mirror of
https://github.com/DigitalDevices/dddvb.git
synced 2023-10-10 13:37:43 +02:00
5101 lines
152 KiB
C
5101 lines
152 KiB
C
/*
|
|
* drxk_hard: DRX-K DVB-C/T demodulator driver
|
|
*
|
|
* Copyright (C) 2010-2011 Digital Devices GmbH
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* version 2 only, as published by the Free Software Foundation.
|
|
*
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
* 02110-1301, USA
|
|
* Or, point your browser to http://www.gnu.org/copyleft/gpl.html
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/firmware.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/version.h>
|
|
#include <asm/div64.h>
|
|
|
|
#include <media/dvb_frontend.h>
|
|
#include "drxk.h"
|
|
#include "drxk_hard.h"
|
|
|
|
static int PowerDownDVBT(struct drxk_state *state, bool setPowerMode);
|
|
static int PowerDownQAM(struct drxk_state *state);
|
|
static int SetDVBTStandard (struct drxk_state *state,enum OperationMode oMode);
|
|
static int SetQAMStandard(struct drxk_state *state,enum OperationMode oMode);
|
|
static int SetQAM(struct drxk_state *state,u16 IntermediateFreqkHz,
|
|
s32 tunerFreqOffset);
|
|
static int SetDVBTStandard (struct drxk_state *state,enum OperationMode oMode);
|
|
static int DVBTStart(struct drxk_state *state);
|
|
static int SetDVBT (struct drxk_state *state,u16 IntermediateFreqkHz,
|
|
s32 tunerFreqOffset);
|
|
static int GetQAMLockStatus(struct drxk_state *state, u32 *pLockStatus);
|
|
static int GetDVBTLockStatus(struct drxk_state *state, u32 *pLockStatus);
|
|
static int SwitchAntennaToQAM(struct drxk_state *state);
|
|
static int SwitchAntennaToDVBT(struct drxk_state *state);
|
|
|
|
static bool IsDVBT(struct drxk_state *state)
|
|
{
|
|
return state->m_OperationMode == OM_DVBT;
|
|
}
|
|
|
|
static bool IsQAM(struct drxk_state *state)
|
|
{
|
|
return state->m_OperationMode == OM_QAM_ITU_A ||
|
|
state->m_OperationMode == OM_QAM_ITU_B ||
|
|
state->m_OperationMode == OM_QAM_ITU_C;
|
|
}
|
|
|
|
bool IsA1WithPatchCode(struct drxk_state *state)
|
|
{
|
|
return state->m_DRXK_A1_PATCH_CODE;
|
|
}
|
|
|
|
bool IsA1WithRomCode(struct drxk_state *state)
|
|
{
|
|
return state->m_DRXK_A1_ROM_CODE;
|
|
}
|
|
|
|
#define NOA1ROM 0
|
|
|
|
#ifndef CHK_ERROR
|
|
#define CHK_ERROR(s) if ((status = s) < 0) break
|
|
#endif
|
|
|
|
#define DRXDAP_FASI_SHORT_FORMAT(addr) (((addr) & 0xFC30FF80) == 0)
|
|
#define DRXDAP_FASI_LONG_FORMAT(addr) (((addr) & 0xFC30FF80) != 0)
|
|
|
|
#define DEFAULT_MER_83 165
|
|
#define DEFAULT_MER_93 250
|
|
|
|
#ifndef DRXK_MPEG_SERIAL_OUTPUT_PIN_DRIVE_STRENGTH
|
|
#define DRXK_MPEG_SERIAL_OUTPUT_PIN_DRIVE_STRENGTH (0x02)
|
|
#endif
|
|
|
|
#ifndef DRXK_MPEG_PARALLEL_OUTPUT_PIN_DRIVE_STRENGTH
|
|
#define DRXK_MPEG_PARALLEL_OUTPUT_PIN_DRIVE_STRENGTH (0x03)
|
|
#endif
|
|
|
|
#ifndef DRXK_MPEG_OUTPUT_CLK_DRIVE_STRENGTH
|
|
#define DRXK_MPEG_OUTPUT_CLK_DRIVE_STRENGTH (0x06)
|
|
#endif
|
|
|
|
#define DEFAULT_DRXK_MPEG_LOCK_TIMEOUT 700
|
|
#define DEFAULT_DRXK_DEMOD_LOCK_TIMEOUT 500
|
|
|
|
#ifndef DRXK_KI_RAGC_ATV
|
|
#define DRXK_KI_RAGC_ATV 4
|
|
#endif
|
|
#ifndef DRXK_KI_IAGC_ATV
|
|
#define DRXK_KI_IAGC_ATV 6
|
|
#endif
|
|
#ifndef DRXK_KI_DAGC_ATV
|
|
#define DRXK_KI_DAGC_ATV 7
|
|
#endif
|
|
|
|
#ifndef DRXK_KI_RAGC_QAM
|
|
#define DRXK_KI_RAGC_QAM 3
|
|
#endif
|
|
#ifndef DRXK_KI_IAGC_QAM
|
|
#define DRXK_KI_IAGC_QAM 4
|
|
#endif
|
|
#ifndef DRXK_KI_DAGC_QAM
|
|
#define DRXK_KI_DAGC_QAM 7
|
|
#endif
|
|
#ifndef DRXK_KI_RAGC_DVBT
|
|
#define DRXK_KI_RAGC_DVBT (IsA1WithPatchCode(state) ? 3 : 2)
|
|
#endif
|
|
#ifndef DRXK_KI_IAGC_DVBT
|
|
#define DRXK_KI_IAGC_DVBT (IsA1WithPatchCode(state) ? 4 : 2)
|
|
#endif
|
|
#ifndef DRXK_KI_DAGC_DVBT
|
|
#define DRXK_KI_DAGC_DVBT (IsA1WithPatchCode(state) ? 10 : 7)
|
|
#endif
|
|
|
|
#ifndef DRXK_AGC_DAC_OFFSET
|
|
#define DRXK_AGC_DAC_OFFSET (0x800)
|
|
#endif
|
|
|
|
#ifndef DRXK_BANDWIDTH_8MHZ_IN_HZ
|
|
#define DRXK_BANDWIDTH_8MHZ_IN_HZ (0x8B8249L)
|
|
#endif
|
|
|
|
#ifndef DRXK_BANDWIDTH_7MHZ_IN_HZ
|
|
#define DRXK_BANDWIDTH_7MHZ_IN_HZ (0x7A1200L)
|
|
#endif
|
|
|
|
#ifndef DRXK_BANDWIDTH_6MHZ_IN_HZ
|
|
#define DRXK_BANDWIDTH_6MHZ_IN_HZ (0x68A1B6L)
|
|
#endif
|
|
|
|
#ifndef DRXK_QAM_SYMBOLRATE_MAX
|
|
#define DRXK_QAM_SYMBOLRATE_MAX (7233000)
|
|
#endif
|
|
|
|
#define DRXK_BL_ROM_OFFSET_TAPS_DVBT 56
|
|
#define DRXK_BL_ROM_OFFSET_TAPS_ITU_A 64
|
|
#define DRXK_BL_ROM_OFFSET_TAPS_ITU_C 0x5FE0
|
|
#define DRXK_BL_ROM_OFFSET_TAPS_BG 24
|
|
#define DRXK_BL_ROM_OFFSET_TAPS_DKILLP 32
|
|
#define DRXK_BL_ROM_OFFSET_TAPS_NTSC 40
|
|
#define DRXK_BL_ROM_OFFSET_TAPS_FM 48
|
|
#define DRXK_BL_ROM_OFFSET_UCODE 0
|
|
|
|
#define DRXK_BLC_TIMEOUT 100
|
|
|
|
#define DRXK_BLCC_NR_ELEMENTS_TAPS 2
|
|
#define DRXK_BLCC_NR_ELEMENTS_UCODE 6
|
|
|
|
#define DRXK_BLDC_NR_ELEMENTS_TAPS 28
|
|
|
|
#ifndef DRXK_OFDM_NE_NOTCH_WIDTH
|
|
#define DRXK_OFDM_NE_NOTCH_WIDTH (4)
|
|
#endif
|
|
|
|
#define DRXK_QAM_SL_SIG_POWER_QAM16 (40960)
|
|
#define DRXK_QAM_SL_SIG_POWER_QAM32 (20480)
|
|
#define DRXK_QAM_SL_SIG_POWER_QAM64 (43008)
|
|
#define DRXK_QAM_SL_SIG_POWER_QAM128 (20992)
|
|
#define DRXK_QAM_SL_SIG_POWER_QAM256 (43520)
|
|
|
|
static inline u32 MulDiv32(u32 a, u32 b, u32 c)
|
|
{
|
|
u64 tmp64;
|
|
|
|
tmp64 = (u64)a * (u64)b;
|
|
do_div(tmp64, c);
|
|
|
|
return (u32) tmp64;
|
|
}
|
|
|
|
inline u32 Frac28a(u32 a, u32 c)
|
|
{
|
|
int i = 0;
|
|
u32 Q1 = 0;
|
|
u32 R0 = 0;
|
|
|
|
R0 = (a % c) << 4; /* 32-28 == 4 shifts possible at max */
|
|
Q1 = a / c; /* integer part, only the 4 least significant bits
|
|
will be visible in the result */
|
|
|
|
/* division using radix 16, 7 nibbles in the result */
|
|
for (i = 0; i < 7; i++) {
|
|
Q1 = (Q1 << 4) | (R0 / c);
|
|
R0 = (R0 % c) << 4;
|
|
}
|
|
/* rounding */
|
|
if ((R0 >> 3) >= c)
|
|
Q1++;
|
|
|
|
return Q1;
|
|
}
|
|
|
|
static u32 Log10Times100(u32 x)
|
|
{
|
|
static const u8 scale = 15;
|
|
static const u8 indexWidth = 5;
|
|
u8 i = 0;
|
|
u32 y = 0;
|
|
u32 d = 0;
|
|
u32 k = 0;
|
|
u32 r = 0;
|
|
/*
|
|
log2lut[n] = (1<<scale) * 200 * log2(1.0 + ((1.0/(1<<INDEXWIDTH)) * n))
|
|
0 <= n < ((1<<INDEXWIDTH)+1)
|
|
*/
|
|
|
|
static const u32 log2lut[] = {
|
|
0, /* 0.000000 */
|
|
290941, /* 290941.300628 */
|
|
573196, /* 573196.476418 */
|
|
847269, /* 847269.179851 */
|
|
1113620, /* 1113620.489452 */
|
|
1372674, /* 1372673.576986 */
|
|
1624818, /* 1624817.752104 */
|
|
1870412, /* 1870411.981536 */
|
|
2109788, /* 2109787.962654 */
|
|
2343253, /* 2343252.817465 */
|
|
2571091, /* 2571091.461923 */
