighZ 1 */
writeregt(state, 0x00, 0x81, 0xFF); /* Enable HighZ 2 */
writeregt(state, 0x13, 0x83, 0x40);
writeregt(state, 0x13, 0x86, 0x21);
writebitst(state, 0x13, 0x9E, 0x09, 0x0F);
writeregt(state, 0x13, 0x9F, 0xFB);
writeregx(state, 0x00, 0x18, 0x01); /* Disable ADC 4 */
writeregt(state, 0x00, 0x43, 0x0A); /* Disable ADC 2 */
writeregt(state, 0x00, 0x41, 0x0A); /* Disable ADC 1 */
writeregt(state, 0x00, 0x30, 0x00); /* Disable ADC Clock */
writeregt(state, 0x00, 0x59, 0x00); /* Disable RF Monitor ADC */
writeregt(state, 0x00, 0x2F, 0x00); /* Disable RF Monitor Clock */
writeregt(state, 0x00, 0x2C, 0x00); /* Disable Demod Clock */
state->state = Sleep;
}
static void ActiveIT_to_Sleep(struct cxd_state *state)
{
if (state->state <= Sleep)
return;
writeregt(state, 0x00, 0xC3, 0x01); /* Disable TS */
writeregt(state, 0x00, 0x80, 0x3F); /* Enable HighZ 1 */
writeregt(state, 0x00, 0x81, 0xFF); /* Enable HighZ 2 */
if (state->is2k14) {
writebitst(state, 0x10, 0x69, 0x05, 0x07);
writebitst(state, 0x10, 0x6b, 0x07, 0x07);
writebitst(state, 0x10, 0x9d, 0x14, 0xff);
writebitst(state, 0x10, 0xd3, 0x00, 0x1f);
writebitst(state, 0x10, 0xed, 0x01, 0x01);
writebitst(state, 0x10, 0xe2, 0x4e, 0x80);
writebitst(state, 0x10, 0xf2, 0x03, 0x10);
writebitst(state, 0x10, 0xde, 0x32, 0x3f);
writebitst(state, 0x15, 0xde, 0x03, 0x03);
writebitst(state, 0x1e, 0x73, 0x00, 0xff);
writebitst(state, 0x63, 0x81, 0x01, 0x01);
}
writeregx(state, 0x00, 0x18, 0x01); /* Disable ADC 4 */
writeregt(state, 0x00, 0x43, 0x0A); /* Disable ADC 2 */
writeregt(state, 0x00, 0x41, 0x0A); /* Disable ADC 1 */
writeregt(state, 0x00, 0x30, 0x00); /* Disable ADC Clock */
writeregt(state, 0x00, 0x59, 0x00); /* Disable RF Monitor ADC */
writeregt(state, 0x00, 0x2F, 0x00); /* Disable RF Monitor Clock */
writeregt(state, 0x00, 0x2C, 0x00); /* Disable Demod Clock */
state->state = Sleep;
}
static void ActiveC2_to_Sleep(struct cxd_state *state)
{
if (state->state <= Sleep)
return;
writeregt(state, 0x00, 0xC3, 0x01); /* Disable TS */
writeregt(state, 0x00, 0x80, 0x3F); /* Enable HighZ 1 */
writeregt(state, 0x00, 0x81, 0xFF); /* Enable HighZ 2 */
writeregt(state, 0x20, 0xC2, 0x11);
writebitst(state, 0x25, 0x6A, 0x02, 0x03);
{
static u8 data[3] = { 0x07, 0x61, 0x36 };
writeregst(state, 0x25, 0x89, data, sizeof(data));
}
writebitst(state, 0x25, 0xCB, 0x05, 0x07);
{
static u8 data[4] = { 0x2E, 0xE0, 0x2E, 0xE0 };
writeregst(state, 0x25, 0xDC, data, sizeof(data));
}
writeregt(state, 0x25, 0xE2, 0x2F);
writeregt(state, 0x25, 0xE5, 0x2F);
writebitst(state, 0x27, 0x20, 0x00, 0x01);
writebitst(state, 0x27, 0x35, 0x00, 0x01);
writebitst(state, 0x27, 0xD9, 0x19, 0x3F);
writebitst(state, 0x2A, 0x78, 0x01, 0x07);
writeregt(state, 0x2A, 0x86, 0x08);
writeregt(state, 0x2A, 0x88, 0x14);
writebitst(state, 0x2B, 0x2B, 0x00, 0x1F);
{
u8 data[2] = { 0x75, 0x75 };
writeregst(state, 0x2D, 0x24, data, sizeof(data));
}
writeregx(state, 0x00, 0x18, 0x01); /* Disable ADC 4 */
writeregt(state, 0x00, 0x43, 0x0A); /* Disable ADC 2 */
writeregt(state, 0x00, 0x41, 0x0A); /* Disable ADC 1 */
writeregt(state, 0x00, 0x30, 0x00); /* Disable ADC Clock */
writeregt(state, 0x00, 0x59, 0x00); /* Disable RF Monitor ADC */
writeregt(state, 0x00, 0x2F, 0x00); /* Disable RF Monitor Clock */
writeregt(state, 0x00, 0x2C, 0x00); /* Disable Demod Clock */
state->state = Sleep;
}
static int ConfigureTS(struct cxd_state *state,
enum demod_state newDemodState)
{
int status = 0;
u8 OSERCKMODE = state->SerialMode ? 1 : 0;
u8 OSERDUTYMODE = state->SerialMode ? 1 : 0;
u8 OTSCKPERIOD = 8;
u8 OREG_CKSEL_TSIF = state->SerialMode ?
state->SerialClockFrequency : 0;
if (state->SerialMode && state->SerialClockFrequency >= 3) {
OSERCKMODE = 2;
OSERDUTYMODE = 2;
OTSCKPERIOD = 16;
OREG_CKSEL_TSIF = state->SerialClockFrequency - 3;
}
writebitst(state, 0x00, 0xC4, OSERCKMODE, 0x03); /* OSERCKMODE */
writebitst(state, 0x00, 0xD1, OSERDUTYMODE, 0x03); /* OSERDUTYMODE */
writeregt(state, 0x00, 0xD9, OTSCKPERIOD); /* OTSCKPERIOD */
writebitst(state, 0x00, 0x32, 0x00, 0x01); /* Disable TS IF */
/* OREG_CKSEL_TSIF */
writebitst(state, 0x00, 0x33, OREG_CKSEL_TSIF, 0x03);
writebitst(state, 0x00, 0x32, 0x01, 0x01); /* Enable TS IF */
if (newDemodState == ActiveT)
writebitst(state, 0x10, 0x66, 0x01, 0x01);
if (newDemodState == ActiveC)
writebitst(state, 0x40, 0x66, 0x01, 0x01);
return status;
}
static void BandSettingT(struct cxd_state *state, u32 iffreq)
{
u8 IF_data[3] = { (iffreq >> 16) & 0xff,
(iffreq >> 8) & 0xff, iffreq & 0xff};
switch (state->bw) {
default:
case 8:
{
u8 TR_data[] = { 0x11, 0xF0, 0x00, 0x00, 0x00 };
u8 CL_data[] = { 0x01, 0xE0 };
u8 NF_data[] = { 0x01, 0x02 };
writeregst(state, 0x10, 0x9F, TR_data, sizeof(TR_data));
writeregst(state, 0x10, 0xB6, IF_data, sizeof(IF_data));
writebitst(state, 0x10, 0xD7, 0x00, 0x07);
writeregst(state, 0x10, 0xD9, CL_data, sizeof(CL_data));
writeregst(state, 0x17, 0x38, NF_data, sizeof(NF_data));
break;
}
case 7:
{
u8 TR_data[] = { 0x14, 0x80, 0x00, 0x00, 0x00 };
u8 CL_data[] = { 0x12, 0xF8 };
u8 NF_data[] = { 0x00, 0x03 };
writeregst(state, 0x10, 0x9F, TR_data, sizeof(TR_data));
writeregst(state, 0x10, 0xB6, IF_data, sizeof(IF_data));
writebitst(state, 0x10, 0xD7, 0x02, 0x07);
writeregst(state, 0x10, 0xD9, CL_data, sizeof(CL_data));
writeregst(state, 0x17, 0x38, NF_data, sizeof(NF_data));
break;
}
case 6:
{
u8 TR_data[] = { 0x17, 0xEA, 0xAA, 0xAA, 0xAA };
u8 CL_data[] = { 0x1F, 0xDC };
u8 NF_data[] = { 0x00, 0x03 };
writeregst(state, 0x10, 0x9F, TR_data, sizeof(TR_data));
writeregst(state, 0x10, 0xB6, IF_data, sizeof(IF_data));
writebitst(state, 0x10, 0xD7, 0x04, 0x07);
writeregst(state, 0x10, 0xD9, CL_data, sizeof(CL_data));
writeregst(state, 0x17, 0x38, NF_data, sizeof(NF_data));
break;
}
case 5:
{
static u8 TR_data[] = { 0x1C, 0xB3, 0x33, 0x33, 0x33 };
static u8 CL_data[] = { 0x26, 0x3C };
static u8 NF_data[] = { 0x00, 0x03 };
writeregst(state, 0x10, 0x9F, TR_data, sizeof(TR_data));
writeregst(state, 0x10, 0xB6, IF_data, sizeof(IF_data));
writebitst(state, 0x10, 0xD7, 0x06, 0x07);
writeregst(state, 0x10, 0xD9, CL_data, sizeof(CL_data));
writeregst(state, 0x17, 0x38, NF_data, sizeof(NF_data));
break;
}
}
}
