1
0
mirror of https://github.com/DigitalDevices/dddvb.git synced 2023-10-10 13:37:43 +02:00
dddvb/ddbridge/ddbridge-mci.c
2021-08-07 22:28:42 +02:00

466 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* ddbridge-mci.c: Digital Devices microcode interface
*
* Copyright (C) 2017-2018 Digital Devices GmbH
* Ralph Metzler <rjkm@metzlerbros.de>
* Marcus Metzler <mocm@metzlerbros.de>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 only, as published by the Free Software Foundation.
*
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, point your browser to
* http://www.gnu.org/copyleft/gpl.html
*/
#include "ddbridge.h"
#include "ddbridge-io.h"
#include "ddbridge-mci.h"
static LIST_HEAD(mci_list);
static int mci_reset(struct ddb_link *link)
{
const struct ddb_regmap *regmap = link->info->regmap;
u32 control;
u32 status = 0;
u32 timeout = 40;
union {
u32 u[4];
char s[16];
} version;
u32 vaddr;
if (!regmap || !regmap->mci)
return -EINVAL;
control = regmap->mci->base;
vaddr = regmap->mci_buf->base + 0xf0;
if ((link->info->type == DDB_OCTOPUS_MCI) &&
(ddblreadl(link, control) & MCI_CONTROL_START_COMMAND)) {
ddblwritel(link, MCI_CONTROL_RESET, control);
ddblwritel(link, 0, control + 4); /* 1= no internal init */
msleep(300);
}
ddblwritel(link, 0, control);
while (1) {
status = ddblreadl(link, control);
if ((status & MCI_CONTROL_READY) == MCI_CONTROL_READY)
break;
if (--timeout == 0)
break;
msleep(50);
}
dev_info(link->dev->dev, "MCI control port @ %08x\n", control);
if ((status & MCI_CONTROL_READY) == 0) {
dev_err(link->dev->dev, "MCI init failed!\n");
return -1;
}
version.u[0] = ddblreadl(link, vaddr);
version.u[1] = ddblreadl(link, vaddr + 4);
version.u[2] = ddblreadl(link, vaddr + 8);
version.u[3] = ddblreadl(link, vaddr + 12);
dev_info(link->dev->dev, "MCI port OK, init time %u msecs\n", (40 - timeout) * 50);
dev_info(link->dev->dev, "MCI firmware version %s.%d\n", version.s, version.s[15]);
return 0;
}
static int ddb_mci_cmd_raw_unlocked(struct ddb_link *link,
u32 *cmd, u32 cmd_len,
u32 *res, u32 res_len)
{
const struct ddb_regmap *regmap = link->info->regmap;
u32 control, command, result;
u32 i, val;
unsigned long stat;
if (!regmap || ! regmap->mci)
return -EINVAL;
control = regmap->mci->base;
command = regmap->mci_buf->base;
result = command + MCI_COMMAND_SIZE;
val = ddblreadl(link, control);
if (val & (MCI_CONTROL_RESET | MCI_CONTROL_START_COMMAND))
return -EIO;
if (cmd && cmd_len)
for (i = 0; i < cmd_len; i++)
ddblwritel(link, cmd[i], command + i * 4);
val |= (MCI_CONTROL_START_COMMAND |
MCI_CONTROL_ENABLE_DONE_INTERRUPT);
ddblwritel(link, val, control);
stat = wait_for_completion_timeout(&link->mci_completion, HZ);
if (stat == 0) {
u32 istat = ddblreadl(link, INTERRUPT_STATUS);
dev_err(link->dev->dev, "MCI timeout\n");
val = ddblreadl(link, control);
if (val == 0xffffffff) {
dev_err(link->dev->dev,
"Lost PCIe link!\n");
return -EIO;
} else {
dev_err(link->dev->dev,
"DDBridge IRS %08x link %u\n",
istat, link->nr);
if (istat & 1)
ddblwritel(link, istat, INTERRUPT_ACK);
if (link->nr)
ddbwritel(link->dev,
0xffffff, INTERRUPT_ACK);
}
}
//print_hex_dump(KERN_INFO, "MCI", DUMP_PREFIX_OFFSET, 16, 1, cmd, cmd_len, false);
if (res && res_len)
for (i = 0; i < res_len; i++)
res[i] = ddblreadl(link, result + i * 4);
return 0;
}
int ddb_mci_cmd_link(struct ddb_link *link,
struct mci_command *command,
struct mci_result *result)
{
struct mci_result res;
int stat;
if (!result)
result = &res;
mutex_lock(&link->mci_lock);
stat = ddb_mci_cmd_raw_unlocked(link,
(u32 *)command,
sizeof(*command)/sizeof(u32),
(u32 *)result,
sizeof(*result)/sizeof(u32));
mutex_unlock(&link->mci_lock);
if (command && result && (result->status & 0x80))
dev_warn(link->dev->dev,
"mci_command 0x%02x, error=0x%02x\n",
command->command, result->status);
return stat;
}
static void mci_handler(void *priv)
{
struct ddb_link *link = (struct ddb_link *) priv;
complete(&link->mci_completion);
}
int mci_init(struct ddb_link *link)
{
int result;
mutex_init(&link->mci_lock);
init_completion(&link->mci_completion);
result = mci_reset(link);
if (result < 0)