|
|
2793569, /* 2793568.696416 */
|
|
3010931, /* 3010931.055901 */
|
|
3223408, /* 3223408.452106 */
|
|
3431216, /* 3431215.635215 */
|
|
3634553, /* 3634553.498355 */
|
|
3833610, /* 3833610.244726 */
|
|
4028562, /* 4028562.434393 */
|
|
4219576, /* 4219575.925308 */
|
|
4406807, /* 4406806.721144 */
|
|
4590402, /* 4590401.736809 */
|
|
4770499, /* 4770499.491025 */
|
|
4947231, /* 4947230.734179 */
|
|
5120719, /* 5120719.018555 */
|
|
5291081, /* 5291081.217197 */
|
|
5458428, /* 5458427.996830 */
|
|
5622864, /* 5622864.249668 */
|
|
5784489, /* 5784489.488298 */
|
|
5943398, /* 5943398.207380 */
|
|
6099680, /* 6099680.215452 */
|
|
6253421, /* 6253420.939751 */
|
|
6404702, /* 6404701.706649 */
|
|
6553600, /* 6553600.000000 */
|
|
};
|
|
|
|
|
|
if (x == 0)
|
|
return (0);
|
|
|
|
/* Scale x (normalize) */
|
|
/* computing y in log(x/y) = log(x) - log(y) */
|
|
if ((x & ((0xffffffff) << (scale + 1))) == 0) {
|
|
for (k = scale; k > 0; k--) {
|
|
if (x & (((u32)1) << scale))
|
|
break;
|
|
x <<= 1;
|
|
}
|
|
} else {
|
|
for (k = scale; k < 31 ; k++) {
|
|
if ((x & (((u32)(-1)) << (scale+1))) == 0)
|
|
break;
|
|
x >>= 1;
|
|
}
|
|
}
|
|
/*
|
|
Now x has binary point between bit[scale] and bit[scale-1]
|
|
and 1.0 <= x < 2.0 */
|
|
|
|
/* correction for divison: log(x) = log(x/y)+log(y) */
|
|
y = k * ((((u32)1) << scale) * 200);
|
|
|
|
/* remove integer part */
|
|
x &= ((((u32)1) << scale)-1);
|
|
/* get index */
|
|
i = (u8) (x >> (scale - indexWidth));
|
|
/* compute delta (x - a) */
|
|
d = x & ((((u32)1) << (scale - indexWidth)) - 1);
|
|
/* compute log, multiplication (d* (..)) must be within range ! */
|
|
y += log2lut[i] +
|
|
((d * (log2lut[i + 1] - log2lut[i])) >> (scale - indexWidth));
|
|
/* Conver to log10() */
|
|
y /= 108853; /* (log2(10) << scale) */
|
|
r = (y >> 1);
|
|
/* rounding */
|
|
if (y & ((u32)1))
|
|
r++;
|
|
return (r);
|
|
}
|
|
|
|
/****************************************************************************/
|
|
/* I2C **********************************************************************/
|
|
/****************************************************************************/
|
|
|
|
static int i2c_read1(struct i2c_adapter *adapter, u8 adr, u8 *val)
|
|
{
|
|
struct i2c_msg msgs[1] = {{.addr = adr, .flags = I2C_M_RD,
|
|
.buf = val, .len = 1 }};
|
|
return (i2c_transfer(adapter, msgs, 1) == 1) ? 0 : -1;
|
|
}
|
|
|
|
static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len)
|
|
{
|
|
struct i2c_msg msg =
|
|
{.addr = adr, .flags = 0, .buf = data, .len = len};
|
|
|
|
if (i2c_transfer(adap, &msg, 1) != 1) {
|
|
printk("i2c_write error\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int i2c_read(struct i2c_adapter *adap,
|
|
u8 adr, u8 *msg, int len, u8 *answ, int alen)
|
|
{
|
|
struct i2c_msg msgs[2] = { { .addr = adr, .flags = 0,
|
|
.buf = msg, .len = len},
|
|
{ .addr = adr, .flags = I2C_M_RD,
|
|
.buf = answ, .len = alen } };
|
|
if (i2c_transfer(adap, msgs, 2) != 2) {
|
|
printk("i2c_read error\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int Read16(struct drxk_state *state, u32 reg, u16 *data, u8 flags)
|
|
{
|
|
u8 adr=state->demod_address, mm1[4], mm2[2], len;
|
|
#ifdef I2C_LONG_ADR
|
|
flags |= 0xC0;
|
|
#endif
|
|
if (DRXDAP_FASI_LONG_FORMAT(reg) || (flags != 0)) {
|
|
mm1[0] = (((reg << 1) & 0xFF) | 0x01);
|
|
mm1[1] = ((reg >> 16) & 0xFF);
|
|
mm1[2] = ((reg >> 24) & 0xFF) | flags;
|
|
mm1[3] = ((reg >> 7) & 0xFF);
|
|
len = 4;
|
|
} else {
|
|
mm1[0] = ((reg << 1) & 0xFF);
|
|
mm1[1] = (((reg >> 16) & 0x0F) | ((reg >> 18) & 0xF0));
|
|
len = 2;
|
|
}
|
|
if (i2c_read(state->i2c, adr, mm1, len, mm2, 2) < 0)
|
|
return -1;
|
|
if (data)
|
|
*data = mm2[0] | (mm2[1] << 8);
|
|
return 0;
|
|
}
|
|
|
|
static int Read16_0(struct drxk_state *state, u32 reg, u16 *data)
|
|
{
|
|
return Read16(state, reg, data, 0);
|
|
}
|
|
|
|
static int Read32(struct drxk_state *state, u32 reg, u32 *data, u8 flags)
|
|
{
|
|
u8 adr = state->demod_address, mm1[4], mm2[4], len;
|
|
#ifdef I2C_LONG_ADR
|
|
flags |= 0xC0;
|
|
#endif
|
|
if (DRXDAP_FASI_LONG_FORMAT(reg) || (flags != 0)) {
|
|
mm1[0] = (((reg << 1) & 0xFF) | 0x01);
|
|
mm1[1] = ((reg >> 16) & 0xFF);
|
|
mm1[2] = ((reg >> 24) & 0xFF) | flags;
|
|
mm1[3] = ((reg >> 7) & 0xFF);
|
|
len = 4;
|
|
} else {
|
|
mm1[0] = ((reg << 1) & 0xFF);
|
|
mm1[1] = (((reg >> 16) & 0x0F) | ((reg >> 18) & 0xF0));
|
|
len = 2;
|
|
}
|
|
if (i2c_read(state->i2c, adr, mm1, len, mm2, 4) < 0)
|
|
return -1;
|
|
if (data)
|
|
*data = mm2[0] | (mm2[1] << 8) |
|
|
(mm2[2] << 16) | (mm2[3] << 24);
|
|
return 0;
|
|
}
|
|
|
|
static int Write16(struct drxk_state *state, u32 reg, u16 data, u8 flags)
|
|
{
|
|
u8 adr = state->demod_address, mm[6], len;
|
|
#ifdef I2C_LONG_ADR
|
|
flags |= 0xC0;
|
|
#endif
|
|
if (DRXDAP_FASI_LONG_FORMAT(reg) || (flags != 0)) {
|
|
mm[0] = (((reg << 1) & 0xFF) | 0x01);
|
|
mm[1] = ((reg >> 16) & 0xFF);
|
|
mm[2] = ((reg >> 24) & 0xFF) | flags;
|
|
mm[3] = ((reg >> 7) & 0xFF);
|
|
len = 4;
|
|
} else {
|
|
mm[0] = ((reg << 1) & 0xFF);
|
|
mm[1] = (((reg >> 16) & 0x0F) | ((reg >> 18) & 0xF0));
|
|
len = 2;
|
|
}
|
|
mm[len] = data & 0xff;
|
|
mm[len+1] = (data >>8) & 0xff;
|
|
if (i2c_write(state->i2c, adr, mm, len + 2) < 0)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static int Write16_0(struct drxk_state *state, u32 reg, u16 data)
|
|
{
|
|
return Write16(state, reg, data, 0);
|
|
}
|
|
|
|
static int Write32(struct drxk_state *state, u32 reg, u32 data, u8 flags)
|
|
{
|
|
u8 adr = state->demod_address, mm[8], len;
|
|
#ifdef I2C_LONG_ADR
|
|
flags |= 0xC0;
|
|
#endif
|
|
if (DRXDAP_FASI_LONG_FORMAT(reg) || (flags != 0)) {
|
|
mm[0] = (((reg << 1) & 0xFF) | 0x01);
|
|
mm[1] = ((reg >> 16) & 0xFF);
|
|
mm[2] = ((reg >> 24) & 0xFF) | flags;
|
|
mm[3] = ((reg >> 7) & 0xFF);
|
|
len = 4;
|
|
} else {
|
|
mm[0] = ((reg << 1) & 0xFF);
|
|
mm[1] = (((reg >> 16) & 0x0F) | ((reg >> 18) & 0xF0));
|
|
len = 2;
|
|
}
|
|
mm[len] = data & 0xff;
|
|
mm[len+1] = (data >> 8) & 0xff;
|
|
mm[len+2] = (data >> 16) & 0xff;
|
|
mm[len+3] = (data >> 24) & 0xff;
|
|
if (i2c_write(state->i2c, adr, mm, len+4) < 0)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static int WriteBlock(struct drxk_state *state, u32 Address,
|
|
const int BlockSize, const u8 pBlock[], u8 Flags)
|
|
{
|
|
int status = 0, BlkSize = BlockSize;
|
|
#ifdef I2C_LONG_ADR
|
|
Flags |= 0xC0;
|
|
#endif
|
|
while (BlkSize > 0) {
|
|
int Chunk = BlkSize > state->m_ChunkSize ?