static void Sleep_to_ActiveT(struct cxd_state *state, u32 iffreq)
{
ConfigureTS(state, ActiveT);
writeregx(state, 0x00, 0x17, 0x01); /* Mode */
writeregt(state, 0x00, 0x2C, 0x01); /* Demod Clock */
writeregt(state, 0x00, 0x59, 0x00); /* Disable RF Monitor ADC */
writeregt(state, 0x00, 0x2F, 0x00); /* Disable RF Monitor Clock */
writeregt(state, 0x00, 0x30, 0x00); /* Enable ADC Clock */
writeregt(state, 0x00, 0x41, 0x1A); /* Enable ADC1 */
{
u8 data[2] = { 0x09, 0x54 }; /* 20.5 MHz */
/*u8 data[2] = { 0x0A, 0xD4 }; */ /* 41 MHz */
writeregst(state, 0x00, 0x43, data, 2); /* Enable ADC 2+3 */
}
writeregx(state, 0x00, 0x18, 0x00); /* Enable ADC 4 */
writebitst(state, 0x10, 0xD2, 0x0C, 0x1F); /* IF AGC Gain */
writeregt(state, 0x11, 0x6A, 0x48); /* BB AGC Target Level */
writebitst(state, 0x10, 0xA5, 0x00, 0x01); /* ASCOT Off */
writebitst(state, 0x18, 0x36, 0x40, 0x07); /* Pre RS Monitoring */
writebitst(state, 0x18, 0x30, 0x01, 0x01); /* FEC Autorecover */
writebitst(state, 0x18, 0x31, 0x01, 0x01); /* FEC Autorecover */
writebitst(state, 0x00, 0xCE, 0x01, 0x01); /* TSIF ONOPARITY */
writebitst(state, 0x00, 0xCF, 0x01, 0x01);/*TSIF ONOPARITY_MANUAL_ON*/
BandSettingT(state, iffreq);
writebitst(state, 0x10, 0x60, 0x11, 0x1f); /* BER scaling */
writeregt(state, 0x00, 0x80, 0x28); /* Disable HiZ Setting 1 */
writeregt(state, 0x00, 0x81, 0x00); /* Disable HiZ Setting 2 */
}
static void BandSettingT2(struct cxd_state *state, u32 iffreq)
{
u8 IF_data[3] = {(iffreq >> 16) & 0xff, (iffreq >> 8) & 0xff,
iffreq & 0xff};
switch (state->bw) {
default:
case 8:
{
u8 TR_data[] = { 0x11, 0xF0, 0x00, 0x00, 0x00 };
/* Timing recovery */
writeregst(state, 0x20, 0x9F, TR_data, sizeof(TR_data));
/* Add EQ Optimisation for tuner here */
writeregst(state, 0x10, 0xB6, IF_data, sizeof(IF_data));
/* System Bandwidth */
writebitst(state, 0x10, 0xD7, 0x00, 0x07);
}
break;
case 7:
{
u8 TR_data[] = { 0x14, 0x80, 0x00, 0x00, 0x00 };
writeregst(state, 0x20, 0x9F, TR_data, sizeof(TR_data));
writeregst(state, 0x10, 0xB6, IF_data, sizeof(IF_data));
writebitst(state, 0x10, 0xD7, 0x02, 0x07);
}
break;
case 6:
{
u8 TR_data[] = { 0x17, 0xEA, 0xAA, 0xAA, 0xAA };
writeregst(state, 0x20, 0x9F, TR_data, sizeof(TR_data));
writeregst(state, 0x10, 0xB6, IF_data, sizeof(IF_data));
writebitst(state, 0x10, 0xD7, 0x04, 0x07);
}
break;
case 5:
{
u8 TR_data[] = { 0x1C, 0xB3, 0x33, 0x33, 0x33 };
writeregst(state, 0x20, 0x9F, TR_data, sizeof(TR_data));
writeregst(state, 0x10, 0xB6, IF_data, sizeof(IF_data));
writebitst(state, 0x10, 0xD7, 0x06, 0x07);
}
break;
case 2: /* 1.7 MHz */
{
u8 TR_data[] = { 0x58, 0xE2, 0xAF, 0xE0, 0xBC };
writeregst(state, 0x20, 0x9F, TR_data, sizeof(TR_data));
writeregst(state, 0x10, 0xB6, IF_data, sizeof(IF_data));
writebitst(state, 0x10, 0xD7, 0x03, 0x07);
}
break;
}
}
static void Sleep_to_ActiveT2(struct cxd_state *state, u32 iffreq)
{
ConfigureTS(state, ActiveT2);
writeregx(state, 0x00, 0x17, 0x02); /* Mode */
writeregt(state, 0x00, 0x2C, 0x01); /* Demod Clock */
writeregt(state, 0x00, 0x59, 0x00); /* Disable RF Monitor ADC */
writeregt(state, 0x00, 0x2F, 0x00); /* Disable RF Monitor Clock */
writeregt(state, 0x00, 0x30, 0x00); /* Enable ADC Clock */
writeregt(state, 0x00, 0x41, 0x1A); /* Enable ADC1 */
{
u8 data[2] = { 0x09, 0x54 }; /* 20.5 MHz */
/*u8 data[2] = { 0x0A, 0xD4 }; */ /* 41 MHz */
writeregst(state, 0x00, 0x43, data, 2); /* Enable ADC 2+3 */
}
writeregx(state, 0x00, 0x18, 0x00); /* Enable ADC 4 */
writebitst(state, 0x10, 0xD2, 0x0C, 0x1F); /* IFAGC coarse gain */
writeregt(state, 0x11, 0x6A, 0x50); /* BB AGC Target Level */
writebitst(state, 0x10, 0xA5, 0x00, 0x01); /* ASCOT Off */
writeregt(state, 0x20, 0x8B, 0x3C); /* SNR Good count */
writebitst(state, 0x2B, 0x76, 0x20, 0x70); /* Noise Gain ACQ */
writebitst(state, 0x00, 0xCE, 0x01, 0x01); /* TSIF ONOPARITY */
writebitst(state, 0x00, 0xCF, 0x01, 0x01);/*TSIF ONOPARITY_MANUAL_ON*/
writeregt(state, 0x13, 0x83, 0x10); /* T2 Inital settings */
writeregt(state, 0x13, 0x86, 0x34);
writebitst(state, 0x13, 0x9E, 0x09, 0x0F);
writeregt(state, 0x13, 0x9F, 0xD8);
BandSettingT2(state, iffreq);
writebitst(state, 0x20, 0x72, 0x08, 0x0f); /* BER scaling */
writeregt(state, 0x00, 0x80, 0x28); /* Disable HiZ Setting 1 */
writeregt(state, 0x00, 0x81, 0x00); /* Disable HiZ Setting 2 */
}
static void BandSettingC(struct cxd_state *state, u32 iffreq)
{
u8 data[3];
data[0] = (iffreq >> 16) & 0xFF;
data[1] = (iffreq >> 8) & 0xFF;
data[2] = (iffreq) & 0xFF;
writeregst(state, 0x10, 0xB6, data, 3);
}
static void Sleep_to_ActiveC(struct cxd_state *state, u32 iffreq)
{
ConfigureTS(state, ActiveC);
writeregx(state, 0x00, 0x17, 0x04); /* Mode */
writeregt(state, 0x00, 0x2C, 0x01); /* Demod Clock */
writeregt(state, 0x00, 0x59, 0x00); /* Disable RF Monitor ADC */
writeregt(state, 0x00, 0x2F, 0x00); /* Disable RF Monitor Clock */
writeregt(state, 0x00, 0x30, 0x00); /* Enable ADC Clock */
writeregt(state, 0x00, 0x41, 0x1A); /* Enable ADC1 */
{
u8 data[2] = { 0x09, 0x54 }; /* 20.5 MHz */
/*u8 data[2] = { 0x0A, 0xD4 }; */ /* 41 MHz */
writeregst(state, 0x00, 0x43, data, 2); /* Enable ADC 2+3 */
}
writeregx(state, 0x00, 0x18, 0x00); /* Enable ADC 4 */
writebitst(state, 0x10, 0xD2, 0x09, 0x1F); /* IF AGC Gain */
writeregt(state, 0x11, 0x6A, 0x48); /* BB AGC Target Level */
writebitst(state, 0x10, 0xA5, 0x00, 0x01); /* ASCOT Off */
writebitst(state, 0x40, 0xC3, 0x00, 0x04); /* OREG_BNDET_EN_64 */
writebitst(state, 0x00, 0xCE, 0x01, 0x01); /* TSIF ONOPARITY */
writebitst(state, 0x00, 0xCF, 0x01, 0x01);/*TSIF ONOPARITY_MANUAL_ON*/
BandSettingC(state, iffreq);
writebitst(state, 0x40, 0x60, 0x11, 0x1f); /* BER scaling */
writeregt(state, 0x00, 0x80, 0x28); /* Disable HiZ Setting 1 */
writeregt(state, 0x00, 0x81, 0x00); /* Disable HiZ Setting 2 */
}
static void BandSettingC2(struct cxd_state *state, u32 iffreq)
{
u8 IF_data[3] = { (iffreq >> 16) & 0xff,
(iffreq >> 8) & 0xff, iffreq & 0xff};
switch (state->bw) {
default:
case 8:
{
u8 TR_data[] = { 0x11, 0xF0, 0x00, 0x00, 0x00 };
u8 data[2] = { 0x11, 0x9E };
writeregst(state, 0x20, 0x9F, TR_data, sizeof(TR_data));
writeregst(state, 0x10, 0xB6, IF_data, sizeof(IF_data));
