dddvb/frontends/stv0910.c

1407 lines
38 KiB
C

/*
* Driver for the ST STV0910 DVB-S/S2 demodulator.
*
* Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de>
* Marcus Metzler <mocm@metzlerbros.de>
* developed for Digital Devices GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 only, as published by the Free Software Foundation.
*
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
* Or, point your browser to http://www.gnu.org/copyleft/gpl.html
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/version.h>
#include <asm/div64.h>
#include "dvb_frontend.h"
#include "stv0910.h"
#include "stv0910_regs.h"
#define TUNING_DELAY 200
#define BER_SRC_S 0x20
#define BER_SRC_S2 0x20
LIST_HEAD(stvlist);
enum ReceiveMode { Mode_None, Mode_DVBS, Mode_DVBS2, Mode_Auto };
enum DVBS2_FECType { DVBS2_64K, DVBS2_16K };
enum DVBS2_ModCod {
DVBS2_DUMMY_PLF, DVBS2_QPSK_1_4, DVBS2_QPSK_1_3, DVBS2_QPSK_2_5,
DVBS2_QPSK_1_2, DVBS2_QPSK_3_5, DVBS2_QPSK_2_3, DVBS2_QPSK_3_4,
DVBS2_QPSK_4_5, DVBS2_QPSK_5_6, DVBS2_QPSK_8_9, DVBS2_QPSK_9_10,
DVBS2_8PSK_3_5, DVBS2_8PSK_2_3, DVBS2_8PSK_3_4, DVBS2_8PSK_5_6,
DVBS2_8PSK_8_9, DVBS2_8PSK_9_10, DVBS2_16APSK_2_3, DVBS2_16APSK_3_4,
DVBS2_16APSK_4_5, DVBS2_16APSK_5_6, DVBS2_16APSK_8_9, DVBS2_16APSK_9_10,
DVBS2_32APSK_3_4, DVBS2_32APSK_4_5, DVBS2_32APSK_5_6, DVBS2_32APSK_8_9,
DVBS2_32APSK_9_10
};
enum FE_STV0910_ModCod {
FE_DUMMY_PLF, FE_QPSK_14, FE_QPSK_13, FE_QPSK_25,
FE_QPSK_12, FE_QPSK_35, FE_QPSK_23, FE_QPSK_34,
FE_QPSK_45, FE_QPSK_56, FE_QPSK_89, FE_QPSK_910,
FE_8PSK_35, FE_8PSK_23, FE_8PSK_34, FE_8PSK_56,
FE_8PSK_89, FE_8PSK_910, FE_16APSK_23, FE_16APSK_34,
FE_16APSK_45, FE_16APSK_56, FE_16APSK_89, FE_16APSK_910,
FE_32APSK_34, FE_32APSK_45, FE_32APSK_56, FE_32APSK_89,
FE_32APSK_910
};
enum FE_STV0910_RollOff { FE_SAT_35, FE_SAT_25, FE_SAT_20, FE_SAT_15 };
static inline u32 MulDiv32(u32 a, u32 b, u32 c)
{
u64 tmp64;
tmp64 = (u64)a * (u64)b;
do_div(tmp64, c);
return (u32) tmp64;
}
struct stv_base {
struct list_head stvlist;
u8 adr;
struct i2c_adapter *i2c;
struct mutex i2c_lock;
struct mutex reg_lock;
int count;
u32 extclk;
u32 mclk;
};
struct stv {
struct stv_base *base;
struct dvb_frontend fe;
int nr;
u16 regoff;
u8 i2crpt;
u8 tscfgh;
u8 tsspeed;
unsigned long tune_time;
s32 SearchRange;
u32 Started;
u32 DemodLockTime;
enum ReceiveMode ReceiveMode;
u32 DemodTimeout;
u32 FecTimeout;
u32 FirstTimeLock;
u8 DEMOD;
u32 SymbolRate;
u8 LastViterbiRate;
enum fe_code_rate PunctureRate;
enum FE_STV0910_ModCod ModCod;
enum DVBS2_FECType FECType;
u32 Pilots;
enum FE_STV0910_RollOff FERollOff;
u32 LastBERNumerator;
u32 LastBERDenominator;
u8 BERScale;
};
struct SInitTable {
u16 Address;
u8 Data;
};
struct SLookupSNTable {
s16 SignalToNoise;
u16 RefValue;
};
static inline int i2c_write(struct i2c_adapter *adap, u8 adr,
u8 *data, int len)
{
struct i2c_msg msg = {.addr = adr, .flags = 0,
.buf = data, .len = len};
return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1;
}
static int i2c_write_reg16(struct i2c_adapter *adap, u8 adr, u16 reg, u8 val)
{
u8 msg[3] = {reg >> 8, reg & 0xff, val};
return i2c_write(adap, adr, msg, 3);
}
static int write_reg(struct stv *state, u16 reg, u8 val)
{
return i2c_write_reg16(state->base->i2c, state->base->adr, reg, val);
}
static inline int i2c_read_reg16(struct i2c_adapter *adapter, u8 adr,
u16 reg, u8 *val)
{
u8 msg[2] = {reg >> 8, reg & 0xff};
struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
.buf = msg, .len = 2},
{.addr = adr, .flags = I2C_M_RD,
.buf = val, .len = 1 } };
return (i2c_transfer(adapter, msgs, 2) == 2) ? 0 : -1;
}
static int read_reg(struct stv *state, u16 reg, u8 *val)
{
return i2c_read_reg16(state->base->i2c, state->base->adr, reg, val);
}
static inline int i2c_read_regs16(struct i2c_adapter *adapter, u8 adr,
u16 reg, u8 *val, int len)
{
u8 msg[2] = {reg >> 8, reg & 0xff};
struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
.buf = msg, .len = 2},
{.addr = adr, .flags = I2C_M_RD,
.buf = val, .len = len } };
return (i2c_transfer(adapter, msgs, 2) == 2) ? 0 : -1;
}
static int read_regs(struct stv *state, u16 reg, u8 *val, int len)
{
return i2c_read_regs16(state->base->i2c, state->base->adr,
reg, val, len);
}
struct SLookupSNTable S1_SN_Lookup[] = {
{ 0, 9242 }, /*C/N= 0dB*/
{ 05, 9105 }, /*C/N=0.5dB*/
{ 10, 8950 }, /*C/N=1.0dB*/
{ 15, 8780 }, /*C/N=1.5dB*/
{ 20, 8566 }, /*C/N=2.0dB*/
{ 25, 8366 }, /*C/N=2.5dB*/
{ 30, 8146 }, /*C/N=3.0dB*/
{ 35, 7908 }, /*C/N=3.5dB*/