|
|
state->m_ChunkSize : BlkSize ;
|
|
u8 *AdrBuf = &state->Chunk[0];
|
|
u32 AdrLength = 0;
|
|
|
|
if (DRXDAP_FASI_LONG_FORMAT(Address) || (Flags != 0)) {
|
|
AdrBuf[0] = (((Address << 1) & 0xFF) | 0x01);
|
|
AdrBuf[1] = ((Address >> 16) & 0xFF);
|
|
AdrBuf[2] = ((Address >> 24) & 0xFF);
|
|
AdrBuf[3] = ((Address >> 7) & 0xFF);
|
|
AdrBuf[2] |= Flags;
|
|
AdrLength = 4;
|
|
if (Chunk == state->m_ChunkSize)
|
|
Chunk -= 2;
|
|
} else {
|
|
AdrBuf[0] = ((Address << 1) & 0xFF);
|
|
AdrBuf[1] = (((Address >> 16) & 0x0F) |
|
|
((Address >> 18) & 0xF0));
|
|
AdrLength = 2;
|
|
}
|
|
memcpy(&state->Chunk[AdrLength], pBlock, Chunk);
|
|
status = i2c_write(state->i2c, state->demod_address,
|
|
&state->Chunk[0], Chunk+AdrLength);
|
|
if (status<0) {
|
|
printk("I2C Write error\n");
|
|
break;
|
|
}
|
|
pBlock += Chunk;
|
|
Address += (Chunk >> 1);
|
|
BlkSize -= Chunk;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
#ifndef DRXK_MAX_RETRIES_POWERUP
|
|
#define DRXK_MAX_RETRIES_POWERUP 20
|
|
#endif
|
|
|
|
int PowerUpDevice(struct drxk_state *state)
|
|
{
|
|
int status;
|
|
u8 data = 0;
|
|
u16 retryCount = 0;
|
|
|
|
status = i2c_read1(state->i2c, state->demod_address, &data);
|
|
if (status<0)
|
|
do {
|
|
data = 0;
|
|
if (i2c_write(state->i2c,
|
|
state->demod_address, &data, 1) < 0)
|
|
printk("powerup failed\n");
|
|
msleep(10);
|
|
retryCount++ ;
|
|
} while (i2c_read1(state->i2c,
|
|
state->demod_address, &data) < 0 &&
|
|
(retryCount < DRXK_MAX_RETRIES_POWERUP));
|
|
if (retryCount >= DRXK_MAX_RETRIES_POWERUP)
|
|
return -1;
|
|
do {
|
|
/* Make sure all clk domains are active */
|
|
CHK_ERROR(Write16_0(state, SIO_CC_PWD_MODE__A,
|
|
SIO_CC_PWD_MODE_LEVEL_NONE));
|
|
CHK_ERROR(Write16_0(state, SIO_CC_UPDATE__A,
|
|
SIO_CC_UPDATE_KEY));
|
|
/* Enable pll lock tests */
|
|
CHK_ERROR(Write16_0(state, SIO_CC_PLL_LOCK__A, 1));
|
|
state->m_currentPowerMode = DRX_POWER_UP;
|
|
} while (0);
|
|
return status;
|
|
}
|
|
|
|
|
|
static int init_state(struct drxk_state *state)
|
|
{
|
|
u32 ulVSBIfAgcMode = DRXK_AGC_CTRL_AUTO;
|
|
u32 ulVSBIfAgcOutputLevel = 0;
|
|
u32 ulVSBIfAgcMinLevel = 0;
|
|
u32 ulVSBIfAgcMaxLevel = 0x7FFF;
|
|
u32 ulVSBIfAgcSpeed = 3;
|
|
|
|
u32 ulVSBRfAgcMode = DRXK_AGC_CTRL_AUTO;
|
|
u32 ulVSBRfAgcOutputLevel = 0;
|
|
u32 ulVSBRfAgcMinLevel = 0;
|
|
u32 ulVSBRfAgcMaxLevel = 0x7FFF;
|
|
u32 ulVSBRfAgcSpeed = 3;
|
|
u32 ulVSBRfAgcTop = 9500;
|
|
u32 ulVSBRfAgcCutOffCurrent = 4000;
|
|
|
|
u32 ulATVIfAgcMode = DRXK_AGC_CTRL_AUTO;
|
|
u32 ulATVIfAgcOutputLevel = 0;
|
|
u32 ulATVIfAgcMinLevel = 0;
|
|
u32 ulATVIfAgcMaxLevel = 0;
|
|
u32 ulATVIfAgcSpeed = 3;
|
|
|
|
u32 ulATVRfAgcMode = DRXK_AGC_CTRL_OFF;
|
|
u32 ulATVRfAgcOutputLevel = 0;
|
|
u32 ulATVRfAgcMinLevel = 0;
|
|
u32 ulATVRfAgcMaxLevel = 0;
|
|
u32 ulATVRfAgcTop = 9500;
|
|
u32 ulATVRfAgcCutOffCurrent = 4000;
|
|
u32 ulATVRfAgcSpeed = 3;
|
|
|
|
u32 ulQual83 = DEFAULT_MER_83;
|
|
u32 ulQual93 = DEFAULT_MER_93;
|
|
|
|
u32 ulDVBTStaticTSClock = 1;
|
|
u32 ulDVBCStaticTSClock = 1;
|
|
|
|
u32 ulMpegLockTimeOut = DEFAULT_DRXK_MPEG_LOCK_TIMEOUT;
|
|
u32 ulDemodLockTimeOut = DEFAULT_DRXK_DEMOD_LOCK_TIMEOUT;
|
|
|
|
/* io_pad_cfg register (8 bit reg.) MSB bit is 1 (default value) */
|
|
/* io_pad_cfg_mode output mode is drive always */
|
|
/* io_pad_cfg_drive is set to power 2 (23 mA) */
|
|
u32 ulGPIOCfg = 0x0113;
|
|
u32 ulGPIO = 0;
|
|
u32 ulSerialMode = 1;
|
|
u32 ulInvertTSClock = 0;
|
|
u32 ulTSDataStrength = DRXK_MPEG_SERIAL_OUTPUT_PIN_DRIVE_STRENGTH;
|
|
u32 ulTSClockkStrength = DRXK_MPEG_OUTPUT_CLK_DRIVE_STRENGTH;
|
|
u32 ulDVBTBitrate = 50000000;
|
|
u32 ulDVBCBitrate = DRXK_QAM_SYMBOLRATE_MAX * 8;
|
|
|
|
u32 ulInsertRSByte = 0;
|
|
|
|
u32 ulRfMirror = 1;
|
|
u32 ulPowerDown = 0;
|
|
|
|
u32 ulAntennaDVBT = 1;
|
|
u32 ulAntennaDVBC = 0;
|
|
u32 ulAntennaSwitchDVBTDVBC = 0;
|
|
|
|
state->m_hasLNA = false;
|
|
state->m_hasDVBT= false;
|
|
state->m_hasDVBC= false;
|
|
state->m_hasATV= false;
|
|
state->m_hasOOB = false;
|
|
state->m_hasAudio = false;
|
|
|
|
state->m_ChunkSize = 124;
|
|
|
|
state->m_oscClockFreq = 0;
|
|
state->m_smartAntInverted = false;
|
|
state->m_bPDownOpenBridge = false;
|
|
|
|
/* real system clock frequency in kHz */
|
|
state->m_sysClockFreq = 151875;
|
|
/* Timing div, 250ns/Psys */
|
|
/* Timing div, = (delay (nano seconds) * sysclk (kHz))/ 1000 */
|
|
state->m_HICfgTimingDiv = ((state->m_sysClockFreq / 1000) *
|
|
HI_I2C_DELAY) / 1000;
|
|
/* Clipping */
|
|
if (state->m_HICfgTimingDiv > SIO_HI_RA_RAM_PAR_2_CFG_DIV__M)
|
|
state->m_HICfgTimingDiv = SIO_HI_RA_RAM_PAR_2_CFG_DIV__M;
|
|
state->m_HICfgWakeUpKey = (state->demod_address << 1);
|
|
/* port/bridge/power down ctrl */
|
|
state->m_HICfgCtrl = SIO_HI_RA_RAM_PAR_5_CFG_SLV0_SLAVE;
|
|
|
|
state->m_bPowerDown = (ulPowerDown != 0);
|
|
|
|
state->m_DRXK_A1_PATCH_CODE = false;
|
|
state->m_DRXK_A1_ROM_CODE = false;
|
|
state->m_DRXK_A2_ROM_CODE = false;
|
|
state->m_DRXK_A3_ROM_CODE = false;
|
|
state->m_DRXK_A2_PATCH_CODE = false;
|
|
state->m_DRXK_A3_PATCH_CODE = false;
|
|
|
|
/* Init AGC and PGA parameters */
|
|
/* VSB IF */
|
|
state->m_vsbIfAgcCfg.ctrlMode = (ulVSBIfAgcMode);
|
|
state->m_vsbIfAgcCfg.outputLevel = (ulVSBIfAgcOutputLevel);
|
|
state->m_vsbIfAgcCfg.minOutputLevel = (ulVSBIfAgcMinLevel);
|
|
state->m_vsbIfAgcCfg.maxOutputLevel = (ulVSBIfAgcMaxLevel);
|
|
state->m_vsbIfAgcCfg.speed = (ulVSBIfAgcSpeed);
|
|
state->m_vsbPgaCfg = 140;
|
|
|
|
/* VSB RF */
|
|
state->m_vsbRfAgcCfg.ctrlMode = (ulVSBRfAgcMode);
|
|
state->m_vsbRfAgcCfg.outputLevel = (ulVSBRfAgcOutputLevel);
|
|
state->m_vsbRfAgcCfg.minOutputLevel = (ulVSBRfAgcMinLevel);
|
|
state->m_vsbRfAgcCfg.maxOutputLevel = (ulVSBRfAgcMaxLevel);
|
|
state->m_vsbRfAgcCfg.speed = (ulVSBRfAgcSpeed);
|
|
state->m_vsbRfAgcCfg.top = (ulVSBRfAgcTop);
|
|
state->m_vsbRfAgcCfg.cutOffCurrent = (ulVSBRfAgcCutOffCurrent);
|
|
state->m_vsbPreSawCfg.reference = 0x07;
|
|
state->m_vsbPreSawCfg.usePreSaw = true;
|
|
|
|
state->m_Quality83percent = DEFAULT_MER_83;
|
|
state->m_Quality93percent = DEFAULT_MER_93;
|
|
if (ulQual93 <= 500 && ulQual83 < ulQual93) {
|
|
state->m_Quality83percent = ulQual83;