return result;
if (link->ids.device == 0x0009 || link->ids.device == 0x000b)
ddblwritel(link, SX8_TSCONFIG_MODE_NORMAL, SX8_TSCONFIG);
ddb_irq_set(link->dev, link->nr,
link->info->regmap->irq_base_mci,
mci_handler, link);
link->mci_ok = 1;
return result;
}
int mci_cmd_val(struct ddb_link *link, uint32_t cmd, uint32_t val)
{
struct mci_result result;
struct mci_command command;
command.command_word = cmd;
command.params[0] = val;
return ddb_mci_cmd_link(link, &command, &result);
}
/****************************************************************************/
/****************************************************************************/
int ddb_mci_cmd(struct mci *state,
struct mci_command *command,
struct mci_result *result)
{
return ddb_mci_cmd_link(state->base->link, command, result);
}
int ddb_mci_cmd_raw(struct mci *state,
struct mci_command *command, u32 command_len,
struct mci_result *result, u32 result_len)
{
struct ddb_link *link = state->base->link;
int stat;
mutex_lock(&link->mci_lock);
stat = ddb_mci_cmd_raw_unlocked(link,
(u32 *)command, command_len,
(u32 *)result, result_len);
mutex_unlock(&link->mci_lock);
return stat;
}
int ddb_mci_get_status(struct mci *mci, struct mci_result *res)
{
struct mci_command cmd;
cmd.command = MCI_CMD_GETSTATUS;
cmd.demod = mci->demod;
return ddb_mci_cmd_raw(mci, &cmd, 1, res, 1);
}
static void ddb_mci_print_info(struct mci *mci)
{
struct ddb_link *link = mci->base->link;
const struct ddb_regmap *regmap = link->info->regmap;
struct mci_command cmd;
struct mci_result res;
cmd.command = 0x0f;
if (ddb_mci_cmd_raw(mci, &cmd, 1, &res, 1) < 0)
return;
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1,
link->dev->regs + regmap->mci_buf->base + MCI_COMMAND_SIZE,
16, false);
}
int ddb_mci_get_snr(struct dvb_frontend *fe)
{
struct mci *mci = fe->demodulator_priv;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
p->cnr.len = 1;
p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
p->cnr.stat[0].svalue =
(s64) mci->signal_info.dvbs2_signal_info.signal_to_noise * 10;
return 0;
}
int ddb_mci_get_strength(struct dvb_frontend *fe)
{
struct mci *mci = fe->demodulator_priv;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
s32 str;
str = mci->signal_info.dvbs2_signal_info.channel_power * 10;
p->strength.len = 1;
p->strength.stat[0].scale = FE_SCALE_DECIBEL;
p->strength.stat[0].svalue = str;
return 0;
}
int ddb_mci_get_info(struct mci *mci)
{
int stat;
struct mci_command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.command = MCI_CMD_GETSIGNALINFO;
cmd.demod = mci->demod;
stat = ddb_mci_cmd(mci, &cmd, &mci->signal_info);
return stat;
}
/****************************************************************************/
/****************************************************************************/
void ddb_mci_proc_info(struct mci *mci, struct dtv_frontend_properties *p)
{
const enum fe_modulation modcod2mod[0x20] = {
QPSK, QPSK, QPSK, QPSK,
QPSK, QPSK, QPSK, QPSK,
QPSK, QPSK, QPSK, QPSK,
PSK_8, PSK_8, PSK_8, PSK_8,
PSK_8, PSK_8, APSK_16, APSK_16,
APSK_16, APSK_16, APSK_16, APSK_16,
APSK_32, APSK_32, APSK_32, APSK_32,
APSK_32,
};
const enum fe_code_rate modcod2fec[0x20] = {
FEC_NONE, FEC_1_4, FEC_1_3, FEC_2_5,
FEC_1_2, FEC_3_5, FEC_2_3, FEC_3_4,
FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
FEC_3_5, FEC_2_3, FEC_3_4, FEC_5_6,
FEC_8_9, FEC_9_10, FEC_2_3, FEC_3_4,
FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
FEC_3_4, FEC_4_5, FEC_5_6, FEC_8_9,
FEC_9_10, FEC_NONE, FEC_NONE, FEC_NONE,
};
const enum fe_code_rate dvbs_fec_lut[8] = {
FEC_1_2, FEC_2_3, FEC_3_4, FEC_5_6,
FEC_7_8, FEC_7_8, FEC_NONE, FEC_NONE,
};
const enum fe_rolloff ro_lut[8] = {
ROLLOFF_35, ROLLOFF_25, ROLLOFF_20, ROLLOFF_10,
ROLLOFF_5, ROLLOFF_15, ROLLOFF_35, ROLLOFF_35
};
p->frequency =
mci->signal_info.dvbs2_signal_info.frequency;
switch (p->delivery_system) {
default:
case SYS_DVBS:
case SYS_DVBS2:
{
u32 pls_code =
mci->signal_info.dvbs2_signal_info.pls_code;
p->frequency =
mci->signal_info.dvbs2_signal_info.frequency / 1000;
p->delivery_system =
(mci->signal_info.dvbs2_signal_info.standard == 2) ?