{ 40, 7666 }, /*C/N=4.0dB*/
{ 45, 7405 }, /*C/N=4.5dB*/
{ 50, 7136 }, /*C/N=5.0dB*/
{ 55, 6861 }, /*C/N=5.5dB*/
{ 60, 6576 }, /*C/N=6.0dB*/
{ 65, 6330 }, /*C/N=6.5dB*/
{ 70, 6048 }, /*C/N=7.0dB*/
{ 75, 5768 }, /*C/N=7.5dB*/
{ 80, 5492 }, /*C/N=8.0dB*/
{ 85, 5224 }, /*C/N=8.5dB*/
{ 90, 4959 }, /*C/N=9.0dB*/
{ 95, 4709 }, /*C/N=9.5dB*/
{ 100, 4467 }, /*C/N=10.0dB*/
{ 105, 4236 }, /*C/N=10.5dB*/
{ 110, 4013 }, /*C/N=11.0dB*/
{ 115, 3800 }, /*C/N=11.5dB*/
{ 120, 3598 }, /*C/N=12.0dB*/
{ 125, 3406 }, /*C/N=12.5dB*/
{ 130, 3225 }, /*C/N=13.0dB*/
{ 135, 3052 }, /*C/N=13.5dB*/
{ 140, 2889 }, /*C/N=14.0dB*/
{ 145, 2733 }, /*C/N=14.5dB*/
{ 150, 2587 }, /*C/N=15.0dB*/
{ 160, 2318 }, /*C/N=16.0dB*/
{ 170, 2077 }, /*C/N=17.0dB*/
{ 180, 1862 }, /*C/N=18.0dB*/
{ 190, 1670 }, /*C/N=19.0dB*/
{ 200, 1499 }, /*C/N=20.0dB*/
{ 210, 1347 }, /*C/N=21.0dB*/
{ 220, 1213 }, /*C/N=22.0dB*/
{ 230, 1095 }, /*C/N=23.0dB*/
{ 240, 992 }, /*C/N=24.0dB*/
{ 250, 900 }, /*C/N=25.0dB*/
{ 260, 826 }, /*C/N=26.0dB*/
{ 270, 758 }, /*C/N=27.0dB*/
{ 280, 702 }, /*C/N=28.0dB*/
{ 290, 653 }, /*C/N=29.0dB*/
{ 300, 613 }, /*C/N=30.0dB*/
{ 310, 579 }, /*C/N=31.0dB*/
{ 320, 550 }, /*C/N=32.0dB*/
{ 330, 526 }, /*C/N=33.0dB*/
{ 350, 490 }, /*C/N=33.0dB*/
{ 400, 445 }, /*C/N=40.0dB*/
{ 450, 430 }, /*C/N=45.0dB*/
{ 500, 426 }, /*C/N=50.0dB*/
{ 510, 425 } /*C/N=51.0dB*/
};
struct SLookupSNTable S2_SN_Lookup[] = {
{ -30, 13950 }, /*C/N=-2.5dB*/
{ -25, 13580 }, /*C/N=-2.5dB*/
{ -20, 13150 }, /*C/N=-2.0dB*/
{ -15, 12760 }, /*C/N=-1.5dB*/
{ -10, 12345 }, /*C/N=-1.0dB*/
{ -05, 11900 }, /*C/N=-0.5dB*/
{ 0, 11520 }, /*C/N= 0dB*/
{ 05, 11080 }, /*C/N= 0.5dB*/
{ 10, 10630 }, /*C/N= 1.0dB*/
{ 15, 10210 }, /*C/N= 1.5dB*/
{ 20, 9790 }, /*C/N= 2.0dB*/
{ 25, 9390 }, /*C/N= 2.5dB*/
{ 30, 8970 }, /*C/N= 3.0dB*/
{ 35, 8575 }, /*C/N= 3.5dB*/
{ 40, 8180 }, /*C/N= 4.0dB*/
{ 45, 7800 }, /*C/N= 4.5dB*/
{ 50, 7430 }, /*C/N= 5.0dB*/
{ 55, 7080 }, /*C/N= 5.5dB*/
{ 60, 6720 }, /*C/N= 6.0dB*/
{ 65, 6320 }, /*C/N= 6.5dB*/
{ 70, 6060 }, /*C/N= 7.0dB*/
{ 75, 5760 }, /*C/N= 7.5dB*/
{ 80, 5480 }, /*C/N= 8.0dB*/
{ 85, 5200 }, /*C/N= 8.5dB*/
{ 90, 4930 }, /*C/N= 9.0dB*/
{ 95, 4680 }, /*C/N= 9.5dB*/
{ 100, 4425 }, /*C/N=10.0dB*/
{ 105, 4210 }, /*C/N=10.5dB*/
{ 110, 3980 }, /*C/N=11.0dB*/
{ 115, 3765 }, /*C/N=11.5dB*/
{ 120, 3570 }, /*C/N=12.0dB*/
{ 125, 3315 }, /*C/N=12.5dB*/
{ 130, 3140 }, /*C/N=13.0dB*/
{ 135, 2980 }, /*C/N=13.5dB*/
{ 140, 2820 }, /*C/N=14.0dB*/
{ 145, 2670 }, /*C/N=14.5dB*/
{ 150, 2535 }, /*C/N=15.0dB*/
{ 160, 2270 }, /*C/N=16.0dB*/
{ 170, 2035 }, /*C/N=17.0dB*/
{ 180, 1825 }, /*C/N=18.0dB*/
{ 190, 1650 }, /*C/N=19.0dB*/
{ 200, 1485 }, /*C/N=20.0dB*/
{ 210, 1340 }, /*C/N=21.0dB*/
{ 220, 1212 }, /*C/N=22.0dB*/
{ 230, 1100 }, /*C/N=23.0dB*/
{ 240, 1000 }, /*C/N=24.0dB*/
{ 250, 910 }, /*C/N=25.0dB*/
{ 260, 836 }, /*C/N=26.0dB*/
{ 270, 772 }, /*C/N=27.0dB*/
{ 280, 718 }, /*C/N=28.0dB*/
{ 290, 671 }, /*C/N=29.0dB*/
{ 300, 635 }, /*C/N=30.0dB*/
{ 310, 602 }, /*C/N=31.0dB*/
{ 320, 575 }, /*C/N=32.0dB*/
{ 330, 550 }, /*C/N=33.0dB*/
{ 350, 517 }, /*C/N=35.0dB*/
{ 400, 480 }, /*C/N=40.0dB*/
{ 450, 466 }, /*C/N=45.0dB*/
{ 500, 464 }, /*C/N=50.0dB*/
{ 510, 463 }, /*C/N=51.0dB*/
};
/*********************************************************************
Tracking carrier loop carrier QPSK 1/4 to 8PSK 9/10 long Frame
*********************************************************************/
static u8 S2CarLoop[] = {
/* Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff
20MPon 20MPoff 30MPon 30MPoff*/
/* FE_QPSK_14 */
0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x2A, 0x1C, 0x3A, 0x3B,
/* FE_QPSK_13 */
0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x3A, 0x0C, 0x3A, 0x2B,
/* FE_QPSK_25 */
0x1C, 0x3C, 0x1B, 0x3C, 0x3A, 0x1C, 0x3A, 0x3B, 0x3A, 0x2B,
/* FE_QPSK_12 */
0x0C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B,
/* FE_QPSK_35 */
0x1C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B,
/* FE_QPSK_23 */
0x2C, 0x2C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B,
/* FE_QPSK_34 */
0x3C, 0x2C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B,
/* FE_QPSK_45 */
0x0D, 0x3C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B,
/* FE_QPSK_56 */
0x1D, 0x3C, 0x0C, 0x2C, 0x2B, 0x1C, 0x1B, 0x3B, 0x0B, 0x1B,
/* FE_QPSK_89 */
0x3D, 0x0D, 0x0C, 0x2C, 0x2B, 0x0C, 0x2B, 0x2B, 0x0B, 0x0B,
/* FE_QPSK_910 */
0x1E, 0x0D, 0x1C, 0x2C, 0x3B, 0x0C, 0x2B, 0x2B, 0x1B, 0x0B,
/* FE_8PSK_35 */