|
|
state->m_Quality93percent = ulQual93;
|
|
}
|
|
|
|
/* ATV IF */
|
|
state->m_atvIfAgcCfg.ctrlMode = (ulATVIfAgcMode);
|
|
state->m_atvIfAgcCfg.outputLevel = (ulATVIfAgcOutputLevel);
|
|
state->m_atvIfAgcCfg.minOutputLevel = (ulATVIfAgcMinLevel);
|
|
state->m_atvIfAgcCfg.maxOutputLevel = (ulATVIfAgcMaxLevel);
|
|
state->m_atvIfAgcCfg.speed = (ulATVIfAgcSpeed);
|
|
|
|
/* ATV RF */
|
|
state->m_atvRfAgcCfg.ctrlMode = (ulATVRfAgcMode);
|
|
state->m_atvRfAgcCfg.outputLevel = (ulATVRfAgcOutputLevel);
|
|
state->m_atvRfAgcCfg.minOutputLevel = (ulATVRfAgcMinLevel);
|
|
state->m_atvRfAgcCfg.maxOutputLevel = (ulATVRfAgcMaxLevel);
|
|
state->m_atvRfAgcCfg.speed = (ulATVRfAgcSpeed);
|
|
state->m_atvRfAgcCfg.top = (ulATVRfAgcTop);
|
|
state->m_atvRfAgcCfg.cutOffCurrent = (ulATVRfAgcCutOffCurrent);
|
|
state->m_atvPreSawCfg.reference = 0x04;
|
|
state->m_atvPreSawCfg.usePreSaw = true;
|
|
|
|
|
|
/* DVBT RF */
|
|
state->m_dvbtRfAgcCfg.ctrlMode = DRXK_AGC_CTRL_OFF;
|
|
state->m_dvbtRfAgcCfg.outputLevel = 0;
|
|
state->m_dvbtRfAgcCfg.minOutputLevel = 0;
|
|
state->m_dvbtRfAgcCfg.maxOutputLevel = 0xFFFF;
|
|
state->m_dvbtRfAgcCfg.top = 0x2100;
|
|
state->m_dvbtRfAgcCfg.cutOffCurrent = 4000;
|
|
state->m_dvbtRfAgcCfg.speed = 1;
|
|
|
|
|
|
/* DVBT IF */
|
|
state->m_dvbtIfAgcCfg.ctrlMode = DRXK_AGC_CTRL_AUTO;
|
|
state->m_dvbtIfAgcCfg.outputLevel = 0;
|
|
state->m_dvbtIfAgcCfg.minOutputLevel = 0;
|
|
state->m_dvbtIfAgcCfg.maxOutputLevel = 9000;
|
|
state->m_dvbtIfAgcCfg.top = 13424;
|
|
state->m_dvbtIfAgcCfg.cutOffCurrent = 0;
|
|
state->m_dvbtIfAgcCfg.speed = 3;
|
|
state->m_dvbtIfAgcCfg.FastClipCtrlDelay = 30;
|
|
state->m_dvbtIfAgcCfg.IngainTgtMax = 30000;
|
|
// state->m_dvbtPgaCfg = 140;
|
|
|
|
state->m_dvbtPreSawCfg.reference = 4;
|
|
state->m_dvbtPreSawCfg.usePreSaw = false;
|
|
|
|
/* QAM RF */
|
|
state->m_qamRfAgcCfg.ctrlMode = DRXK_AGC_CTRL_OFF;
|
|
state->m_qamRfAgcCfg.outputLevel = 0;
|
|
state->m_qamRfAgcCfg.minOutputLevel = 6023;
|
|
state->m_qamRfAgcCfg.maxOutputLevel = 27000;
|
|
state->m_qamRfAgcCfg.top = 0x2380;
|
|
state->m_qamRfAgcCfg.cutOffCurrent = 4000;
|
|
state->m_qamRfAgcCfg.speed = 3;
|
|
|
|
/* QAM IF */
|
|
state->m_qamIfAgcCfg.ctrlMode = DRXK_AGC_CTRL_AUTO;
|
|
state->m_qamIfAgcCfg.outputLevel = 0;
|
|
state->m_qamIfAgcCfg.minOutputLevel = 0;
|
|
state->m_qamIfAgcCfg.maxOutputLevel = 9000;
|
|
state->m_qamIfAgcCfg.top = 0x0511;
|
|
state->m_qamIfAgcCfg.cutOffCurrent = 0;
|
|
state->m_qamIfAgcCfg.speed = 3;
|
|
state->m_qamIfAgcCfg.IngainTgtMax = 5119;
|
|
state->m_qamIfAgcCfg.FastClipCtrlDelay = 50;
|
|
|
|
state->m_qamPgaCfg = 140;
|
|
state->m_qamPreSawCfg.reference = 4;
|
|
state->m_qamPreSawCfg.usePreSaw = false;
|
|
|
|
state->m_OperationMode = OM_NONE;
|
|
state->m_DrxkState = DRXK_UNINITIALIZED;
|
|
|
|
/* MPEG output configuration */
|
|
state->m_enableMPEGOutput = true; /* If TRUE; enable MPEG ouput */
|
|
state->m_insertRSByte = false; /* If TRUE; insert RS byte */
|
|
state->m_enableParallel = true; /* If TRUE;
|
|
parallel out otherwise serial */
|
|
state->m_invertDATA = false; /* If TRUE; invert DATA signals */
|
|
state->m_invertERR = false; /* If TRUE; invert ERR signal */
|
|
state->m_invertSTR = false; /* If TRUE; invert STR signals */
|
|
state->m_invertVAL = false; /* If TRUE; invert VAL signals */
|
|
state->m_invertCLK =
|
|
(ulInvertTSClock != 0); /* If TRUE; invert CLK signals */
|
|
state->m_DVBTStaticCLK = (ulDVBTStaticTSClock != 0);
|
|
state->m_DVBCStaticCLK =
|
|
(ulDVBCStaticTSClock != 0);
|
|
/* If TRUE; static MPEG clockrate will be used;
|
|
otherwise clockrate will adapt to the bitrate of the TS */
|
|
|
|
state->m_DVBTBitrate = ulDVBTBitrate;
|
|
state->m_DVBCBitrate = ulDVBCBitrate;
|
|
|
|
state->m_TSDataStrength = (ulTSDataStrength & 0x07);
|
|
state->m_TSClockkStrength = (ulTSClockkStrength & 0x07);
|
|
|
|
/* Maximum bitrate in b/s in case static clockrate is selected */
|
|
state->m_mpegTsStaticBitrate = 19392658;
|
|
state->m_disableTEIhandling = false;
|
|
|
|
if (ulInsertRSByte)
|
|
state->m_insertRSByte = true;
|
|
|
|
state->m_MpegLockTimeOut = DEFAULT_DRXK_MPEG_LOCK_TIMEOUT;
|
|
if (ulMpegLockTimeOut < 10000)
|
|
state->m_MpegLockTimeOut = ulMpegLockTimeOut;
|
|
state->m_DemodLockTimeOut = DEFAULT_DRXK_DEMOD_LOCK_TIMEOUT;
|
|
if (ulDemodLockTimeOut < 10000)
|
|
state->m_DemodLockTimeOut = ulDemodLockTimeOut;
|
|
|
|
// QAM defaults
|
|
state->m_Constellation = DRX_CONSTELLATION_AUTO;
|
|
state->m_qamInterleaveMode = DRXK_QAM_I12_J17;
|
|
state->m_fecRsPlen = 204*8; /* fecRsPlen annex A*/
|
|
state->m_fecRsPrescale = 1;
|
|
|
|
state->m_sqiSpeed = DRXK_DVBT_SQI_SPEED_MEDIUM;
|
|
state->m_agcFastClipCtrlDelay = 0;
|
|
|
|
state->m_GPIOCfg = (ulGPIOCfg);
|
|
state->m_GPIO = (ulGPIO == 0 ? 0 : 1);
|
|
|
|
state->m_AntennaDVBT = (ulAntennaDVBT == 0 ? 0 : 1);
|
|
state->m_AntennaDVBC = (ulAntennaDVBC == 0 ? 0 : 1);
|
|
state->m_AntennaSwitchDVBTDVBC =
|
|
(ulAntennaSwitchDVBTDVBC == 0 ? 0 : 1);
|
|
|
|
state->m_bPowerDown = false;
|
|
state->m_currentPowerMode = DRX_POWER_DOWN;
|
|
|
|
state->m_enableParallel = (ulSerialMode == 0);
|
|
|
|
state->m_rfmirror = (ulRfMirror == 0);
|
|
state->m_IfAgcPol = false;
|
|
return 0;
|
|
}
|
|
|
|
static int DRXX_Open(struct drxk_state *state)
|
|
{
|
|
int status = 0;
|
|
u32 jtag = 0;
|
|
u16 bid = 0;
|
|
u16 key = 0;
|
|
|
|
do {
|
|
/* stop lock indicator process */
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_GPIO__A,
|
|
SCU_RAM_GPIO_HW_LOCK_IND_DISABLE));
|
|
/* Check device id */
|
|
CHK_ERROR(Read16(state, SIO_TOP_COMM_KEY__A, &key, 0));
|
|
CHK_ERROR(Write16_0(state, SIO_TOP_COMM_KEY__A,
|
|
SIO_TOP_COMM_KEY_KEY));
|
|
CHK_ERROR(Read32(state, SIO_TOP_JTAGID_LO__A, &jtag, 0));
|
|
CHK_ERROR(Read16(state, SIO_PDR_UIO_IN_HI__A, &bid, 0));
|
|
CHK_ERROR(Write16_0(state, SIO_TOP_COMM_KEY__A, key));
|
|
} while(0);
|
|
return status;
|
|
}
|
|
|
|
static int GetDeviceCapabilities(struct drxk_state *state)
|
|
{
|
|
u16 sioPdrOhwCfg = 0;
|
|
u32 sioTopJtagidLo = 0;
|
|
int status;
|
|
|
|
do {
|
|
/* driver 0.9.0 */
|
|
/* stop lock indicator process */
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_GPIO__A,