writebitst(state, 0x10, 0xD7, 0x00, 0x07);
writeregst(state, 0x50, 0xEC, data, sizeof(data));
writeregt(state, 0x50, 0xEF, 0x11);
writeregt(state, 0x50, 0xF1, 0x9E);
}
break;
case 6:
{
u8 TR_data[] = { 0x17, 0xEA, 0xAA, 0xAA, 0xAA };
u8 data[2] = { 0x17, 0x70 };
writeregst(state, 0x20, 0x9F, TR_data, sizeof(TR_data));
writeregst(state, 0x10, 0xB6, IF_data, sizeof(IF_data));
writebitst(state, 0x10, 0xD7, 0x04, 0x07);
writeregst(state, 0x50, 0xEC, data, sizeof(data));
writeregt(state, 0x50, 0xEF, 0x17);
writeregt(state, 0x50, 0xF1, 0x70);
}
break;
}
}
static void Sleep_to_ActiveC2(struct cxd_state *state, u32 iffreq)
{
ConfigureTS(state, ActiveC2);
writeregx(state, 0x00, 0x17, 0x05); /* Mode */
writeregt(state, 0x00, 0x2C, 0x01); /* Demod Clock */
writeregt(state, 0x00, 0x59, 0x00); /* Disable RF Monitor ADC */
writeregt(state, 0x00, 0x2F, 0x00); /* Disable RF Monitor Clock */
writeregt(state, 0x00, 0x30, 0x00); /* Enable ADC Clock */
writeregt(state, 0x00, 0x41, 0x1A); /* Enable ADC1 */
{
u8 data[2] = { 0x09, 0x54 }; /* 20.5 MHz */
/*u8 data[2] = { 0x0A, 0xD4 }; */ /* 41 MHz */
writeregst(state, 0x00, 0x43, data, sizeof(data));
/* Enable ADC 2+3 */
}
writeregx(state, 0x00, 0x18, 0x00); /* Enable ADC 4 */
writebitst(state, 0x10, 0xD2, 0x0C, 0x1F); /* IFAGC coarse gain */
writeregt(state, 0x11, 0x6A, 0x50); /* BB AGC Target Level */
writebitst(state, 0x10, 0xA5, 0x00, 0x01); /* ASCOT Off */
writebitst(state, 0x00, 0xCE, 0x01, 0x01); /* TSIF ONOPARITY */
writebitst(state, 0x00, 0xCF, 0x01, 0x01);/*TSIF ONOPARITY_MANUAL_ON*/
writeregt(state, 0x20, 0xC2, 0x00);
writebitst(state, 0x25, 0x6A, 0x00, 0x03);
{
u8 data[3] = { 0x0C, 0xD1, 0x40 };
writeregst(state, 0x25, 0x89, data, sizeof(data));
}
writebitst(state, 0x25, 0xCB, 0x01, 0x07);
{
u8 data[4] = { 0x7B, 0x00, 0x7B, 0x00 };
writeregst(state, 0x25, 0xDC, data, sizeof(data));
}
writeregt(state, 0x25, 0xE2, 0x30);
writeregt(state, 0x25, 0xE5, 0x30);
writebitst(state, 0x27, 0x20, 0x01, 0x01);
writebitst(state, 0x27, 0x35, 0x01, 0x01);
writebitst(state, 0x27, 0xD9, 0x18, 0x3F);
writebitst(state, 0x2A, 0x78, 0x00, 0x07);
writeregt(state, 0x2A, 0x86, 0x20);
writeregt(state, 0x2A, 0x88, 0x32);
writebitst(state, 0x2B, 0x2B, 0x10, 0x1F);
{
u8 data[2] = { 0x01, 0x01 };
writeregst(state, 0x2D, 0x24, data, sizeof(data));
}
BandSettingC2(state, iffreq);
writeregt(state, 0x00, 0x80, 0x28); /* Disable HiZ Setting 1 */
writeregt(state, 0x00, 0x81, 0x00); /* Disable HiZ Setting 2 */
}
static void BandSettingIT(struct cxd_state *state, u32 iffreq)
{
u8 IF_data[3] = { (iffreq >> 16) & 0xff,
(iffreq >> 8) & 0xff, iffreq & 0xff};
switch (state->bw) {
default:
case 8:
{
u8 TR_data[] = { 0x0F, 0x22, 0x80, 0x00, 0x00 }; /* 20.5/41 */
u8 CL_data[] = { 0x15, 0xA8 };
/*u8 TR_data[] = { 0x11, 0xB8, 0x00, 0x00, 0x00 }; */ /* 24 */
writeregst(state, 0x10, 0x9F, TR_data, sizeof(TR_data));
/* Add EQ Optimisation for tuner here */
writeregst(state, 0x10, 0xB6, IF_data, sizeof(IF_data));
writebitst(state, 0x10, 0xD7, 0x00, 0x07); /* System Bandwidth */
/*u8 CL_data[] = { 0x13, 0xFC }; */
writeregst(state, 0x10, 0xD9, CL_data, sizeof(CL_data));
writebitst(state, 0x12, 0x71, 0x03, 0x07);
writeregt(state, 0x15, 0xbe, 0x03);
}
break;
case 7:
{
u8 TR_data[] = { 0x11, 0x4c, 0x00, 0x00, 0x00 };
u8 CL_data[] = { 0x1B, 0x5D };
/*u8 TR_data[] = { 0x14, 0x40, 0x00, 0x00, 0x00 }; */
writeregst(state, 0x10, 0x9F, TR_data, sizeof(TR_data));
writeregst(state, 0x10, 0xB6, IF_data, sizeof(IF_data));
writebitst(state, 0x10, 0xD7, 0x02, 0x07);
/*static u8 CL_data[] = { 0x1A, 0xFA };*/
writeregst(state, 0x10, 0xD9, CL_data, sizeof(CL_data));
writebitst(state, 0x12, 0x71, 0x03, 0x07);
writeregt(state, 0x15, 0xbe, 0x02);
}
break;
case 6:
{
u8 TR_data[] = { 0x14, 0x2E, 0x00, 0x00, 0x00 };
/*u8 TR_data[] = { 0x17, 0xA0, 0x00, 0x00, 0x00 }; */
/*u8 CL_data[] = { 0x1F, 0x79 }; */
writeregst(state, 0x10, 0x9F, TR_data, sizeof(TR_data));
writeregst(state, 0x10, 0xB6, IF_data, sizeof(IF_data));
writebitst(state, 0x10, 0xD7, 0x04, 0x07);
if (state->is2k14) {
u8 CL_data[] = { 0x1a, 0xe2 };
writeregst(state, 0x10, 0xDd9, CL_data, sizeof(CL_data));
} else {
u8 CL_data[] = { 0x1F, 0xec };
writeregst(state, 0x10, 0xd9, CL_data, sizeof(CL_data));
}
writebitst(state, 0x12, 0x71, 0x07, 0x07);
writeregt(state, 0x15, 0xbe, 0x02);
}
break;
}
}
static void Sleep_to_ActiveIT(struct cxd_state *state, u32 iffreq)
{
u8 data2[3] = { 0xB9, 0xBA, 0x63 }; /* 20.5/41 MHz */
/*u8 data2[3] = { 0xB7,0x1B,0x00 }; */ /* 24 MHz */
u8 TSIF_data[2] = { 0x61, 0x60 } ; /* 20.5/41 MHz */
/*u8 TSIF_data[2] = { 0x60,0x00 } ; */ /* 24 MHz */
ConfigureTS(state, ActiveIT);
/* writeregx(state, 0x00,0x17,0x01); */ /* 2838 has only one Mode */
if (state->is2k14)
writeregx(state, 0x00, 0x17, 0x06);
writeregt(state, 0x00, 0x2C, 0x01); /* Demod Clock */
if (state->is2k14) {
writeregt(state, 0x00, 0x59, 0x00); /* Disable RF Monitor ADC */
writeregt(state, 0x00, 0x2F, 0x00); /* Disable RF Monitor Clock */
}
writeregt(state, 0x00, 0x30, 0x00); /* Enable ADC Clock */
writeregt(state, 0x00, 0x41, 0x1A); /* Enable ADC1 */
{
u8 data[2] = { 0x09, 0x54 }; /* 20.5 MHz, 24 MHz */
/*u8 data[2] = { 0x0A, 0xD4 }; */ /* 41 MHz */
writeregst(state, 0x00, 0x43, data, 2); /* Enable ADC 2+3 */
}
writeregx(state, 0x00, 0x18, 0x00); /* Enable ADC 4 */
if (state->is2k14) {
writebitst(state, 0x10, 0xA5, 0x00, 0x01); /* ASCOT Off */
writebitst(state, 0x18, 0x30, 0x01, 0x01);
writebitst(state, 0x18, 0x31, 0x00, 0x01);
writebitst(state, 0x00, 0xce, 0x00, 0x01);
writebitst(state, 0x00, 0xcf, 0x00, 0x01);
writebitst(state, 0x10, 0x69, 0x04, 0x07);
writebitst(state, 0x10, 0x6b, 0x03, 0x07);
writebitst(state, 0x10, 0x9d, 0x50, 0xff);
writebitst(state, 0x10, 0xd3, 0x06, 0x1f);
writebitst(state, 0x10, 0xed, 0x00, 0x01);
writebitst(state, 0x10, 0xe2, 0xce, 0x80);
writebitst(state, 0x10, 0xf2, 0x13, 0x10);
writebitst(state, 0x10, 0xde, 0x2e, 0x3f);
writebitst(state, 0x15, 0xde, 0x02, 0x03);
writebitst(state, 0x1e, 0x73, 0x68, 0xff);
writebitst(state, 0x63, 0x81, 0x00, 0x01);
}
//if( m_is24MHz )
//{
// static BYTE TSIF_data[2] = { 0x60,0x00 } ; // 24 MHz
// CHK_ERROR(WriteRegT(0x10,0xBF,TSIF_data,sizeof(TSIF_data)));