0x28, 0x09, 0x28, 0x09, 0x28, 0x09, 0x28, 0x08, 0x28, 0x27,
/* FE_8PSK_23 */
0x19, 0x29, 0x19, 0x29, 0x19, 0x29, 0x38, 0x19, 0x28, 0x09,
/* FE_8PSK_34 */
0x1A, 0x0B, 0x1A, 0x3A, 0x0A, 0x2A, 0x39, 0x2A, 0x39, 0x1A,
/* FE_8PSK_56 */
0x2B, 0x2B, 0x1B, 0x1B, 0x0B, 0x1B, 0x1A, 0x0B, 0x1A, 0x1A,
/* FE_8PSK_89 */
0x0C, 0x0C, 0x3B, 0x3B, 0x1B, 0x1B, 0x2A, 0x0B, 0x2A, 0x2A,
/* FE_8PSK_910 */
0x0C, 0x1C, 0x0C, 0x3B, 0x2B, 0x1B, 0x3A, 0x0B, 0x2A, 0x2A,
/**********************************************************************
Tracking carrier loop carrier 16APSK 2/3 to 32APSK 9/10 long Frame
**********************************************************************/
/*Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff 20MPon
20MPoff 30MPon 30MPoff*/
/* FE_16APSK_23 */
0x0A, 0x0A, 0x0A, 0x0A, 0x1A, 0x0A, 0x39, 0x0A, 0x29, 0x0A,
/* FE_16APSK_34 */
0x0A, 0x0A, 0x0A, 0x0A, 0x0B, 0x0A, 0x2A, 0x0A, 0x1A, 0x0A,
/* FE_16APSK_45 */
0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A,
/* FE_16APSK_56 */
0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A,
/* FE_16APSK_89 */
0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A,
/* FE_16APSK_910 */
0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A,
/* FE_32APSK_34 */
0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
/* FE_32APSK_45 */
0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
/* FE_32APSK_56 */
0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
/* FE_32APSK_89 */
0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
/* FE_32APSK_910 */
0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
};
static u8 get_optim_cloop(struct stv *state,
enum FE_STV0910_ModCod ModCod, u32 Pilots)
{
int i = 0;
if (ModCod >= FE_32APSK_910)
i = ((int)FE_32APSK_910 - (int)FE_QPSK_14) * 10;
else if (ModCod >= FE_QPSK_14)
i = ((int)ModCod - (int)FE_QPSK_14) * 10;
if (state->SymbolRate <= 3000000)
i += 0;
else if (state->SymbolRate <= 7000000)
i += 2;
else if (state->SymbolRate <= 15000000)
i += 4;
else if (state->SymbolRate <= 25000000)
i += 6;
else
i += 8;
if (!Pilots)
i += 1;
return S2CarLoop[i];
}
static int GetCurSymbolRate(struct stv *state, u32 *pSymbolRate)
{
int status = 0;
u8 SymbFreq0;
u8 SymbFreq1;
u8 SymbFreq2;
u8 SymbFreq3;
u8 TimOffs0;
u8 TimOffs1;
u8 TimOffs2;
u32 SymbolRate;
s32 TimingOffset;
*pSymbolRate = 0;
if (!state->Started)
return status;
read_reg(state, RSTV0910_P2_SFR3 + state->regoff, &SymbFreq3);
read_reg(state, RSTV0910_P2_SFR2 + state->regoff, &SymbFreq2);
read_reg(state, RSTV0910_P2_SFR1 + state->regoff, &SymbFreq1);
read_reg(state, RSTV0910_P2_SFR0 + state->regoff, &SymbFreq0);
read_reg(state, RSTV0910_P2_TMGREG2 + state->regoff, &TimOffs2);
read_reg(state, RSTV0910_P2_TMGREG1 + state->regoff, &TimOffs1);
read_reg(state, RSTV0910_P2_TMGREG0 + state->regoff, &TimOffs0);
SymbolRate = ((u32) SymbFreq3 << 24) | ((u32) SymbFreq2 << 16) |
((u32) SymbFreq1 << 8) | (u32) SymbFreq0;
TimingOffset = ((u32) TimOffs2 << 16) | ((u32) TimOffs1 << 8) |
(u32) TimOffs0;
if ((TimingOffset & (1<<23)) != 0)
TimingOffset |= 0xFF000000; /* Sign extent */
SymbolRate = (u32) (((u64) SymbolRate * state->base->mclk) >> 32);
TimingOffset = (s32) (((s64) SymbolRate * (s64) TimingOffset) >> 29);
*pSymbolRate = SymbolRate + TimingOffset;
return 0;
}
static int GetSignalParameters(struct stv *state)
{
if (!state->Started)
return -1;
if (state->ReceiveMode == Mode_DVBS2) {
u8 tmp;
u8 rolloff;
read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
state->ModCod = (enum FE_STV0910_ModCod) ((tmp & 0x7c) >> 2);
state->Pilots = (tmp & 0x01) != 0;
state->FECType = (enum DVBS2_FECType) ((tmp & 0x02) >> 1);
read_reg(state, RSTV0910_P2_TMGOBS + state->regoff, &rolloff);
rolloff = rolloff >> 6;
state->FERollOff = (enum FE_STV0910_RollOff) rolloff;
} else if (state->ReceiveMode == Mode_DVBS) {
/* todo */
}
return 0;
}
static int TrackingOptimization(struct stv *state)
{
u32 SymbolRate = 0;
u8 tmp;
GetCurSymbolRate(state, &SymbolRate);
read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &tmp);
tmp &= ~0xC0;
switch (state->ReceiveMode) {
case Mode_DVBS:
tmp |= 0x40; break;
case Mode_DVBS2:
tmp |= 0x80; break;
default:
tmp |= 0xC0; break;
}
write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, tmp);
if (state->ReceiveMode == Mode_DVBS2) {
/* force to PRE BCH Rate */
write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
BER_SRC_S2 | state->BERScale);
if (state->FECType == DVBS2_64K) {