|
|
SCU_RAM_GPIO_HW_LOCK_IND_DISABLE));
|
|
|
|
CHK_ERROR(Write16_0(state, SIO_TOP_COMM_KEY__A, 0xFABA));
|
|
CHK_ERROR(Read16(state, SIO_PDR_OHW_CFG__A, &sioPdrOhwCfg, 0));
|
|
CHK_ERROR(Write16_0(state, SIO_TOP_COMM_KEY__A, 0x0000));
|
|
|
|
switch ((sioPdrOhwCfg & SIO_PDR_OHW_CFG_FREF_SEL__M)) {
|
|
case 0:
|
|
/* ignore (bypass ?) */
|
|
break;
|
|
case 1:
|
|
/* 27 MHz */
|
|
state->m_oscClockFreq = 27000;
|
|
break;
|
|
case 2:
|
|
/* 20.25 MHz */
|
|
state->m_oscClockFreq = 20250;
|
|
break;
|
|
case 3:
|
|
/* 4 MHz */
|
|
state->m_oscClockFreq = 20250;
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
/*
|
|
Determine device capabilities
|
|
Based on pinning v14
|
|
*/
|
|
CHK_ERROR(Read32(state, SIO_TOP_JTAGID_LO__A,
|
|
&sioTopJtagidLo, 0));
|
|
/* driver 0.9.0 */
|
|
switch((sioTopJtagidLo >> 29) & 0xF) {
|
|
case 0:
|
|
state->m_deviceSpin = DRXK_SPIN_A1;
|
|
break;
|
|
case 2:
|
|
state->m_deviceSpin = DRXK_SPIN_A2;
|
|
break;
|
|
case 3:
|
|
state->m_deviceSpin = DRXK_SPIN_A3;
|
|
break;
|
|
default:
|
|
state->m_deviceSpin = DRXK_SPIN_UNKNOWN;
|
|
status = -1;
|
|
break;
|
|
}
|
|
switch ((sioTopJtagidLo>>12)&0xFF) {
|
|
case 0x13:
|
|
/* typeId = DRX3913K_TYPE_ID */
|
|
state->m_hasLNA = false;
|
|
state->m_hasOOB = false;
|
|
state->m_hasATV = false;
|
|
state->m_hasAudio = false;
|
|
state->m_hasDVBT = true;
|
|
state->m_hasDVBC = true;
|
|
state->m_hasSAWSW = true;
|
|
state->m_hasGPIO2 = false;
|
|
state->m_hasGPIO1 = false;
|
|
state->m_hasIRQN = false;
|
|
break;
|
|
case 0x15:
|
|
/* typeId = DRX3915K_TYPE_ID */
|
|
state->m_hasLNA = false;
|
|
state->m_hasOOB = false;
|
|
state->m_hasATV = true;
|
|
state->m_hasAudio = false;
|
|
state->m_hasDVBT = true;
|
|
state->m_hasDVBC = false;
|
|
state->m_hasSAWSW = true;
|
|
state->m_hasGPIO2 = true;
|
|
state->m_hasGPIO1 = true;
|
|
state->m_hasIRQN = false;
|
|
break;
|
|
case 0x16:
|
|
/* typeId = DRX3916K_TYPE_ID */
|
|
state->m_hasLNA = false;
|
|
state->m_hasOOB = false;
|
|
state->m_hasATV = true;
|
|
state->m_hasAudio = false;
|
|
state->m_hasDVBT = true;
|
|
state->m_hasDVBC = false;
|
|
state->m_hasSAWSW = true;
|
|
state->m_hasGPIO2 = true;
|
|
state->m_hasGPIO1 = true;
|
|
state->m_hasIRQN = false;
|
|
break;
|
|
case 0x18:
|
|
/* typeId = DRX3918K_TYPE_ID */
|
|
state->m_hasLNA = false;
|
|
state->m_hasOOB = false;
|
|
state->m_hasATV = true;
|
|
state->m_hasAudio = true;
|
|
state->m_hasDVBT = true;
|
|
state->m_hasDVBC = false;
|
|
state->m_hasSAWSW = true;
|
|
state->m_hasGPIO2 = true;
|
|
state->m_hasGPIO1 = true;
|
|
state->m_hasIRQN = false;
|
|
break;
|
|
case 0x21:
|
|
/* typeId = DRX3921K_TYPE_ID */
|
|
state->m_hasLNA = false;
|
|
state->m_hasOOB = false;
|
|
state->m_hasATV = true;
|
|
state->m_hasAudio = true;
|
|
state->m_hasDVBT = true;
|
|
state->m_hasDVBC = true;
|
|
state->m_hasSAWSW = true;
|
|
state->m_hasGPIO2 = true;
|
|
state->m_hasGPIO1 = true;
|
|
state->m_hasIRQN = false;
|
|
break;
|
|
case 0x23:
|
|
/* typeId = DRX3923K_TYPE_ID */
|
|
state->m_hasLNA = false;
|
|
state->m_hasOOB = false;
|
|
state->m_hasATV = true;
|
|
state->m_hasAudio = true;
|
|
state->m_hasDVBT = true;
|
|
state->m_hasDVBC = true;
|
|
state->m_hasSAWSW = true;
|
|
state->m_hasGPIO2 = true;
|
|
state->m_hasGPIO1 = true;
|
|
state->m_hasIRQN = false;
|
|
break;
|
|
case 0x25:
|
|
/* typeId = DRX3925K_TYPE_ID */
|
|
state->m_hasLNA = false;
|
|
state->m_hasOOB = false;
|
|
state->m_hasATV = true;
|
|
state->m_hasAudio = true;
|
|
state->m_hasDVBT = true;
|
|
state->m_hasDVBC = true;
|
|
state->m_hasSAWSW = true;
|
|
state->m_hasGPIO2 = true;
|
|
state->m_hasGPIO1 = true;
|
|
state->m_hasIRQN = false;
|
|
break;
|
|
case 0x26:
|
|
/* typeId = DRX3926K_TYPE_ID */
|
|
state->m_hasLNA = false;
|
|
state->m_hasOOB = false;
|
|
state->m_hasATV = true;
|
|
state->m_hasAudio = false;
|
|
state->m_hasDVBT = true;
|
|
state->m_hasDVBC = true;
|
|
state->m_hasSAWSW = true;
|
|
state->m_hasGPIO2 = true;
|
|
state->m_hasGPIO1 = true;
|
|
state->m_hasIRQN = false;
|
|
break;
|
|
default:
|
|
printk("DeviceID not supported = %02x\n",
|
|
((sioTopJtagidLo>>12)&0xFF));
|
|
status = -1;
|
|
break;
|
|
}
|
|
} while(0);
|
|
return status;
|
|
}
|
|
|
|
static int HI_Command(struct drxk_state *state, u16 cmd, u16 *pResult)
|
|
{
|
|
int status;
|
|
bool powerdown_cmd;
|
|
|
|
//printk("%s\n", __FUNCTION__);
|
|
|
|
/* Write command */
|
|
status = Write16_0(state, SIO_HI_RA_RAM_CMD__A, cmd);
|
|
if (status < 0)
|
|
return status;
|
|
if (cmd == SIO_HI_RA_RAM_CMD_RESET)
|
|
msleep(1);
|
|
|
|
powerdown_cmd =
|
|
(bool) ((cmd == SIO_HI_RA_RAM_CMD_CONFIG) &&
|
|
((state->m_HICfgCtrl) &
|
|
SIO_HI_RA_RAM_PAR_5_CFG_SLEEP__M) ==
|
|
SIO_HI_RA_RAM_PAR_5_CFG_SLEEP_ZZZ);
|
|
if (powerdown_cmd == false) {
|
|
/* Wait until command rdy */
|
|
u32 retryCount = 0;
|
|
u16 waitCmd;
|
|
|
|
do {
|
|
msleep(1);
|
|
retryCount += 1;
|
|
status = Read16(state, SIO_HI_RA_RAM_CMD__A,
|
|
&waitCmd, 0);
|
|
} while ((status < 0) &&
|
|
(retryCount < DRXK_MAX_RETRIES) && (waitCmd != 0));
|
|
|
|
if (status == 0)
|
|
status = Read16(state, SIO_HI_RA_RAM_RES__A,
|
|
pResult, 0);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static int HI_CfgCommand(struct drxk_state *state)
|
|
{
|
|
int status;
|
|
|
|
mutex_lock(&state->mutex);
|
|
do {
|
|
CHK_ERROR(Write16_0(state,SIO_HI_RA_RAM_PAR_6__A,
|
|
state->m_HICfgTimeout));
|
|
CHK_ERROR(Write16_0(state,SIO_HI_RA_RAM_PAR_5__A,
|
|
state->m_HICfgCtrl));
|
|
CHK_ERROR(Write16_0(state,SIO_HI_RA_RAM_PAR_4__A,
|
|
state->m_HICfgWakeUpKey));
|
|
CHK_ERROR(Write16_0(state,SIO_HI_RA_RAM_PAR_3__A,
|
|
state->m_HICfgBridgeDelay));
|
|
CHK_ERROR(Write16_0(state,SIO_HI_RA_RAM_PAR_2__A,
|
|
state->m_HICfgTimingDiv));
|
|
CHK_ERROR(Write16_0(state,SIO_HI_RA_RAM_PAR_1__A,
|
|
SIO_HI_RA_RAM_PAR_1_PAR1_SEC_KEY));
|
|
CHK_ERROR(HI_Command(state, SIO_HI_RA_RAM_CMD_CONFIG, 0));
|
|
|
|
state->m_HICfgCtrl &= ~SIO_HI_RA_RAM_PAR_5_CFG_SLEEP_ZZZ;
|
|
} while(0);
|
|
mutex_unlock(&state->mutex);
|
|
return status;
|
|
}
|
|
|
|
static int InitHI(struct drxk_state *state)
|
|
{
|
|
state->m_HICfgWakeUpKey = (state->demod_address<<1);