// static BYTE data[3] = { 0xB7,0x1B,0x00 }; // 24 MHz
// CHK_ERROR(WriteRegT(0x60,0xA8,data,sizeof(data)));
//}
//else
writeregst(state, 0x10, 0xBF, TSIF_data, sizeof(TSIF_data));
writeregst(state, 0x60, 0xa8, data2, sizeof(data2));
if (!state->is2k14) {
writeregt(state, 0x10, 0xE2, 0xCE); /* OREG_PNC_DISABLE */
writebitst(state, 0x10, 0xA5, 0x00, 0x01); /* ASCOT Off */
}
BandSettingIT(state, iffreq);
writeregt(state, 0x00, 0x80, 0x28); /* Disable HiZ Setting 1 */
writeregt(state, 0x00, 0x81, 0x00); /* Disable HiZ Setting 2 */
}
static void T2_SetParameters(struct cxd_state *state)
{
u8 Profile = 0x01; /* Profile Base */
u8 notT2time = 12; /* early unlock detection time */
if (state->T2Profile == T2P_Lite) {
Profile = 0x05;
notT2time = 40;
}
if (state->plp != 0xffffffff) {
state->T2Profile = ((state->plp & 0x100) != 0) ?
T2P_Lite : T2P_Base;
writeregt(state, 0x23, 0xAF, state->plp);
writeregt(state, 0x23, 0xAD, 0x01);
} else {
state->T2Profile = T2P_Base;
writeregt(state, 0x23, 0xAD, 0x00);
}
writebitst(state, 0x2E, 0x10, Profile, 0x07);
writeregt(state, 0x2B, 0x19, notT2time);
}
static void C2_ReleasePreset(struct cxd_state *state)
{
{
static u8 data[2] = { 0x02, 0x80};
writeregst(state, 0x27, 0xF4, data, sizeof(data));
}
writebitst(state, 0x27, 0x51, 0x40, 0xF0);
writebitst(state, 0x27, 0x73, 0x07, 0x0F);
writebitst(state, 0x27, 0x74, 0x19, 0x3F);
writebitst(state, 0x27, 0x75, 0x19, 0x3F);
writebitst(state, 0x27, 0x76, 0x19, 0x3F);
if (state->bw == 6) {
static u8 data[5] = { 0x17, 0xEA, 0xAA, 0xAA, 0xAA};
writeregst(state, 0x20, 0x9F, data, sizeof(data));
} else {
static u8 data[5] = { 0x11, 0xF0, 0x00, 0x00, 0x00};
writeregst(state, 0x20, 0x9F, data, sizeof(data));
}
writebitst(state, 0x27, 0xC9, 0x07, 0x07);
writebitst(state, 0x20, 0xC2, 0x11, 0x33);
{
static u8 data[10] = { 0x16, 0xF0, 0x2B, 0xD8,
0x16, 0x16, 0xF0, 0x2C, 0xD8, 0x16 };
writeregst(state, 0x2A, 0x20, data, sizeof(data));
}
{
static u8 data[4] = { 0x00, 0x00, 0x00, 0x00 };
writeregst(state, 0x50, 0x6B, data, sizeof(data));
}
writebitst(state, 0x50, 0x6F, 0x00, 0x40); /* Disable Preset */
}
static void C2_DemodSetting2(struct cxd_state *state)
{
u8 data[6];
u32 TunePosition =
state->frontend.dtv_property_cache.frequency / 1000;
if (state->bw == 6)
TunePosition = ((TunePosition * 1792) / 3) / 1000;
else
TunePosition = (TunePosition * 448) / 1000;
TunePosition = ((TunePosition + 6) / 12) * 12;
pr_info("TunePosition = %u\n", TunePosition);
data[0] = ((TunePosition >> 16) & 0xFF);
data[1] = ((TunePosition >> 8) & 0xFF);
data[2] = (TunePosition & 0xFF);
data[3] = 0x02;
data[4] = (state->DataSliceID & 0xFF);
data[5] = (state->plp & 0xFF);
writeregst(state, 0x50, 0x7A, data, sizeof(data));
writebitst(state, 0x50, 0x87, 0x01, 0x01); /* Preset Clear */
}
static void Stop(struct cxd_state *state)
{
writeregt(state, 0x00, 0xC3, 0x01); /* Disable TS */
}
static void ShutDown(struct cxd_state *state)
{
switch (state->state) {
case ActiveT2:
ActiveT2_to_Sleep(state);
break;
case ActiveC2:
ActiveC2_to_Sleep(state);
break;
case ActiveIT:
ActiveIT_to_Sleep(state);
break;
default:
Active_to_Sleep(state);
break;
}
}
static int gate_ctrl(struct dvb_frontend *fe, int enable)
{
struct cxd_state *state = fe->demodulator_priv;
return writebitsx(state, 0xFF, 0x08, enable ? 0x01 : 0x00, 0x01);
}
static void release(struct dvb_frontend *fe)
{
struct cxd_state *state = fe->demodulator_priv;
Stop(state);
ShutDown(state);
kfree(state);
}
static int sleep(struct dvb_frontend *fe)
{
struct cxd_state *state = fe->demodulator_priv;
Stop(state);
ShutDown(state);
return 0;
}
static int Start(struct cxd_state *state, u32 IntermediateFrequency)
{
enum demod_state newDemodState = Unknown;
u32 iffreq;
if (state->state < Sleep)
return -EINVAL;
iffreq = MulDiv32(IntermediateFrequency, 16777216, 41000000);
switch (state->omode) {
case OM_DVBT:
if (state->type == CXD2838)
return -EINVAL;
newDemodState = ActiveT;
break;
case OM_DVBT2:
if (state->type == CXD2838)
return -EINVAL;
newDemodState = ActiveT2;
break;
case OM_DVBC:
case OM_QAM_ITU_C:
if (state->type == CXD2838)
return -EINVAL;
newDemodState = ActiveC;
break;
case OM_DVBC2:
if (state->type != CXD2843 && state->type != CXD2854)
return -EINVAL;
newDemodState = ActiveC2;
break;
case OM_ISDBT:
if (state->type != CXD2838 && state->type != CXD2854)
return -EINVAL;
if (state->type == CXD2854 && !state->is24MHz && state->bw != 6)
return -EINVAL;
newDemodState = ActiveIT;
break;
default:
return -EINVAL;
}
state->LockTimeout = 0;
state->TSLockTimeout = 0;
state->L1PostTimeout = 0;
state->last_status = 0;
state->FirstTimeLock = 1;
state->LastBERNumerator = 0;
state->LastBERDenominator = 1;
state->BERScaleMax = 19;
if (state->state == newDemodState) {
writeregt(state, 0x00, 0xC3, 0x01); /* Disable TS Output */
switch (newDemodState) {
case ActiveT:
/* Stick with HP ( 0x01 = LP ) */
writeregt(state, 0x10, 0x67, 0x00);
BandSettingT(state, iffreq);
state->BERScaleMax = 18;
break;
case ActiveT2:
T2_SetParameters(state);
BandSettingT2(state, iffreq);
state->BERScaleMax = 12;
break;
case ActiveC:
BandSettingC(state, iffreq);
state->BERScaleMax = 19;
break;
case ActiveC2:
BandSettingC2(state, iffreq);
C2_ReleasePreset(state);
C2_DemodSetting2(state);
break;
case ActiveIT:
BandSettingIT(state, iffreq);
break;
default:
break;
}
} else {
if (state->state > Sleep) {
switch (state->state) {
case ActiveT2:
ActiveT2_to_Sleep(state);
break;
case ActiveC2:
ActiveC2_to_Sleep(state);
break;
case ActiveIT:
ActiveIT_to_Sleep(state);
break;
default:
Active_to_Sleep(state);
break;
}
}
switch (newDemodState) {
case ActiveT:
/* Stick with HP ( 0x01 = LP ) */
writeregt(state, 0x10, 0x67, 0x00);
Sleep_to_ActiveT(state, iffreq);
state->BERScaleMax = 18;
break;
case ActiveT2:
T2_SetParameters(state);
Sleep_to_ActiveT2(state, iffreq);
state->BERScaleMax = 12;
break;
case ActiveC:
Sleep_to_ActiveC(state, iffreq);
state->BERScaleMax = 19;
break;
case ActiveC2:
Sleep_to_ActiveC2(state, iffreq);
C2_ReleasePreset(state);
C2_DemodSetting2(state);
break;
case ActiveIT:
Sleep_to_ActiveIT(state, iffreq);
break;
default:
break;
}
}
state->state = newDemodState;
writeregt(state, 0x00, 0xFE, 0x01); /* SW Reset */