u8 aclc = get_optim_cloop(state, state->ModCod,
state->Pilots);
if (state->ModCod <= FE_QPSK_910) {
write_reg(state, RSTV0910_P2_ACLC2S2Q +
state->regoff, aclc);
} else if (state->ModCod <= FE_8PSK_910) {
write_reg(state, RSTV0910_P2_ACLC2S2Q +
state->regoff, 0x2a);
write_reg(state, RSTV0910_P2_ACLC2S28 +
state->regoff, aclc);
} else if (state->ModCod <= FE_16APSK_910) {
write_reg(state, RSTV0910_P2_ACLC2S2Q +
state->regoff, 0x2a);
write_reg(state, RSTV0910_P2_ACLC2S216A +
state->regoff, aclc);
} else if (state->ModCod <= FE_32APSK_910) {
write_reg(state, RSTV0910_P2_ACLC2S2Q +
state->regoff, 0x2a);
write_reg(state, RSTV0910_P2_ACLC2S232A +
state->regoff, aclc);
}
}
}
if (state->ReceiveMode == Mode_DVBS) {
u8 tmp;
read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
state->PunctureRate = FEC_NONE;
switch (tmp & 0x1F) {
case 0x0d:
state->PunctureRate = FEC_1_2;
break;
case 0x12:
state->PunctureRate = FEC_2_3;
break;
case 0x15:
state->PunctureRate = FEC_3_4;
break;
case 0x18:
state->PunctureRate = FEC_5_6;
break;
case 0x1A:
state->PunctureRate = FEC_7_8;
break;
}
}
return 0;
}
static int GetSignalToNoise(struct stv *state, s32 *SignalToNoise)
{
int i;
u8 Data0;
u8 Data1;
u16 Data;
int nLookup;
struct SLookupSNTable *Lookup;
*SignalToNoise = 0;
if (!state->Started)
return 0;
if (state->ReceiveMode == Mode_DVBS2) {
read_reg(state, RSTV0910_P2_NNOSPLHT1 + state->regoff, &Data1);
read_reg(state, RSTV0910_P2_NNOSPLHT0 + state->regoff, &Data0);
nLookup = ARRAY_SIZE(S2_SN_Lookup);
Lookup = S2_SN_Lookup;
} else {
read_reg(state, RSTV0910_P2_NNOSDATAT1 + state->regoff, &Data1);
read_reg(state, RSTV0910_P2_NNOSDATAT0 + state->regoff, &Data0);
nLookup = ARRAY_SIZE(S1_SN_Lookup);
Lookup = S1_SN_Lookup;
}
Data = (((u16)Data1) << 8) | (u16) Data0;
if (Data > Lookup[0].RefValue) {
*SignalToNoise = Lookup[0].SignalToNoise;
} else if (Data <= Lookup[nLookup-1].RefValue) {
*SignalToNoise = Lookup[nLookup-1].SignalToNoise;
} else {
for (i = 0; i < nLookup - 1; i += 1) {
if (Data <= Lookup[i].RefValue &&
Data > Lookup[i+1].RefValue) {
*SignalToNoise =
(s32)(Lookup[i].SignalToNoise) +
((s32)(Data - Lookup[i].RefValue) *
(s32)(Lookup[i+1].SignalToNoise -
Lookup[i].SignalToNoise)) /
((s32)(Lookup[i+1].RefValue) -
(s32)(Lookup[i].RefValue));
break;
}
}
}
return 0;
}
static int GetBitErrorRateS(struct stv *state, u32 *BERNumerator,
u32 *BERDenominator)
{
u8 Regs[3];
int status = read_regs(state, RSTV0910_P2_ERRCNT12 + state->regoff,
Regs, 3);
if (status)
return -1;
if ((Regs[0] & 0x80) == 0) {
state->LastBERDenominator = 1 << ((state->BERScale * 2) +
10 + 3);
state->LastBERNumerator = ((u32) (Regs[0] & 0x7F) << 16) |
((u32) Regs[1] << 8) | Regs[2];
if (state->LastBERNumerator < 256 && state->BERScale < 6) {
state->BERScale += 1;
status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
state->regoff,
0x20 | state->BERScale);
} else if (state->LastBERNumerator > 1024 &&
state->BERScale > 2) {
state->BERScale -= 1;
status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
state->regoff, 0x20 |
state->BERScale);
}
}
*BERNumerator = state->LastBERNumerator;
*BERDenominator = state->LastBERDenominator;
return 0;
}
static u32 DVBS2_nBCH(enum DVBS2_ModCod ModCod, enum DVBS2_FECType FECType)
{
static u32 nBCH[][2] = {
{16200, 3240}, /* QPSK_1_4, */
{21600, 5400}, /* QPSK_1_3, */
{25920, 6480}, /* QPSK_2_5, */
{32400, 7200}, /* QPSK_1_2, */
{38880, 9720}, /* QPSK_3_5, */
{43200, 10800}, /* QPSK_2_3, */
{48600, 11880}, /* QPSK_3_4, */
{51840, 12600}, /* QPSK_4_5, */
{54000, 13320}, /* QPSK_5_6, */
{57600, 14400}, /* QPSK_8_9, */
{58320, 16000}, /* QPSK_9_10, */
{43200, 9720}, /* 8PSK_3_5, */
{48600, 10800}, /* 8PSK_2_3, */
{51840, 11880}, /* 8PSK_3_4, */
{54000, 13320}, /* 8PSK_5_6, */
{57600, 14400}, /* 8PSK_8_9, */
{58320, 16000}, /* 8PSK_9_10, */
{43200, 10800}, /* 16APSK_2_3, */
{48600, 11880}, /* 16APSK_3_4, */
{51840, 12600}, /* 16APSK_4_5, */
{54000, 13320}, /* 16APSK_5_6, */
{57600, 14400}, /* 16APSK_8_9, */
{58320, 16000}, /* 16APSK_9_10 */
{48600, 11880}, /* 32APSK_3_4, */
{51840, 12600}, /* 32APSK_4_5, */
{54000, 13320}, /* 32APSK_5_6, */
{57600, 14400}, /* 32APSK_8_9, */
{58320, 16000}, /* 32APSK_9_10 */
};
if (ModCod >= DVBS2_QPSK_1_4 &&
ModCod <= DVBS2_32APSK_9_10 && FECType <= DVBS2_16K)
return nBCH[FECType][ModCod];
return 64800;
}
static int GetBitErrorRateS2(struct stv *state, u32 *BERNumerator,
u32 *BERDenominator)
{
u8 Regs[3];
int status = read_regs(state, RSTV0910_P2_ERRCNT12 + state->regoff,