|
|
state->m_HICfgTimeout = 0x96FF;
|
|
/* port/bridge/power down ctrl */
|
|
state->m_HICfgCtrl = SIO_HI_RA_RAM_PAR_5_CFG_SLV0_SLAVE;
|
|
return HI_CfgCommand(state);
|
|
}
|
|
|
|
static int MPEGTSConfigurePins(struct drxk_state *state, bool mpegEnable)
|
|
{
|
|
int status = -1;
|
|
u16 sioPdrMclkCfg = 0;
|
|
u16 sioPdrMdxCfg = 0;
|
|
|
|
do {
|
|
/* stop lock indicator process */
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_GPIO__A,
|
|
SCU_RAM_GPIO_HW_LOCK_IND_DISABLE));
|
|
|
|
/* MPEG TS pad configuration */
|
|
CHK_ERROR(Write16_0(state, SIO_TOP_COMM_KEY__A, 0xFABA));
|
|
|
|
if (mpegEnable == false) {
|
|
/* Set MPEG TS pads to inputmode */
|
|
CHK_ERROR(Write16_0(state,
|
|
SIO_PDR_MSTRT_CFG__A, 0x0000));
|
|
CHK_ERROR(Write16_0(state,
|
|
SIO_PDR_MERR_CFG__A, 0x0000));
|
|
CHK_ERROR(Write16_0(state,
|
|
SIO_PDR_MCLK_CFG__A, 0x0000));
|
|
CHK_ERROR(Write16_0(state,
|
|
SIO_PDR_MVAL_CFG__A, 0x0000));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD0_CFG__A, 0x0000));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD1_CFG__A, 0x0000));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD2_CFG__A, 0x0000));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD3_CFG__A, 0x0000));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD4_CFG__A, 0x0000));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD5_CFG__A, 0x0000));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD6_CFG__A, 0x0000));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD7_CFG__A, 0x0000));
|
|
} else {
|
|
/* Enable MPEG output */
|
|
sioPdrMdxCfg =
|
|
((state->m_TSDataStrength <<
|
|
SIO_PDR_MD0_CFG_DRIVE__B) | 0x0003);
|
|
sioPdrMclkCfg = ((state->m_TSClockkStrength <<
|
|
SIO_PDR_MCLK_CFG_DRIVE__B) | 0x0003);
|
|
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MSTRT_CFG__A,
|
|
sioPdrMdxCfg));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MERR_CFG__A,
|
|
0x0000)); // Disable
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MVAL_CFG__A,
|
|
0x0000)); // Disable
|
|
if (state->m_enableParallel == true) {
|
|
/* paralel -> enable MD1 to MD7 */
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD1_CFG__A,
|
|
sioPdrMdxCfg));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD2_CFG__A,
|
|
sioPdrMdxCfg));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD3_CFG__A,
|
|
sioPdrMdxCfg));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD4_CFG__A,
|
|
sioPdrMdxCfg));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD5_CFG__A,
|
|
sioPdrMdxCfg));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD6_CFG__A,
|
|
sioPdrMdxCfg));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD7_CFG__A,
|
|
sioPdrMdxCfg));
|
|
} else {
|
|
sioPdrMdxCfg = ((state->m_TSDataStrength <<
|
|
SIO_PDR_MD0_CFG_DRIVE__B) |
|
|
0x0003);
|
|
/* serial -> disable MD1 to MD7 */
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD1_CFG__A,
|
|
0x0000));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD2_CFG__A,
|
|
0x0000));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD3_CFG__A,
|
|
0x0000));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD4_CFG__A,
|
|
0x0000));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD5_CFG__A,
|
|
0x0000));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD6_CFG__A,
|
|
0x0000));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD7_CFG__A,
|
|
0x0000));
|
|
}
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MCLK_CFG__A,
|
|
sioPdrMclkCfg));
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MD0_CFG__A,
|
|
sioPdrMdxCfg));
|
|
}
|
|
/* Enable MB output over MPEG pads and ctl input */
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_MON_CFG__A, 0x0000));
|
|
/* Write nomagic word to enable pdr reg write */
|
|
CHK_ERROR(Write16_0(state, SIO_TOP_COMM_KEY__A, 0x0000));
|
|
} while(0);
|
|
return status;
|
|
}
|
|
|
|
static int MPEGTSDisable(struct drxk_state *state)
|
|
{
|
|
return MPEGTSConfigurePins(state, false);
|
|
}
|
|
|
|
static int BLChainCmd(struct drxk_state *state,
|
|
u16 romOffset, u16 nrOfElements, u32 timeOut)
|
|
{
|
|
u16 blStatus = 0;
|
|
int status;
|
|
unsigned long end;
|
|
|
|
mutex_lock(&state->mutex);
|
|
do {
|
|
CHK_ERROR(Write16_0(state, SIO_BL_MODE__A,
|
|
SIO_BL_MODE_CHAIN));
|
|
CHK_ERROR(Write16_0(state, SIO_BL_CHAIN_ADDR__A,
|
|
romOffset));
|
|
CHK_ERROR(Write16_0(state, SIO_BL_CHAIN_LEN__A,
|
|
nrOfElements));
|
|
CHK_ERROR(Write16_0(state, SIO_BL_ENABLE__A,
|
|
SIO_BL_ENABLE_ON));
|
|
end=jiffies+msecs_to_jiffies(timeOut);
|
|
|
|
do {
|
|
msleep(1);
|
|
CHK_ERROR(Read16(state, SIO_BL_STATUS__A,
|
|
&blStatus, 0));
|
|
} while ((blStatus == 0x1) &&
|
|
((time_is_after_jiffies(end))));
|
|
if (blStatus == 0x1) {
|
|
printk("SIO not ready\n");
|
|
mutex_unlock(&state->mutex);
|
|
return -1;
|
|
}
|
|
} while(0);
|
|
mutex_unlock(&state->mutex);
|
|
return status;
|
|
}
|
|
|
|
|
|
static int DownloadMicrocode(struct drxk_state *state,
|
|
const u8 pMCImage[],
|
|
u32 Length)
|
|
{
|
|
const u8 *pSrc = pMCImage;
|
|
u16 Flags;
|
|
u16 Drain;
|
|
u32 Address;
|
|
u16 nBlocks;
|
|
u16 BlockSize;
|
|
u16 BlockCRC;
|
|
u32 offset = 0;
|
|
u32 i;
|
|
int status;
|
|
|
|
/* down the drain (we don care about MAGIC_WORD) */
|
|
Drain = (pSrc[0] << 8) | pSrc[1];
|
|
pSrc += sizeof(u16); offset += sizeof(u16);
|
|
nBlocks = (pSrc[0] << 8) | pSrc[1];
|
|
pSrc += sizeof(u16); offset += sizeof(u16);
|
|
|
|
for (i = 0; i < nBlocks; i += 1) {
|
|
Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
|
|
(pSrc[2] << 8) | pSrc[3];
|
|
pSrc += sizeof(u32); offset += sizeof(u32);
|
|
|
|
BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
|
|
pSrc += sizeof(u16); offset += sizeof(u16);
|
|
|
|
Flags = (pSrc[0] << 8) | pSrc[1];
|
|
pSrc += sizeof(u16); offset += sizeof(u16);
|
|
|
|
BlockCRC = (pSrc[0] << 8) | pSrc[1];
|
|
pSrc += sizeof(u16); offset += sizeof(u16);
|
|
status = WriteBlock(state, Address, BlockSize, pSrc, 0);
|
|
if (status<0)
|
|
break;
|
|
pSrc += BlockSize;
|
|
offset += BlockSize;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static int DVBTEnableOFDMTokenRing(struct drxk_state *state, bool enable)
|
|
{