writeregt(state, 0x00, 0xC3, 0x00); /* Enable TS Output */
return 0;
}
static int set_parameters(struct dvb_frontend *fe)
{
int stat;
struct cxd_state *state = fe->demodulator_priv;
u32 IF;
switch (fe->dtv_property_cache.delivery_system) {
case SYS_DVBC_ANNEX_A:
state->omode = OM_DVBC;
break;
case SYS_DVBC2:
state->omode = OM_DVBC2;
break;
case SYS_DVBT:
state->omode = OM_DVBT;
break;
case SYS_DVBT2:
state->omode = OM_DVBT2;
break;
case SYS_ISDBT:
state->omode = OM_ISDBT;
break;
default:
return -EINVAL;
}
if (fe->ops.tuner_ops.set_params)
fe->ops.tuner_ops.set_params(fe);
state->bandwidth = fe->dtv_property_cache.bandwidth_hz;
state->bw = (fe->dtv_property_cache.bandwidth_hz + 999999) / 1000000;
if (fe->dtv_property_cache.stream_id == NO_STREAM_ID_FILTER) {
state->DataSliceID = 0xffffffff;
state->plp = 0xffffffff;
} else {
state->DataSliceID = (fe->dtv_property_cache.stream_id >> 8)
& 0xff;
state->plp = fe->dtv_property_cache.stream_id & 0xff;
}
/* printk("PLP = %08x, bw = %u\n", state->plp, state->bw); */
if (fe->ops.tuner_ops.get_if_frequency)
fe->ops.tuner_ops.get_if_frequency(fe, &IF);
stat = Start(state, IF);
return stat;
}
static void init(struct cxd_state *state)
{
u8 data[2] = {0x00, 0x00}; /* 20.5 MHz */
state->omode = OM_NONE;
state->state = Unknown;
writeregx(state, 0xFF, 0x02, 0x00);
usleep_range(4000, 5000);
writeregx(state, 0x00, 0x15, 0x01);
if (state->type != CXD2838)
writeregx(state, 0x00, 0x17, 0x01);
usleep_range(4000, 5000);
writeregx(state, 0x00, 0x10, 0x01);
writeregsx(state, 0x00, 0x13, data, 2);
writeregx(state, 0x00, 0x15, 0x00);
usleep_range(3000, 4000);
writeregx(state, 0x00, 0x10, 0x00);
usleep_range(2000, 3000);
state->curbankx = 0xFF;
state->curbankt = 0xFF;
writeregt(state, 0x00, 0x43, 0x0A);
writeregt(state, 0x00, 0x41, 0x0A);
if (state->type == CXD2838)
writeregt(state, 0x60, 0x5A, 0x00);
writebitst(state, 0x10, 0xCB, 0x00, 0x40);
writeregt(state, 0x10, 0xCD, state->IF_FS);
writebitst(state, 0x00, 0xC4, state->SerialMode ? 0x80 : 0x00, 0x98);
writebitst(state, 0x00, 0xC5, 0x01, 0x07);
writebitst(state, 0x00, 0xCB, 0x00, 0x01);
writebitst(state, 0x00, 0xC6, 0x00, 0x1D);
writebitst(state, 0x00, 0xC8, 0x01, 0x1D);
writebitst(state, 0x00, 0xC9, 0x00, 0x1D);
writebitst(state, 0x00, 0x83, 0x00, 0x07);
writeregt(state, 0x00, 0x84, 0x00);
writebitst(state, 0x00, 0xD3,
(state->type == CXD2838) ? 0x01 : 0x00, 0x01);
writebitst(state, 0x00, 0xDE, 0x00, 0x01);
state->state = Sleep;
}
static void init_state(struct cxd_state *state, struct cxd2843_cfg *cfg)
{
state->adrt = cfg->adr;
state->adrx = cfg->adr + 0x02;
state->curbankt = 0xff;
state->curbankx = 0xff;
mutex_init(&state->mutex);
state->SerialMode = cfg->parallel ? 0 : 1;
state->ContinuousClock = 1;
state->SerialClockFrequency =
(cfg->ts_clock >= 1 && cfg->ts_clock <= 5) ?
cfg->ts_clock : 1; /* 1 = fastest (82 MBit/s), 5 = slowest */
/* IF Fullscale 0x50 = 1.4V, 0x39 = 1V, 0x28 = 0.7V */
state->IF_FS = 0x50;
}
static int get_tune_settings(struct dvb_frontend *fe,
struct dvb_frontend_tune_settings *sets)
{
switch (fe->dtv_property_cache.delivery_system) {
case SYS_DVBC_ANNEX_A:
case SYS_DVBC_ANNEX_C:
/*return c_get_tune_settings(fe, sets);*/
default:
/* DVB-T: Use info.frequency_stepsize. */
return -EINVAL;
}
}
static int read_snr(struct dvb_frontend *fe, u16 *snr);
static int get_stats(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
u16 val;
s64 str;
if (fe->ops.tuner_ops.get_rf_strength)
fe->ops.tuner_ops.get_rf_strength(fe, &val);
else
val = 0;
str = 1000 * (s64) (s16) val;
str -= 108750;
p->strength.len = 1;
p->strength.stat[0].scale = FE_SCALE_DECIBEL;
p->strength.stat[0].uvalue = str;
read_snr(fe, &val);
p->cnr.len = 1;
p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
p->cnr.stat[0].uvalue = 100 * (s64) (s16) val;
return 0;
}
static int read_status(struct dvb_frontend *fe, fe_status_t *status)
{
struct cxd_state *state = fe->demodulator_priv;
u8 rdata;
get_stats(fe);
*status = 0;
switch (state->state) {
case ActiveC:
readregst(state, 0x40, 0x88, &rdata, 1);
if (rdata & 0x02)
break;
if (rdata & 0x01) {
*status |= 0x07;
readregst(state, 0x40, 0x10, &rdata, 1);
if (rdata & 0x20)
*status |= 0x1f;
}
if (*status == 0x1f && state->FirstTimeLock) {
readregst(state, 0x40, 0x19, &rdata, 1);
rdata &= 0x07;
state->BERScaleMax = ( rdata < 2 ) ? 18 : 19;
state->FirstTimeLock = 0;
}
break;
case ActiveT:
readregst(state, 0x10, 0x10, &rdata, 1);
if (rdata & 0x10)
break;
if ((rdata & 0x07) == 0x06) {
*status |= 0x07;
if (rdata & 0x20)
*status |= 0x1f;
}
if (*status == 0x1f && state->FirstTimeLock) {
u8 tps[7];
read_tps(state, tps);
state->BERScaleMax =
(((tps[0] >> 6) & 0x03) < 2 ) ? 17 : 18;
if ((tps[0] & 7) < 2)
state->BERScaleMax--;
state->FirstTimeLock = 0;
}
break;
case ActiveT2:
readregst(state, 0x20, 0x10, &rdata, 1);
if (rdata & 0x10)
break;
if ((rdata & 0x07) == 0x06) {
*status |= 0x07;
if (rdata & 0x20)
*status |= 0x08;
}
if (*status & 0x08) {
readregst(state, 0x22, 0x12, &rdata, 1);
if (rdata & 0x01)
*status |= 0x10;
}
break;
case ActiveC2:
readregst(state, 0x20, 0x10, &rdata, 1);
if (rdata & 0x10)
break;
if ((rdata & 0x07) == 0x06) {
*status |= 0x07;
if (rdata & 0x20)
*status |= 0x18;
}
if ((*status & 0x10) && state->FirstTimeLock) {
u8 data;
/* Change1stTrial */
readregst(state, 0x28, 0xE6, &rdata, 1);
data = rdata & 1;
readregst(state, 0x50, 0x15, &rdata, 1);
data |= ((rdata & 0x18) >> 2);
/*writebitst(state, 0x50,0x6F,rdata,0x07);*/
state->FirstTimeLock = 0;
}
break;
case ActiveIT:
readregst(state, 0x60, 0x10, &rdata, 1);
if (rdata & 0x10)
break;
if (rdata & 0x02) {
*status |= 0x07;
if (rdata & 0x01)
*status |= 0x18;
}
if (*status == 0x1f && state->FirstTimeLock) {
/* readregst(state, 0x40, 0x19, &rdata, 1); */
/* rdata &= 0x07; */
/* state->BERScaleMax = ( rdata < 2 ) ? 18 : 19; */
state->FirstTimeLock = 0;
}
break;
default:
break;
}
state->last_status = *status;
return 0;
}
static int get_ber_t(struct cxd_state *state, u32 *n, u32 *d)
{
u8 BERRegs[3];
u8 Scale;
*n = 0;
*d = 1;
readregst(state, 0x10, 0x62, BERRegs, 3);
readregst(state, 0x10, 0x60, &Scale, 1);
Scale &= 0x1F;
if (BERRegs[0] & 0x80) {
state->LastBERNumerator = (((u32) BERRegs[0] & 0x3F) << 16) |