Regs, 3);
if (status)
return -1;
if ((Regs[0] & 0x80) == 0) {
state->LastBERDenominator =
DVBS2_nBCH((enum DVBS2_ModCod) state->ModCod,
state->FECType) <<
(state->BERScale * 2);
state->LastBERNumerator = (((u32) Regs[0] & 0x7F) << 16) |
((u32) Regs[1] << 8) | Regs[2];
if (state->LastBERNumerator < 256 && state->BERScale < 6) {
state->BERScale += 1;
write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
0x20 | state->BERScale);
} else if (state->LastBERNumerator > 1024 &&
state->BERScale > 2) {
state->BERScale -= 1;
write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
0x20 | state->BERScale);
}
}
*BERNumerator = state->LastBERNumerator;
*BERDenominator = state->LastBERDenominator;
return status;
}
static int GetBitErrorRate(struct stv *state, u32 *BERNumerator,
u32 *BERDenominator)
{
*BERNumerator = 0;
*BERDenominator = 1;
switch (state->ReceiveMode) {
case Mode_DVBS:
return GetBitErrorRateS(state, BERNumerator, BERDenominator);
break;
case Mode_DVBS2:
return GetBitErrorRateS2(state, BERNumerator, BERDenominator);
default:
break;
}
return 0;
}
static int init(struct dvb_frontend *fe)
{
return 0;
}
static int set_mclock(struct stv *state, u32 MasterClock)
{
u32 idf = 1;
u32 odf = 4;
u32 quartz = state->base->extclk / 1000000;
u32 Fphi = MasterClock / 1000000;
u32 ndiv = (Fphi * odf * idf) / quartz;
u32 cp = 7;
u32 fvco;
if (ndiv >= 7 && ndiv <= 71)
cp = 7;
else if (ndiv >= 72 && ndiv <= 79)
cp = 8;
else if (ndiv >= 80 && ndiv <= 87)
cp = 9;
else if (ndiv >= 88 && ndiv <= 95)
cp = 10;
else if (ndiv >= 96 && ndiv <= 103)
cp = 11;
else if (ndiv >= 104 && ndiv <= 111)
cp = 12;
else if (ndiv >= 112 && ndiv <= 119)
cp = 13;
else if (ndiv >= 120 && ndiv <= 127)
cp = 14;
else if (ndiv >= 128 && ndiv <= 135)
cp = 15;
else if (ndiv >= 136 && ndiv <= 143)
cp = 16;
else if (ndiv >= 144 && ndiv <= 151)
cp = 17;
else if (ndiv >= 152 && ndiv <= 159)
cp = 18;
else if (ndiv >= 160 && ndiv <= 167)
cp = 19;
else if (ndiv >= 168 && ndiv <= 175)
cp = 20;
else if (ndiv >= 176 && ndiv <= 183)
cp = 21;
else if (ndiv >= 184 && ndiv <= 191)
cp = 22;
else if (ndiv >= 192 && ndiv <= 199)
cp = 23;
else if (ndiv >= 200 && ndiv <= 207)
cp = 24;
else if (ndiv >= 208 && ndiv <= 215)
cp = 25;
else if (ndiv >= 216 && ndiv <= 223)
cp = 26;
else if (ndiv >= 224 && ndiv <= 225)
cp = 27;
write_reg(state, RSTV0910_NCOARSE, (cp << 3) | idf);
write_reg(state, RSTV0910_NCOARSE2, odf);
write_reg(state, RSTV0910_NCOARSE1, ndiv);
fvco = (quartz * 2 * ndiv) / idf;
state->base->mclk = fvco / (2 * odf) * 1000000;
/*pr_info("ndiv = %d, MasterClock = %d\n", ndiv, state->base->mclk);*/
return 0;
}
static int Stop(struct stv *state)
{
if (state->Started) {
u8 tmp;
write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
state->tscfgh | 0x01);
read_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, &tmp);
tmp &= ~0x01; /*release reset DVBS2 packet delin*/
write_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, tmp);
/* Blind optim*/
write_reg(state, RSTV0910_P2_AGC2O + state->regoff, 0x5B);
/* Stop the demod */
write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5c);
state->Started = 0;
}
state->ReceiveMode = Mode_None;
return 0;
}
static int Start(struct stv *state, struct dtv_frontend_properties *p)
{
s32 Freq;
u8 regDMDCFGMD;
u16 symb;
if (p->symbol_rate < 100000 || p->symbol_rate > 70000000)
return -EINVAL;
state->ReceiveMode = Mode_None;
state->DemodLockTime = 0;
/* Demod Stop*/
if (state->Started)
write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5C);
if (p->symbol_rate <= 1000000) { /*SR <=1Msps*/
state->DemodTimeout = 3000;
state->FecTimeout = 2000;
} else if (p->symbol_rate <= 2000000) { /*1Msps < SR <=2Msps*/
state->DemodTimeout = 2500;
state->FecTimeout = 1300;
} else if (p->symbol_rate <= 5000000) { /*2Msps< SR <=5Msps*/
state->DemodTimeout = 1000;
state->FecTimeout = 650;
} else if (p->symbol_rate <= 10000000) { /*5Msps< SR <=10Msps*/
state->DemodTimeout = 700;
state->FecTimeout = 350;
} else if (p->symbol_rate < 20000000) { /*10Msps< SR <=20Msps*/
state->DemodTimeout = 400;
state->FecTimeout = 200;
} else { /*SR >=20Msps*/
state->DemodTimeout = 300;
state->FecTimeout = 200;
}
/* Set the Init Symbol rate*/
symb = MulDiv32(p->symbol_rate, 65536, state->base->mclk);
write_reg(state, RSTV0910_P2_SFRINIT1 + state->regoff,
((symb >> 8) & 0x7F));
write_reg(state, RSTV0910_P2_SFRINIT0 + state->regoff, (symb & 0xFF));