|
|
int status;
|
|
u16 data = 0;
|
|
u16 desiredCtrl = SIO_OFDM_SH_OFDM_RING_ENABLE_ON;
|
|
u16 desiredStatus = SIO_OFDM_SH_OFDM_RING_STATUS_ENABLED;
|
|
unsigned long end;
|
|
|
|
if (enable == false) {
|
|
desiredCtrl = SIO_OFDM_SH_OFDM_RING_ENABLE_OFF;
|
|
desiredStatus = SIO_OFDM_SH_OFDM_RING_STATUS_DOWN;
|
|
}
|
|
|
|
status = (Read16_0(state, SIO_OFDM_SH_OFDM_RING_STATUS__A, &data));
|
|
|
|
if (data == desiredStatus) {
|
|
/* tokenring already has correct status */
|
|
return status;
|
|
}
|
|
/* Disable/enable dvbt tokenring bridge */
|
|
status = Write16_0(state,SIO_OFDM_SH_OFDM_RING_ENABLE__A, desiredCtrl);
|
|
|
|
end=jiffies+msecs_to_jiffies(DRXK_OFDM_TR_SHUTDOWN_TIMEOUT);
|
|
do
|
|
CHK_ERROR(Read16_0(state, SIO_OFDM_SH_OFDM_RING_STATUS__A, &data));
|
|
while ((data != desiredStatus) &&
|
|
((time_is_after_jiffies(end))));
|
|
if (data != desiredStatus) {
|
|
printk("SIO not ready\n");
|
|
return -1;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static int MPEGTSStop(struct drxk_state *state)
|
|
{
|
|
int status = 0;
|
|
u16 fecOcSncMode = 0;
|
|
u16 fecOcIprMode = 0;
|
|
|
|
do {
|
|
/* Gracefull shutdown (byte boundaries) */
|
|
CHK_ERROR(Read16_0(state, FEC_OC_SNC_MODE__A, &fecOcSncMode));
|
|
fecOcSncMode |= FEC_OC_SNC_MODE_SHUTDOWN__M;
|
|
CHK_ERROR(Write16_0(state, FEC_OC_SNC_MODE__A, fecOcSncMode));
|
|
|
|
/* Suppress MCLK during absence of data */
|
|
CHK_ERROR(Read16_0(state, FEC_OC_IPR_MODE__A, &fecOcIprMode));
|
|
fecOcIprMode |= FEC_OC_IPR_MODE_MCLK_DIS_DAT_ABS__M;
|
|
CHK_ERROR(Write16_0(state, FEC_OC_IPR_MODE__A, fecOcIprMode));
|
|
} while (0);
|
|
return status;
|
|
}
|
|
|
|
static int scu_command(struct drxk_state *state,
|
|
u16 cmd, u8 parameterLen,
|
|
u16 * parameter, u8 resultLen, u16 * result)
|
|
{
|
|
#if (SCU_RAM_PARAM_0__A - SCU_RAM_PARAM_15__A) != 15
|
|
#error DRXK register mapping no longer compatible with this routine!
|
|
#endif
|
|
u16 curCmd = 0;
|
|
int status;
|
|
unsigned long end;
|
|
|
|
if ((cmd == 0) || ((parameterLen > 0) && (parameter == NULL)) ||
|
|
((resultLen > 0) && (result == NULL)))
|
|
return -1;
|
|
|
|
mutex_lock(&state->mutex);
|
|
do {
|
|
/* assume that the command register is ready
|
|
since it is checked afterwards */
|
|
u8 buffer[34];
|
|
int cnt = 0, ii;
|
|
|
|
for (ii=parameterLen-1; ii >= 0; ii -= 1) {
|
|
buffer[cnt++] = (parameter[ii] & 0xFF);
|
|
buffer[cnt++] = ((parameter[ii] >> 8) & 0xFF);
|
|
}
|
|
buffer[cnt++] = (cmd & 0xFF);
|
|
buffer[cnt++] = ((cmd >> 8) & 0xFF);
|
|
|
|
WriteBlock(state, SCU_RAM_PARAM_0__A -
|
|
(parameterLen-1), cnt, buffer, 0x00);
|
|
/* Wait until SCU has processed command */
|
|
end=jiffies+msecs_to_jiffies(DRXK_MAX_WAITTIME);
|
|
do {
|
|
msleep(1);
|
|
CHK_ERROR(Read16_0(state, SCU_RAM_COMMAND__A, &curCmd));
|
|
} while (! (curCmd == DRX_SCU_READY) &&
|
|
(time_is_after_jiffies(end)));
|
|
if (curCmd != DRX_SCU_READY) {
|
|
printk("SCU not ready\n");
|
|
mutex_unlock(&state->mutex);
|
|
return -1;
|
|
}
|
|
/* read results */
|
|
if ((resultLen > 0) && (result != NULL)) {
|
|
s16 err;
|
|
int ii;
|
|
|
|
for(ii=resultLen-1; ii >= 0; ii -= 1) {
|
|
CHK_ERROR(Read16_0(state,
|
|
SCU_RAM_PARAM_0__A - ii,
|
|
&result[ii]));
|
|
}
|
|
|
|
/* Check if an error was reported by SCU */
|
|
err = (s16)result[0];
|
|
|
|
/* check a few fixed error codes */
|
|
if (err == SCU_RESULT_UNKSTD) {
|
|
printk("SCU_RESULT_UNKSTD\n");
|
|
mutex_unlock(&state->mutex);
|
|
return -1;
|
|
} else if (err == SCU_RESULT_UNKCMD) {
|
|
printk("SCU_RESULT_UNKCMD\n");
|
|
mutex_unlock(&state->mutex);
|
|
return -1;
|
|
}
|
|
/* here it is assumed that negative means error,
|
|
and positive no error */
|
|
else if (err < 0) {
|
|
printk("%s ERROR\n", __FUNCTION__);
|
|
mutex_unlock(&state->mutex);
|
|
return -1;
|
|
}
|
|
}
|
|
} while(0);
|
|
mutex_unlock(&state->mutex);
|
|
if (status<0)
|
|
{
|
|
printk("%s: status = %d\n", __FUNCTION__, status);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static int SetIqmAf(struct drxk_state *state, bool active)
|
|
{
|
|
u16 data = 0;
|
|
int status;
|
|
|
|
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "(%d)\n",active));
|
|
//printk("%s\n", __FUNCTION__);
|
|
|
|
do
|
|
{
|
|
/* Configure IQM */
|
|
CHK_ERROR(Read16_0(state, IQM_AF_STDBY__A , &data));;
|
|
if (!active) {
|
|
data |= (IQM_AF_STDBY_STDBY_ADC_STANDBY
|
|
| IQM_AF_STDBY_STDBY_AMP_STANDBY
|
|
| IQM_AF_STDBY_STDBY_PD_STANDBY
|
|
| IQM_AF_STDBY_STDBY_TAGC_IF_STANDBY
|
|
| IQM_AF_STDBY_STDBY_TAGC_RF_STANDBY
|
|
);
|
|
// break;
|
|
//default:
|
|
// break;
|
|
//}
|
|
} else /* active */ {
|
|
data &= ((~IQM_AF_STDBY_STDBY_ADC_STANDBY)
|
|
& (~IQM_AF_STDBY_STDBY_AMP_STANDBY)
|
|
& (~IQM_AF_STDBY_STDBY_PD_STANDBY)
|
|
& (~IQM_AF_STDBY_STDBY_TAGC_IF_STANDBY)
|
|
& (~IQM_AF_STDBY_STDBY_TAGC_RF_STANDBY)
|
|
);
|
|
// break;
|
|
//default:
|
|
// break;
|
|
//}
|
|
}
|
|
CHK_ERROR(Write16_0(state, IQM_AF_STDBY__A , data));
|
|
}while(0);
|
|
return status;
|
|
}
|
|
|
|
static int CtrlPowerMode(struct drxk_state *state,
|
|
pDRXPowerMode_t mode)
|
|
{
|
|
int status = 0;
|
|
u16 sioCcPwdMode = 0;
|
|
|
|
//printk("%s\n", __FUNCTION__);
|
|
/* Check arguments */
|
|
if (mode == NULL)
|
|
return -1;
|
|
|
|
switch (*mode) {
|
|
case DRX_POWER_UP:
|
|
sioCcPwdMode = SIO_CC_PWD_MODE_LEVEL_NONE;
|
|
break;
|
|
case DRXK_POWER_DOWN_OFDM:
|
|
sioCcPwdMode = SIO_CC_PWD_MODE_LEVEL_OFDM;
|
|
break;
|
|
case DRXK_POWER_DOWN_CORE:
|
|
sioCcPwdMode = SIO_CC_PWD_MODE_LEVEL_CLOCK;
|
|
break;
|
|
case DRXK_POWER_DOWN_PLL:
|
|
sioCcPwdMode = SIO_CC_PWD_MODE_LEVEL_PLL;
|
|
break;
|
|
case DRX_POWER_DOWN:
|
|
sioCcPwdMode = SIO_CC_PWD_MODE_LEVEL_OSC;
|
|
break;
|
|
default:
|
|
/* Unknow sleep mode */
|
|
return -1;
|
|
break;
|
|
}
|
|
|
|
/* If already in requested power mode, do nothing */
|
|
if (state->m_currentPowerMode == *mode)
|
|
return 0;
|
|
|
|
/* For next steps make sure to start from DRX_POWER_UP mode */
|
|
if (state->m_currentPowerMode != DRX_POWER_UP)
|
|
{
|
|
do {
|
|
CHK_ERROR(PowerUpDevice(state));
|
|
CHK_ERROR(DVBTEnableOFDMTokenRing(state, true));
|
|
} while(0);
|
|
}
|
|
|
|
if (*mode == DRX_POWER_UP) {