(((u32) BERRegs[1]) << 8) | BERRegs[2];
state->LastBERDenominator = 1632 << Scale;
if (state->LastBERNumerator < 256 &&
Scale < state->BERScaleMax) {
writebitst(state, 0x10, 0x60, Scale + 1, 0x1F);
} else if (state->LastBERNumerator > 512 && Scale > 11)
writebitst(state, 0x10, 0x60, Scale - 1, 0x1F);
}
*n = state->LastBERNumerator;
*d = state->LastBERDenominator;
return 0;
}
static int get_ber_t2(struct cxd_state *state, u32 *n, u32 *d)
{
u8 BERRegs[4];
u8 Scale;
u8 FECType;
u8 CodeRate;
static const u32 nBCHBitsLookup[2][8] = {
/* R1_2 R3_5 R2_3 R3_4 R4_5 R5_6 R1_3 R2_5 */
{7200, 9720, 10800, 11880, 12600, 13320, 5400, 6480}, /* 16K FEC */
{32400, 38880, 43200, 48600, 51840, 54000, 21600, 25920} /* 64k FEC */
};
*n = 0;
*d = 1;
freeze_regst(state);
readregst_unlocked(state, 0x24, 0x40, BERRegs, 4);
readregst_unlocked(state, 0x22, 0x5e, &FECType, 1);
readregst_unlocked(state, 0x22, 0x5b, &CodeRate, 1);
FECType &= 0x03;
CodeRate &= 0x07;
unfreeze_regst(state);
if (FECType > 1)
return 0;
readregst(state, 0x20, 0x72, &Scale, 1);
Scale &= 0x0F;
if (BERRegs[0] & 0x01) {
state->LastBERNumerator = (((u32) BERRegs[1] & 0x3F) << 16) |
(((u32) BERRegs[2]) << 8) | BERRegs[3];
state->LastBERDenominator = nBCHBitsLookup[FECType][CodeRate] << Scale;
if (state->LastBERNumerator < 256 &&
Scale < state->BERScaleMax) {
writebitst(state, 0x20, 0x72, Scale + 1, 0x0F);
} else if (state->LastBERNumerator > 512 && Scale > 8)
writebitst(state, 0x20, 0x72, Scale - 1, 0x0F);
}
*n = state->LastBERNumerator;
*d = state->LastBERDenominator;
return 0;
}
static int get_ber_c(struct cxd_state *state, u32 *n, u32 *d)
{
u8 BERRegs[3];
u8 Scale;
*n = 0;
*d = 1;
readregst(state, 0x40, 0x62, BERRegs, 3);
readregst(state, 0x40, 0x60, &Scale, 1);
Scale &= 0x1F;
if (BERRegs[0] & 0x80) {
state->LastBERNumerator = (((u32) BERRegs[0] & 0x3F) << 16) |
(((u32) BERRegs[1]) << 8) | BERRegs[2];
state->LastBERDenominator = 1632 << Scale;
if (state->LastBERNumerator < 256 &&
Scale < state->BERScaleMax) {
writebitst(state, 0x40, 0x60, Scale + 1, 0x1F);
} else if (state->LastBERNumerator > 512 && Scale > 11)
writebitst(state, 0x40, 0x60, Scale - 1, 0x1F);
}
*n = state->LastBERNumerator;
*d = state->LastBERDenominator;
return 0;
}
static int get_ber_c2(struct cxd_state *state, u32 *n, u32 *d)
{
*n = 0;
*d = 1;
return 0;
}
static int get_ber_it(struct cxd_state *state, u32 *n, u32 *d)
{
*n = 0;
*d = 1;
return 0;
}
static int read_ber(struct dvb_frontend *fe, u32 *ber)
{
struct cxd_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
u32 n = 0, d = 1;
int s = 0;
*ber = 0;
switch (state->state) {
case ActiveT:
s = get_ber_t(state, &n, &d);
break;
case ActiveT2:
s = get_ber_t2(state, &n, &d);
break;
case ActiveC:
s = get_ber_c(state, &n, &d);
break;
case ActiveC2:
s = get_ber_c2(state, &n, &d);
break;
case ActiveIT:
s = get_ber_it(state, &n, &d);
break;
default:
break;
}
if (s)
return s;
p->pre_bit_error.len = 1;
p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
p->pre_bit_error.stat[0].uvalue = n;
p->pre_bit_count.len = 1;
p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
p->pre_bit_count.stat[0].uvalue = d;
if (d)
*ber = (n * 1000) / d;
return 0;
}
static int read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
if (fe->ops.tuner_ops.get_rf_strength)
fe->ops.tuner_ops.get_rf_strength(fe, strength);
else
*strength = 0;
return 0;
}
#if 0
+NTSTATUS CCXD2843ER::GetT2PLPIds(DD_T2_PLPIDS* pT2_PLPIDS)
{
NTSTATUS status = STATUS_SUCCESS;
- *pReturned = 0;
+
if( m_DemodState != ActiveT2 ) return STATUS_NOT_IMPLEMENTED;
- if( m_LastLockStatus < TSLock || m_LastLockStatus == Unlock ) return status;
+ if( m_LastLockStatus < TSLock ) return status;
do
{
+ BYTE tmp;
+
CHK_ERROR(FreezeRegsT());
+ CHK_ERROR(ReadRegT(0x20,0x5C,&tmp)); // OFDM Info
+
+ if( tmp & 0x20 ) pT2_PLPIDS->Flags |= DD_T2_PLPIDS_FEF;
+ if( m_T2Profile == T2P_Lite ) pT2_PLPIDS->Flags |= DD_T2_PLPIDS_LITE;
+
+ CHK_ERROR(ReadRegT(0x22,0x54,&tmp));
+ pT2_PLPIDS->PLPID = tmp;
+
+ CHK_ERROR(ReadRegT(0x22,0x54 + 19 + 13,&tmp)); // Interval
+ if( tmp > 0 )
+ {
+ CHK_ERROR(ReadRegT(0x22,0x54 + 19,&tmp));
+ pT2_PLPIDS->CommonPLPID = tmp;
+ }
+
BYTE nPids = 0;
CHK_ERROR(ReadRegT(0x22,0x7F,&nPids));
- pValues[0] = nPids;
- if( nPids >= nValues ) nPids = BYTE(nValues-1);
+ pT2_PLPIDS->NumPLPS = nPids;
+ CHK_ERROR(ReadRegT(0x22,0x80,&pT2_PLPIDS->PLPList[0], nPids > 128 ? 128 : nPids));
- CHK_ERROR(ReadRegT(0x22,0x80,&pValues[1], nPids > 128 ? 128 : nPids));
-
if( nPids > 128 )
{
- CHK_ERROR(ReadRegT(0x23,0x10,&pValues[129], nPids - 128));
+ CHK_ERROR(ReadRegT(0x23,0x10,&pT2_PLPIDS->PLPList[128], nPids - 128));
}
- *pReturned = nPids + 1;
+
}
while(0);
UnFreezeRegsT();
static void GetPLPIds(struct cxd_state *state, u32 nValues,
u8 *Values, u32 *Returned)
{
u8 nPids = 0, tmp;
*Returned = 0;
if (state->state != ActiveT2)
return;
if (state->last_status != 0x1f)
return;
freeze_regst(state);
readregst_unlocked(state, 0x22, 0x7F, &nPids, 1);
Values[0] = nPids;
if (nPids >= nValues)
nPids = nValues - 1;
readregst_unlocked(state, 0x22, 0x80, &Values[1],
nPids > 128 ? 128 : nPids);
if (nPids > 128)
readregst_unlocked(state, 0x23, 0x10, &Values[129],
nPids - 128);
*Returned = nPids + 1;
unfreeze_regst(state);
}
#endif
static void GetSignalToNoiseIT(struct cxd_state *state, u32 *SignalToNoise)
{
u8 Data[2];
u32 reg;
*SignalToNoise = 0;
freeze_regst(state);
readregst_unlocked(state, 0x60, 0x28, Data, sizeof(Data));
unfreeze_regst(state);
reg = (Data[0] << 8) | Data[1];
if (reg == 0)
return;
if (reg > 51441)
reg = 51441;
if (state->bw == 8) {
if (reg > 1143)
reg = 1143;
*SignalToNoise = (Log10x100(reg) -
Log10x100(1200 - reg)) + 220;
} else
*SignalToNoise = Log10x100(reg) - 90;
}
static void GetSignalToNoiseC2(struct cxd_state *state, u32 *SignalToNoise)
{
u8 Data[2];
u32 reg;
*SignalToNoise = 0;
freeze_regst(state);
readregst_unlocked(state, 0x20, 0x28, Data, sizeof(Data));
unfreeze_regst(state);
reg = (Data[0] << 8) | Data[1];
if (reg == 0)
return;
if (reg > 51441)
reg = 51441;
*SignalToNoise = (Log10x100(reg) - Log10x100(55000 - reg)) + 384;
}
static void GetSignalToNoiseT2(struct cxd_state *state, u32 *SignalToNoise)
{