/*pr_info("symb = %u\n", symb);*/
state->DEMOD |= 0x80;
write_reg(state, RSTV0910_P2_DEMOD + state->regoff, state->DEMOD);
/* FE_STV0910_SetSearchStandard */
read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &regDMDCFGMD);
write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff,
regDMDCFGMD |= 0xC0);
/* Disable DSS */
write_reg(state, RSTV0910_P2_FECM + state->regoff, 0x00);
write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x2F);
/* 8PSK 3/5, 8PSK 2/3 Poff tracking optimization WA*/
write_reg(state, RSTV0910_P2_ACLC2S2Q + state->regoff, 0x0B);
write_reg(state, RSTV0910_P2_ACLC2S28 + state->regoff, 0x0A);
write_reg(state, RSTV0910_P2_BCLC2S2Q + state->regoff, 0x84);
write_reg(state, RSTV0910_P2_BCLC2S28 + state->regoff, 0x84);
write_reg(state, RSTV0910_P2_CARHDR + state->regoff, 0x1C);
/* Reset demod */
write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
write_reg(state, RSTV0910_P2_CARCFG + state->regoff, 0x46);
Freq = (state->SearchRange / 2000) + 600;
if (p->symbol_rate <= 5000000)
Freq -= (600 + 80);
Freq = (Freq << 16) / (state->base->mclk / 1000);
write_reg(state, RSTV0910_P2_CFRUP1 + state->regoff,
(Freq >> 8) & 0xff);
write_reg(state, RSTV0910_P2_CFRUP0 + state->regoff, (Freq & 0xff));
/*CFR Low Setting*/
Freq = -Freq;
write_reg(state, RSTV0910_P2_CFRLOW1 + state->regoff,
(Freq >> 8) & 0xff);
write_reg(state, RSTV0910_P2_CFRLOW0 + state->regoff, (Freq & 0xff));
/* init the demod frequency offset to 0 */
write_reg(state, RSTV0910_P2_CFRINIT1 + state->regoff, 0);
write_reg(state, RSTV0910_P2_CFRINIT0 + state->regoff, 0);
write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
/* Trigger acq */
write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x15);
state->DemodLockTime += TUNING_DELAY;
state->Started = 1;
return 0;
}
static int init_diseqc(struct stv *state)
{
u16 offs = state->nr ? 0x40 : 0; /* Address offset */
u8 Freq = ((state->base->mclk + 11000 * 32) / (22000 * 32));
/* Disable receiver */
write_reg(state, RSTV0910_P1_DISRXCFG + offs, 0x00);
write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0xBA); /* Reset = 1 */
write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A); /* Reset = 0 */
write_reg(state, RSTV0910_P1_DISTXF22 + offs, Freq);
return 0;
}
static int probe(struct stv *state)
{
u8 id;
state->ReceiveMode = Mode_None;
state->Started = 0;
if (read_reg(state, RSTV0910_MID, &id) < 0)
return -1;
if (id != 0x51)
return -EINVAL;
pr_info("stv0910: found STV0910 id=0x%02x\n", id);
/* Configure the I2C repeater to off */
write_reg(state, RSTV0910_P1_I2CRPT, 0x24);
/* Configure the I2C repeater to off */
write_reg(state, RSTV0910_P2_I2CRPT, 0x24);
/* Set the I2C to oversampling ratio */
write_reg(state, RSTV0910_I2CCFG, 0x88);
write_reg(state, RSTV0910_OUTCFG, 0x00); /* OUTCFG */
write_reg(state, RSTV0910_PADCFG, 0x05); /* RF AGC Pads Dev = 05 */
write_reg(state, RSTV0910_SYNTCTRL, 0x02); /* SYNTCTRL */
write_reg(state, RSTV0910_TSGENERAL, 0x00); /* TSGENERAL */
write_reg(state, RSTV0910_CFGEXT, 0x02); /* CFGEXT */
write_reg(state, RSTV0910_GENCFG, 0x15); /* GENCFG */
write_reg(state, RSTV0910_TSTRES0, 0x80); /* LDPC Reset */
write_reg(state, RSTV0910_TSTRES0, 0x00);
set_mclock(state, 135000000);
/* TS output */
write_reg(state, RSTV0910_P1_TSCFGH , state->tscfgh | 0x01);
write_reg(state, RSTV0910_P1_TSCFGH , state->tscfgh);
write_reg(state, RSTV0910_P1_TSCFGM , 0xC0); /* Manual speed */
write_reg(state, RSTV0910_P1_TSCFGL , 0x20);
/* Speed = 67.5 MHz */
write_reg(state, RSTV0910_P1_TSSPEED , state->tsspeed);
write_reg(state, RSTV0910_P2_TSCFGH , state->tscfgh | 0x01);
write_reg(state, RSTV0910_P2_TSCFGH , state->tscfgh);
write_reg(state, RSTV0910_P2_TSCFGM , 0xC0); /* Manual speed */
write_reg(state, RSTV0910_P2_TSCFGL , 0x20);
/* Speed = 67.5 MHz */
write_reg(state, RSTV0910_P2_TSSPEED , state->tsspeed);
/* Reset stream merger */
write_reg(state, RSTV0910_P1_TSCFGH , state->tscfgh | 0x01);
write_reg(state, RSTV0910_P2_TSCFGH , state->tscfgh | 0x01);
write_reg(state, RSTV0910_P1_TSCFGH , state->tscfgh);
write_reg(state, RSTV0910_P2_TSCFGH , state->tscfgh);
write_reg(state, RSTV0910_P1_I2CRPT, state->i2crpt);
write_reg(state, RSTV0910_P2_I2CRPT, state->i2crpt);
init_diseqc(state);
return 0;
}
static int gate_ctrl(struct dvb_frontend *fe, int enable)
{
struct stv *state = fe->demodulator_priv;
u8 i2crpt = state->i2crpt & ~0x86;
if (enable)
mutex_lock(&state->base->i2c_lock);
if (enable)