SYS_DVBS2 : SYS_DVBS;
p->inversion = (mci->signal_info.dvbs2_signal_info.roll_off & 0x80) ?
INVERSION_ON : INVERSION_OFF;
if (mci->signal_info.dvbs2_signal_info.standard == 2) {
u32 modcod;
p->delivery_system = SYS_DVBS2;
p->transmission_mode = pls_code;
p->rolloff =
ro_lut[mci->signal_info.dvbs2_signal_info.roll_off & 7];
p->pilot = (pls_code & 1) ? PILOT_ON : PILOT_OFF;
if (pls_code & 0x80) {
/* no suitable values defined in Linux DVB API yet */
/* modcod = (0x7f & pls_code) >> 1; */
p->fec_inner = FEC_NONE;
p->modulation = 0;
if (pls_code >= 250)
p->pilot = PILOT_ON;
} else {
modcod = (0x7c & pls_code) >> 2;
p->fec_inner = modcod2fec[modcod];
p->modulation = modcod2mod[modcod];
}
} else {
p->delivery_system = SYS_DVBS;
p->rolloff = ROLLOFF_35;
p->pilot = PILOT_OFF;
p->fec_inner = dvbs_fec_lut[pls_code & 7];
p->modulation = QPSK;
}
break;
}
case SYS_DVBC_ANNEX_A:
break;
case SYS_DVBT:
break;
case SYS_DVBT2:
break;
case SYS_DVBC2:
break;
case SYS_ISDBT:
break;
}
/* post is correct, we cannot provide both pre and post at the same time */
/* set pre and post the same for now */
p->pre_bit_error.len = 1;
p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
p->pre_bit_error.stat[0].uvalue =
mci->signal_info.dvbs2_signal_info.ber_numerator;
p->pre_bit_count.len = 1;
p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
p->pre_bit_count.stat[0].uvalue =
mci->signal_info.dvbs2_signal_info.ber_denominator;
p->post_bit_error.len = 1;
p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
p->post_bit_error.stat[0].uvalue =
mci->signal_info.dvbs2_signal_info.ber_numerator;
p->post_bit_count.len = 1;
p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
p->post_bit_count.stat[0].uvalue =
mci->signal_info.dvbs2_signal_info.ber_denominator;
p->block_error.len = 1;
p->block_error.stat[0].scale = FE_SCALE_COUNTER;
p->block_error.stat[0].uvalue =
mci->signal_info.dvbs2_signal_info.packet_errors;
p->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->cnr.len = 1;
p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
p->cnr.stat[0].svalue = (s64)
mci->signal_info.dvbs2_signal_info.signal_to_noise * 10;
p->strength.len = 1;
p->strength.stat[0].scale = FE_SCALE_DECIBEL;
p->strength.stat[0].svalue = (s64)
mci->signal_info.dvbs2_signal_info.channel_power * 10;
}
static struct mci_base *match_base(void *key)
{
struct mci_base *p;
list_for_each_entry(p, &mci_list, mci_list)
if (p->key == key)
return p;
return NULL;
}
struct dvb_frontend *ddb_mci_attach(struct ddb_input *input,
struct mci_cfg *cfg, int nr, int tuner)
{
struct ddb_port *port = input->port;
struct ddb *dev = port->dev;
struct ddb_link *link = &dev->link[port->lnr];
struct mci_base *base;
struct mci *state;
void *key = cfg->type ? (void *) port : (void *) link;
state = kzalloc(cfg->state_size, GFP_KERNEL);
if (!state)
return NULL;
base = match_base(key);
if (base) {
base->count++;
state->base = base;
} else {
base = kzalloc(cfg->base_size, GFP_KERNEL);
if (!base)
goto fail;
base->key = key;
base->count = 1;
base->link = link;
link->mci_base = base;
mutex_init(&base->tuner_lock);
state->base = base;
if (!link->mci_ok) {
kfree(base);
goto fail;
}
list_add(&base->mci_list, &mci_list);
if (cfg->base_init)
cfg->base_init(base);
}
memcpy(&state->fe.ops, cfg->fe_ops, sizeof(struct dvb_frontend_ops));
state->fe.demodulator_priv = state;
state->nr = nr;
state->demod = nr;
state->tuner = tuner;
state->input = input;
if (cfg->init)
cfg->init(state);
return &state->fe;
fail:
kfree(state);
return NULL;
}