u8 Data[2];
u32 reg;
*SignalToNoise = 0;
freeze_regst(state);
readregst_unlocked(state, 0x20, 0x28, Data, sizeof(Data));
unfreeze_regst(state);
reg = (Data[0] << 8) | Data[1];
if (reg == 0)
return;
if (reg > 10876)
reg = 10876;
*SignalToNoise = (Log10x100(reg) - Log10x100(12600 - reg)) + 320;
}
static void GetSignalToNoiseT(struct cxd_state *state, u32 *SignalToNoise)
{
u8 Data[2];
u32 reg;
*SignalToNoise = 0;
freeze_regst(state);
readregst_unlocked(state, 0x10, 0x28, Data, sizeof(Data));
unfreeze_regst(state);
reg = (Data[0] << 8) | Data[1];
if (reg == 0)
return;
if (reg > 4996)
reg = 4996;
*SignalToNoise = (Log10x100(reg) - Log10x100(5350 - reg)) + 285;
}
static void GetSignalToNoiseC(struct cxd_state *state, u32 *SignalToNoise)
{
u8 Data[2];
u8 Constellation = 0;
u32 reg;
*SignalToNoise = 0;
freeze_regst(state);
readregst_unlocked(state, 0x40, 0x19, &Constellation, 1);
readregst_unlocked(state, 0x40, 0x4C, Data, sizeof(Data));
unfreeze_regst(state);
reg = ((u32)(Data[0] & 0x1F) << 8) | (Data[1]);
if (reg == 0)
return;
switch (Constellation & 0x07) {
case 0: /* QAM 16 */
case 2: /* QAM 64 */
case 4: /* QAM 256 */
if (reg < 126)
reg = 126;
*SignalToNoise = ((439 - Log10x100(reg)) * 2134 + 500) / 1000;
break;
case 1: /* QAM 32 */
case 3: /* QAM 128 */
if (reg < 69)
reg = 69;
*SignalToNoise = ((432 - Log10x100(reg)) * 2015 + 500) / 1000;
break;
}
}
static int read_snr(struct dvb_frontend *fe, u16 *snr)
{
struct cxd_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
u32 SNR = 0;
*snr = 0;
if (state->last_status != 0x1f)
return 0;
switch (state->state) {
case ActiveC:
GetSignalToNoiseC(state, &SNR);
break;
case ActiveC2:
GetSignalToNoiseC2(state, &SNR);
break;
case ActiveT:
GetSignalToNoiseT(state, &SNR);
break;
case ActiveT2:
GetSignalToNoiseT2(state, &SNR);
break;
case ActiveIT:
GetSignalToNoiseIT(state, &SNR);
break;
default:
break;
}
*snr = SNR;
p->cnr.len = 1;
p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
p->cnr.stat[0].uvalue = 10 * (s64) SNR;
return 0;
}
static int read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
*ucblocks = 0;
return 0;
}
static int tune(struct dvb_frontend *fe, bool re_tune,
unsigned int mode_flags,
unsigned int *delay, fe_status_t *status)
{
struct cxd_state *state = fe->demodulator_priv;
int r;
if (re_tune) {
r = set_parameters(fe);
if (r)
return r;
state->tune_time = jiffies;
}
if (*status & FE_HAS_LOCK)
return 0;
/* *delay = 50; */
r = read_status(fe, status);
if (r)
return r;
return 0;
}
static enum dvbfe_search search(struct dvb_frontend *fe)
{
int r;
u32 loops = 20, i;
fe_status_t status;
r = set_parameters(fe);
for (i = 0; i < loops; i++) {
msleep(50);
r = read_status(fe, &status);
if (r)
return DVBFE_ALGO_SEARCH_ERROR;
if (status & FE_HAS_LOCK)
break;
}
if (status & FE_HAS_LOCK)
return DVBFE_ALGO_SEARCH_SUCCESS;
else
return DVBFE_ALGO_SEARCH_AGAIN;
}
static int get_algo(struct dvb_frontend *fe)
{
return DVBFE_ALGO_HW;
}
static int get_fe_t2(struct cxd_state *state)
{
struct dvb_frontend *fe = &state->frontend;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
u8 ofdm[5], modcod[2];
freeze_regst(state);
readregst_unlocked(state, 0x20, 0x5c, ofdm, 5);
readregst_unlocked(state, 0x22, 0x5b, modcod, 2);
unfreeze_regst(state);
switch (modcod[0] & 0x07) {
case 0:
p->fec_inner = FEC_1_2;
break;
case 1:
p->fec_inner = FEC_3_5;
break;
case 2:
p->fec_inner = FEC_2_3;
break;
case 3:
p->fec_inner = FEC_3_4;
break;
case 4:
p->fec_inner = FEC_4_5;
break;
case 5:
p->fec_inner = FEC_5_6;
break;
case 6:
p->fec_inner = FEC_1_3;
break;
case 7:
p->fec_inner = FEC_2_5;
break;
}
switch (modcod[1] & 0x07) {
case 0:
p->modulation = QPSK;
break;
case 1:
p->modulation = QAM_16;
break;
case 2:
p->modulation = QAM_64;
break;
case 3:
p->modulation = QAM_256;
break;
}
switch (ofdm[0] & 0x07) {
case 0:
p->transmission_mode = TRANSMISSION_MODE_2K;
break;
case 1:
p->transmission_mode = TRANSMISSION_MODE_8K;
break;
case 2:
p->transmission_mode = TRANSMISSION_MODE_4K;
break;
case 3:
p->transmission_mode = TRANSMISSION_MODE_1K;
break;
case 4:
p->transmission_mode = TRANSMISSION_MODE_16K;
break;
case 5:
p->transmission_mode = TRANSMISSION_MODE_32K;
break;
case 6:
p->transmission_mode = TRANSMISSION_MODE_64K;
break;
}
switch ((ofdm[1] >> 4) & 0x07) {
case 0:
p->guard_interval = GUARD_INTERVAL_1_32;
break;
case 1:
p->guard_interval = GUARD_INTERVAL_1_16;
break;
case 2:
p->guard_interval = GUARD_INTERVAL_1_8;
break;
case 3:
p->guard_interval = GUARD_INTERVAL_1_4;
break;
case 4:
p->guard_interval = GUARD_INTERVAL_1_128;
break;
case 5:
p->guard_interval = GUARD_INTERVAL_19_128;
break;
case 6:
p->guard_interval = GUARD_INTERVAL_19_256;
break;
}
return 0;
}
static int get_fe_t(struct cxd_state *state)
{
struct dvb_frontend *fe = &state->frontend;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
u8 tps[7];
read_tps(state, tps);
/* TPSData[0] [7:6] CNST[1:0]
TPSData[0] [5:3] HIER[2:0]
TPSData[0] [2:0] HRATE[2:0]
*/
switch ((tps[0] >> 6) & 0x03) {
case 0:
p->modulation = QPSK;
break;
case 1:
p->modulation = QAM_16;
break;
case 2:
p->modulation = QAM_64;
break;
}
switch ((tps[0] >> 3) & 0x07) {
case 0:
p->hierarchy = HIERARCHY_NONE;
break;
case 1:
p->hierarchy = HIERARCHY_1;
break;
case 2:
p->hierarchy = HIERARCHY_2;
break;
case 3:
p->hierarchy = HIERARCHY_4;
break;
}
switch ((tps[0] >> 0) & 0x07) {
case 0:
p->code_rate_HP = FEC_1_2;
break;
case 1:
p->code_rate_HP = FEC_2_3;
break;
case 2:
p->code_rate_HP = FEC_3_4;
break;
case 3:
p->code_rate_HP = FEC_5_6;
break;
case 4:
p->code_rate_HP = FEC_7_8;
break;
}
/* TPSData[1] [7:5] LRATE[2:0]
TPSData[1] [4:3] GI[1:0]
TPSData[1] [2:1] MODE[1:0]
*/
switch ((tps[1] >> 5) & 0x07) {
case 0:
p->code_rate_LP = FEC_1_2;
break;
case 1:
p->code_rate_LP = FEC_2_3;
break;
case 2:
p->code_rate_LP = FEC_3_4;
break;
case 3:
p->code_rate_LP = FEC_5_6;
break;
case 4:
p->code_rate_LP = FEC_7_8;
break;
}
switch ((tps[1] >> 3) & 0x03) {
case 0:
p->guard_interval = GUARD_INTERVAL_1_32;
break;
case 1:
p->guard_interval = GUARD_INTERVAL_1_16;
break;
case 2:
p->guard_interval = GUARD_INTERVAL_1_8;
break;
case 3:
p->guard_interval = GUARD_INTERVAL_1_4;
break;
}
switch ((tps[1] >> 1) & 0x03) {
case 0:
p->transmission_mode = TRANSMISSION_MODE_2K;
break;
case 1:
p->transmission_mode = TRANSMISSION_MODE_8K;
break;
}
return 0;
}
static int get_fe_c(struct cxd_state *state)
{
struct dvb_frontend *fe = &state->frontend;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
u8 qam;
freeze_regst(state);
readregst_unlocked(state, 0x40, 0x19, &qam, 1);
unfreeze_regst(state);
p->modulation = 1 + (qam & 0x07);
return 0;
}
static int get_frontend(struct dvb_frontend *fe)
{
struct cxd_state *state = fe->demodulator_priv;
if (state->last_status != 0x1f)
return 0;
switch (state->state) {
case ActiveT:
get_fe_t(state);
break;
case ActiveT2:
get_fe_t2(state);
break;
case ActiveC:
get_fe_c(state);
break;
case ActiveC2:
break;
case ActiveIT:
break;
default:
break;
}
return 0;
}
static struct dvb_frontend_ops common_ops_2854 = {
.delsys = { SYS_DVBC_ANNEX_A, SYS_DVBT, SYS_DVBT2, SYS_DVBC2, SYS_ISDBT },
.info = {
.name = "CXD2854 DVB-C/C2 DVB-T/T2 ISDB-T",
.frequency_stepsize = 166667, /* DVB-T only */
.frequency_min = 47000000, /* DVB-T: 47125000 */
.frequency_max = 865000000, /* DVB-C: 862000000 */
.symbol_rate_min = 870000,
.symbol_rate_max = 11700000,
.caps = FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_32 |
FE_CAN_QAM_64 | FE_CAN_QAM_128 | FE_CAN_QAM_256 |
FE_CAN_QAM_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_4_5 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO |
FE_CAN_RECOVER | FE_CAN_MUTE_TS | FE_CAN_2G_MODULATION
},
.release = release,
.sleep = sleep,
.i2c_gate_ctrl = gate_ctrl,
.set_frontend = set_parameters,
.get_tune_settings = get_tune_settings,
.read_status = read_status,
.read_ber = read_ber,
.read_signal_strength = read_signal_strength,
.read_snr = read_snr,
.read_ucblocks = read_ucblocks,
.get_frontend = get_frontend,
};
static struct dvb_frontend_ops common_ops_2843 = {
.delsys = { SYS_DVBC_ANNEX_A, SYS_DVBT, SYS_DVBT2, SYS_DVBC2 },
.info = {
.name = "CXD2843 DVB-C/C2 DVB-T/T2",
.frequency_stepsize = 166667, /* DVB-T only */
.frequency_min = 47000000, /* DVB-T: 47125000 */
.frequency_max = 865000000, /* DVB-C: 862000000 */
.symbol_rate_min = 870000,
.symbol_rate_max = 11700000,
.caps = FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_32 |
FE_CAN_QAM_64 | FE_CAN_QAM_128 | FE_CAN_QAM_256 |
FE_CAN_QAM_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_4_5 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO |
FE_CAN_RECOVER | FE_CAN_MUTE_TS | FE_CAN_2G_MODULATION
},
.release = release,
.sleep = sleep,
.i2c_gate_ctrl = gate_ctrl,
.set_frontend = set_parameters,
.get_tune_settings = get_tune_settings,
.read_status = read_status,
.read_ber = read_ber,
.read_signal_strength = read_signal_strength,
.read_snr = read_snr,
.read_ucblocks = read_ucblocks,
.get_frontend = get_frontend,
#ifdef USE_ALGO
.get_frontend_algo = get_algo,
.search = search,
.tune = tune,
#endif
};
static struct dvb_frontend_ops common_ops_2837 = {
.delsys = { SYS_DVBC_ANNEX_A, SYS_DVBT, SYS_DVBT2 },
.info = {
.name = "CXD2837 DVB-C DVB-T/T2",
.frequency_stepsize = 166667, /* DVB-T only */
.frequency_min = 47000000, /* DVB-T: 47125000 */
.frequency_max = 865000000, /* DVB-C: 862000000 */
.symbol_rate_min = 870000,
.symbol_rate_max = 11700000,
.caps = FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_32 |
FE_CAN_QAM_64 | FE_CAN_QAM_128 | FE_CAN_QAM_256 |
FE_CAN_QAM_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_4_5 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO |
FE_CAN_RECOVER | FE_CAN_MUTE_TS | FE_CAN_2G_MODULATION
},
.release = release,
.sleep = sleep,
.i2c_gate_ctrl = gate_ctrl,
.set_frontend = set_parameters,
.get_tune_settings = get_tune_settings,
.read_status = read_status,
.read_ber = read_ber,
.read_signal_strength = read_signal_strength,
.read_snr = read_snr,
.read_ucblocks = read_ucblocks,
.get_frontend = get_frontend,
#ifdef USE_ALGO
.get_frontend_algo = get_algo,
.search = search,
.tune = tune,
#endif
};
static struct dvb_frontend_ops common_ops_2838 = {
.delsys = { SYS_ISDBT },
.info = {
.name = "CXD2838 ISDB-T",
.frequency_stepsize = 166667,
.frequency_min = 47000000,
.frequency_max = 865000000,
.symbol_rate_min = 870000,
.symbol_rate_max = 11700000,
.caps = FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_4_5 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO |
FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO |
FE_CAN_RECOVER | FE_CAN_MUTE_TS | FE_CAN_2G_MODULATION
},
.release = release,
.sleep = sleep,
.i2c_gate_ctrl = gate_ctrl,
.set_frontend = set_parameters,
.get_tune_settings = get_tune_settings,
.read_status = read_status,
.read_ber = read_ber,
.read_signal_strength = read_signal_strength,
.read_snr = read_snr,
.read_ucblocks = read_ucblocks,
#ifdef USE_ALGO
.get_frontend_algo = get_algo,
.search = search,
.tune = tune,
#endif
};
static int probe(struct cxd_state *state)
{
u8 ChipID = 0x00;
int status;
status = readregst(state, 0x00, 0xFD, &ChipID, 1);
if (status)
status = readregsx(state, 0x00, 0xFD, &ChipID, 1);
if (status)
return status;
/*printk("ChipID = %02X\n", ChipID);*/
switch (ChipID) {
case 0xa4:
state->type = CXD2843;
memcpy(&state->frontend.ops, &common_ops_2843,
sizeof(struct dvb_frontend_ops));
break;
case 0xb1:
state->type = CXD2837;
memcpy(&state->frontend.ops, &common_ops_2837,
sizeof(struct dvb_frontend_ops));
break;
case 0xb0:
state->type = CXD2838;
memcpy(&state->frontend.ops, &common_ops_2838,
sizeof(struct dvb_frontend_ops));
break;
case 0xc1:
state->type = CXD2854;
memcpy(&state->frontend.ops, &common_ops_2854,
sizeof(struct dvb_frontend_ops));
state->is2k14 = 1;
break;
default:
return -1;
}
state->frontend.demodulator_priv = state;
return 0;
}
struct dvb_frontend *cxd2843_attach(struct i2c_adapter *i2c,
struct cxd2843_cfg *cfg)
{
struct cxd_state *state = NULL;
state = kzalloc(sizeof(struct cxd_state), GFP_KERNEL);
if (!state)
return NULL;
state->i2c = i2c;
init_state(state, cfg);
if (probe(state) == 0) {
init(state);
return &state->frontend;
}
pr_err("cxd2843: not found\n");
kfree(state);
return NULL;
}
EXPORT_SYMBOL(cxd2843_attach);
MODULE_DESCRIPTION("CXD2843/37/38 driver");
MODULE_AUTHOR("Ralph Metzler, Manfred Voelkel");
MODULE_LICENSE("GPL");