i2crpt |= 0x80;
else
i2crpt |= 0x02;
if (write_reg(state, state->nr ? RSTV0910_P2_I2CRPT :
RSTV0910_P1_I2CRPT, i2crpt) < 0)
return -EIO;
state->i2crpt = i2crpt;
if (!enable)
mutex_unlock(&state->base->i2c_lock);
return 0;
}
static void release(struct dvb_frontend *fe)
{
struct stv *state = fe->demodulator_priv;
state->base->count--;
if (state->base->count == 0) {
list_del(&state->base->stvlist);
kfree(state->base);
}
kfree(state);
}
static int set_parameters(struct dvb_frontend *fe)
{
int stat = 0;
struct stv *state = fe->demodulator_priv;
u32 IF;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
Stop(state);
if (fe->ops.tuner_ops.set_params)
fe->ops.tuner_ops.set_params(fe);
if (fe->ops.tuner_ops.get_if_frequency)
fe->ops.tuner_ops.get_if_frequency(fe, &IF);
state->SymbolRate = p->symbol_rate;
stat = Start(state, p);
return stat;
}
static int read_status(struct dvb_frontend *fe, fe_status_t *status)
{
struct stv *state = fe->demodulator_priv;
u8 DmdState = 0;
u8 DStatus = 0;
enum ReceiveMode CurReceiveMode = Mode_None;
u32 FECLock = 0;
read_reg(state, RSTV0910_P2_DMDSTATE + state->regoff, &DmdState);
if (DmdState & 0x40) {
read_reg(state, RSTV0910_P2_DSTATUS + state->regoff, &DStatus);
if (DStatus & 0x08)
CurReceiveMode = (DmdState & 0x20) ?
Mode_DVBS : Mode_DVBS2;
}
if (CurReceiveMode == Mode_None) {
*status = 0;
return 0;
}
*status |= 0x0f;
if (state->ReceiveMode == Mode_None) {
state->ReceiveMode = CurReceiveMode;
state->DemodLockTime = jiffies;
state->FirstTimeLock = 0;
write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
state->tscfgh);
usleep_range(3000, 4000);
write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
state->tscfgh | 0x01);
write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
state->tscfgh);
}
if (DmdState & 0x40) {
if (state->ReceiveMode == Mode_DVBS2) {
u8 PDELStatus;
read_reg(state,
RSTV0910_P2_PDELSTATUS1 + state->regoff,
&PDELStatus);
FECLock = (PDELStatus & 0x02) != 0;
} else {
u8 VStatus;
read_reg(state,
RSTV0910_P2_VSTATUSVIT + state->regoff,
&VStatus);
FECLock = (VStatus & 0x08) != 0;
}
}
if (!FECLock)
return 0;
*status |= 0x10;
if (state->FirstTimeLock) {
u8 tmp;
state->FirstTimeLock = 0;
GetSignalParameters(state);
if (state->ReceiveMode == Mode_DVBS2) {
/* FSTV0910_P2_MANUALSX_ROLLOFF,
FSTV0910_P2_MANUALS2_ROLLOFF = 0 */
state->DEMOD &= ~0x84;
write_reg(state, RSTV0910_P2_DEMOD + state->regoff,
state->DEMOD);
read_reg(state, RSTV0910_P2_PDELCTRL2 + state->regoff,
&tmp);
/*reset DVBS2 packet delinator error counter */
tmp |= 0x40;
write_reg(state, RSTV0910_P2_PDELCTRL2 + state->regoff,
tmp);
/*reset DVBS2 packet delinator error counter */
tmp &= ~0x40;
write_reg(state, RSTV0910_P2_PDELCTRL2 + state->regoff,
tmp);
state->BERScale = 2;
state->LastBERNumerator = 0;
state->LastBERDenominator = 1;
/* force to PRE BCH Rate */
write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
BER_SRC_S2 | state->BERScale);
} else {
state->BERScale = 2;
state->LastBERNumerator = 0;
state->LastBERDenominator = 1;
/* force to PRE RS Rate */
write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
BER_SRC_S | state->BERScale);
}
/*Reset the Total packet counter */
write_reg(state, RSTV0910_P2_FBERCPT4 + state->regoff, 0x00);
/*Reset the packet Error counter2 (and Set it to
infinit error count mode )*/
write_reg(state, RSTV0910_P2_ERRCTRL2 + state->regoff, 0xc1);
TrackingOptimization(state);
}
return 0;
}
static int tune(struct dvb_frontend *fe, bool re_tune,
unsigned int mode_flags,
unsigned int *delay, fe_status_t *status)
{
struct stv *state = fe->demodulator_priv;
int r;
if (re_tune) {
r = set_parameters(fe);
if (r)
return r;
state->tune_time = jiffies;
}
if (*status & FE_HAS_LOCK)
return 0;
*delay = HZ;
r = read_status(fe, status);
if (r)
return r;
return 0;
}
static int get_algo(struct dvb_frontend *fe)
{
return DVBFE_ALGO_HW;
}
static int set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone)
{
struct stv *state = fe->demodulator_priv;
u16 offs = state->nr ? 0x40 : 0;
switch (tone) {
case SEC_TONE_ON:
return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x38);
case SEC_TONE_OFF:
return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3a);
default:
break;
}
return -EINVAL;
}
static int wait_dis(struct stv *state, u8 flag, u8 val)
{
int i;
u8 stat;
u16 offs = state->nr ? 0x40 : 0;
for (i = 0; i < 10; i++) {
read_reg(state, RSTV0910_P1_DISTXSTATUS + offs, &stat);
if ((stat & flag) == val)
return 0;
msleep(10);
}
return -1;
}
static int send_master_cmd(struct dvb_frontend *fe,
struct dvb_diseqc_master_cmd *cmd)
{
struct stv *state = fe->demodulator_priv;
u16 offs = state->nr ? 0x40 : 0;
int i;
/*pr_info("master_cmd %02x %02x %02x %02x\n",
cmd->msg[0], cmd->msg[1], cmd->msg[2], cmd->msg[3]);*/
write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3E);
for (i = 0; i < cmd->msg_len; i++) {
wait_dis(state, 0x40, 0x00);
write_reg(state, RSTV0910_P1_DISTXFIFO + offs, cmd->msg[i]);
}
write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A);
wait_dis(state, 0x20, 0x20);
return 0;
}
static int recv_slave_reply(struct dvb_frontend *fe,
struct dvb_diseqc_slave_reply *reply)
{
return 0;
}
static int send_burst(struct dvb_frontend *fe, fe_sec_mini_cmd_t burst)
{
#if 0
struct stv *state = fe->demodulator_priv;
u16 offs = state->nr ? 0x40 : 0;
u8 value;
if (burst == SEC_MINI_A) {
write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3F);
value = 0x00;
} else {
write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3E);
value = 0xFF;
}
wait_dis(state, 0x40, 0x00);
write_reg(state, RSTV0910_P1_DISTXFIFO + offs, value);
write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A);
wait_dis(state, 0x20, 0x20);
#endif
return 0;
}
static int sleep(struct dvb_frontend *fe)
{
struct stv *state = fe->demodulator_priv;
Stop(state);
return 0;
}
static int read_snr(struct dvb_frontend *fe, u16 *snr)
{
struct stv *state = fe->demodulator_priv;
s32 SNR;
*snr = 0;
if (GetSignalToNoise(state, &SNR))
return -EIO;
*snr = SNR;
return 0;
}
static int read_ber(struct dvb_frontend *fe, u32 *ber)
{
struct stv *state = fe->demodulator_priv;
u32 n, d;
GetBitErrorRate(state, &n, &d);
if (d)
*ber = n / d;
else
*ber = 0;
return 0;
}
static int read_signal_strength(struct dvb_frontend *fe, u16 *strength)
{
struct stv *state = fe->demodulator_priv;
u8 Agc1, Agc0;
read_reg(state, RSTV0910_P2_AGCIQIN1 + state->regoff, &Agc1);
read_reg(state, RSTV0910_P2_AGCIQIN0 + state->regoff, &Agc0);
*strength = ((255 - Agc1) * 3300) / 256;
return 0;
}
static int read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
/* struct stv *state = fe->demodulator_priv; */
return 0;
}
static struct dvb_frontend_ops stv0910_ops = {
.delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
.info = {
.name = "STV0910",
.frequency_min = 950000,
.frequency_max = 2150000,
.frequency_stepsize = 0,
.frequency_tolerance = 0,
.symbol_rate_min = 1000000,
.symbol_rate_max = 70000000,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_AUTO |
FE_CAN_QPSK |
FE_CAN_2G_MODULATION
},
.init = init,
.sleep = sleep,
.release = release,
.i2c_gate_ctrl = gate_ctrl,
.get_frontend_algo = get_algo,
.tune = tune,
.read_status = read_status,
.set_tone = set_tone,
.diseqc_send_master_cmd = send_master_cmd,
.diseqc_send_burst = send_burst,
.diseqc_recv_slave_reply = recv_slave_reply,
.read_snr = read_snr,
.read_ber = read_ber,
.read_signal_strength = read_signal_strength,
.read_ucblocks = read_ucblocks,
};
static struct stv_base *match_base(struct i2c_adapter *i2c, u8 adr)
{
struct stv_base *p;
list_for_each_entry(p, &stvlist, stvlist)
if (p->i2c == i2c && p->adr == adr)
return p;
return NULL;
}
struct dvb_frontend *stv0910_attach(struct i2c_adapter *i2c,
struct stv0910_cfg *cfg,
int nr)
{
struct stv *state;
struct stv_base *base;
state = kzalloc(sizeof(struct stv), GFP_KERNEL);
if (!state)
return NULL;
state->tscfgh = 0x20 | (cfg->parallel ? 0 : 0x40);
state->i2crpt = 0x0A | ((cfg->rptlvl & 0x07) << 4);
state->tsspeed = 0x40;
state->nr = nr;
state->regoff = state->nr ? 0 : 0x200;
state->SearchRange = 16000000;
state->DEMOD = 0x10; /* Inversion : Auto with reset to 0 */
state->ReceiveMode = Mode_None;
base = match_base(i2c, cfg->adr);
if (base) {
base->count++;
state->base = base;
} else {
base = kzalloc(sizeof(struct stv_base), GFP_KERNEL);
if (!base)
goto fail;
base->i2c = i2c;
base->adr = cfg->adr;
base->count = 1;
base->extclk = cfg->clk ? cfg->clk : 30000000;
mutex_init(&base->i2c_lock);
mutex_init(&base->reg_lock);
state->base = base;
if (probe(state) < 0) {
kfree(base);
goto fail;
}
list_add(&base->stvlist, &stvlist);
}
state->fe.ops = stv0910_ops;
state->fe.demodulator_priv = state;
state->nr = nr;
return &state->fe;
fail:
kfree(state);
return NULL;
}
EXPORT_SYMBOL_GPL(stv0910_attach);
MODULE_DESCRIPTION("STV0910 driver");
MODULE_AUTHOR("Ralph Metzler, Manfred Voelkel");
MODULE_LICENSE("GPL");