|
|
/* Restore analog & pin configuartion */
|
|
} else {
|
|
/* Power down to requested mode */
|
|
/* Backup some register settings */
|
|
/* Set pins with possible pull-ups connected
|
|
to them in input mode */
|
|
/* Analog power down */
|
|
/* ADC power down */
|
|
/* Power down device */
|
|
/* stop all comm_exec */
|
|
/* Stop and power down previous standard */
|
|
do {
|
|
switch (state->m_OperationMode) {
|
|
case OM_DVBT:
|
|
CHK_ERROR(MPEGTSStop(state));
|
|
CHK_ERROR(PowerDownDVBT(state, false));
|
|
break;
|
|
case OM_QAM_ITU_A:
|
|
case OM_QAM_ITU_C:
|
|
CHK_ERROR(MPEGTSStop(state));
|
|
CHK_ERROR(PowerDownQAM(state));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
CHK_ERROR(DVBTEnableOFDMTokenRing(state, false));
|
|
CHK_ERROR(Write16_0(state, SIO_CC_PWD_MODE__A,
|
|
sioCcPwdMode));
|
|
CHK_ERROR(Write16_0(state, SIO_CC_UPDATE__A,
|
|
SIO_CC_UPDATE_KEY));
|
|
|
|
if (*mode != DRXK_POWER_DOWN_OFDM) {
|
|
state->m_HICfgCtrl |=
|
|
SIO_HI_RA_RAM_PAR_5_CFG_SLEEP_ZZZ;
|
|
CHK_ERROR(HI_CfgCommand(state));
|
|
}
|
|
} while(0);
|
|
}
|
|
state->m_currentPowerMode = *mode;
|
|
return (status);
|
|
}
|
|
|
|
static int PowerDownDVBT(struct drxk_state *state, bool setPowerMode)
|
|
{
|
|
DRXPowerMode_t powerMode = DRXK_POWER_DOWN_OFDM;
|
|
u16 cmdResult = 0;
|
|
u16 data = 0;
|
|
int status;
|
|
|
|
do {
|
|
CHK_ERROR(Read16_0(state, SCU_COMM_EXEC__A, &data));
|
|
if (data == SCU_COMM_EXEC_ACTIVE) {
|
|
/* Send OFDM stop command */
|
|
CHK_ERROR(scu_command(state,
|
|
SCU_RAM_COMMAND_STANDARD_OFDM |
|
|
SCU_RAM_COMMAND_CMD_DEMOD_STOP,
|
|
0, NULL, 1, &cmdResult));
|
|
/* Send OFDM reset command */
|
|
CHK_ERROR(scu_command(state,
|
|
SCU_RAM_COMMAND_STANDARD_OFDM |
|
|
SCU_RAM_COMMAND_CMD_DEMOD_RESET,
|
|
0, NULL, 1, &cmdResult));
|
|
}
|
|
|
|
/* Reset datapath for OFDM, processors first */
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_COMM_EXEC__A,
|
|
OFDM_SC_COMM_EXEC_STOP));
|
|
CHK_ERROR(Write16_0(state, OFDM_LC_COMM_EXEC__A,
|
|
OFDM_LC_COMM_EXEC_STOP));
|
|
CHK_ERROR(Write16_0(state, IQM_COMM_EXEC__A,
|
|
IQM_COMM_EXEC_B_STOP));
|
|
|
|
/* powerdown AFE */
|
|
CHK_ERROR(SetIqmAf(state,false));
|
|
|
|
/* powerdown to OFDM mode */
|
|
if (setPowerMode) {
|
|
CHK_ERROR(CtrlPowerMode(state,&powerMode));
|
|
}
|
|
} while(0);
|
|
return status;
|
|
}
|
|
|
|
static int SetOperationMode(struct drxk_state *state, enum OperationMode oMode)
|
|
{
|
|
int status = 0;
|
|
|
|
/*
|
|
Stop and power down previous standard
|
|
TODO investigate total power down instead of partial
|
|
power down depending on "previous" standard.
|
|
*/
|
|
do {
|
|
/* disable HW lock indicator */
|
|
CHK_ERROR (Write16_0(state, SCU_RAM_GPIO__A,
|
|
SCU_RAM_GPIO_HW_LOCK_IND_DISABLE));
|
|
|
|
if (state->m_OperationMode != oMode) {
|
|
switch (state->m_OperationMode) {
|
|
// OM_NONE was added for start up
|
|
case OM_NONE:
|
|
break;
|
|
case OM_DVBT:
|
|
CHK_ERROR(MPEGTSStop(state));
|
|
CHK_ERROR(PowerDownDVBT(state,true));
|
|
state->m_OperationMode = OM_NONE;
|
|
break;
|
|
case OM_QAM_ITU_B:
|
|
status = -1;
|
|
break;
|
|
case OM_QAM_ITU_A:
|
|
case OM_QAM_ITU_C:
|
|
CHK_ERROR(MPEGTSStop(state));
|
|
CHK_ERROR(PowerDownQAM(state));
|
|
state->m_OperationMode = OM_NONE;
|
|
break;
|
|
default:
|
|
status = -1;
|
|
}
|
|
CHK_ERROR(status);
|
|
|
|
/*
|
|
Power up new standard
|
|
*/
|
|
switch (oMode)
|
|
{
|
|
case OM_DVBT:
|
|
state->m_OperationMode = oMode;
|
|
CHK_ERROR(SetDVBTStandard(state, oMode));
|
|
break;
|
|
case OM_QAM_ITU_B:
|
|
status = -1;
|
|
break;
|
|
case OM_QAM_ITU_A:
|
|
case OM_QAM_ITU_C:
|
|
state->m_OperationMode = oMode;
|
|
CHK_ERROR(SetQAMStandard(state,oMode));
|
|
break;
|
|
default:
|
|
status = -1;
|
|
}
|
|
}
|
|
CHK_ERROR(status);
|
|
} while(0);
|
|
return 0;
|
|
}
|
|
|
|
static int Start(struct drxk_state *state, s32 offsetFreq,
|
|
s32 IntermediateFrequency)
|
|
{
|
|
int status;
|
|
|
|
do {
|
|
u16 IFreqkHz;
|
|
s32 OffsetkHz = offsetFreq / 1000;
|
|
|
|
if (state->m_DrxkState != DRXK_STOPPED &&
|
|
state->m_DrxkState != DRXK_DTV_STARTED) {
|
|
status = -1;
|
|
break;
|
|
}
|
|
state->m_bMirrorFreqSpect =
|
|
#ifndef USE_API3
|
|
(state->props.inversion == INVERSION_ON);
|
|
#else
|
|
(state->param.inversion == INVERSION_ON);
|
|
#endif
|
|
if (IntermediateFrequency < 0) {
|
|
state->m_bMirrorFreqSpect = !state->m_bMirrorFreqSpect;
|
|
IntermediateFrequency = -IntermediateFrequency;
|
|
}
|
|
|
|
switch(state->m_OperationMode) {
|
|
case OM_QAM_ITU_A:
|
|
case OM_QAM_ITU_C:
|
|
IFreqkHz = (IntermediateFrequency / 1000);
|
|
CHK_ERROR(SetQAM(state,IFreqkHz, OffsetkHz));
|
|
state->m_DrxkState = DRXK_DTV_STARTED;
|
|
break;
|
|
case OM_DVBT:
|
|
IFreqkHz = (IntermediateFrequency / 1000);
|
|
CHK_ERROR(MPEGTSStop(state));
|
|
CHK_ERROR(SetDVBT(state,IFreqkHz, OffsetkHz));
|
|
CHK_ERROR(DVBTStart(state));
|
|
state->m_DrxkState = DRXK_DTV_STARTED;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} while(0);
|
|
return status;
|
|
}
|
|
|
|
static int ShutDown(struct drxk_state *state)
|
|
{
|
|
MPEGTSStop(state);
|
|
return 0;
|
|
}
|
|
|
|
static int GetLockStatus(struct drxk_state *state, u32 *pLockStatus, u32 Time)
|
|
{
|
|
int status;
|
|
|
|
if (pLockStatus == NULL)
|
|
return -1;
|
|
|
|
*pLockStatus = NOT_LOCKED;
|
|
|
|
/* define the SCU command code */
|
|
switch (state->m_OperationMode) {
|
|
case OM_QAM_ITU_A:
|
|
case OM_QAM_ITU_B:
|
|
case OM_QAM_ITU_C:
|
|
status = GetQAMLockStatus(state, pLockStatus);
|
|
break;
|
|
case OM_DVBT:
|
|
status = GetDVBTLockStatus(state, pLockStatus);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static int MPEGTSStart(struct drxk_state *state)
|
|
{
|
|
int status = 0;
|
|
|
|
u16 fecOcSncMode = 0;
|
|
|
|
do {
|
|
/* Allow OC to sync again */
|
|
CHK_ERROR(Read16_0(state, FEC_OC_SNC_MODE__A, &fecOcSncMode));
|
|
fecOcSncMode &= ~FEC_OC_SNC_MODE_SHUTDOWN__M;
|
|
CHK_ERROR(Write16_0(state, FEC_OC_SNC_MODE__A, fecOcSncMode));
|
|
CHK_ERROR(Write16_0(state, FEC_OC_SNC_UNLOCK__A, 1));
|
|
} while (0);
|
|
return status;
|
|
}
|
|
|
|
static int MPEGTSDtoInit(struct drxk_state *state)
|
|
{
|
|
int status = -1;
|
|
|
|
do {
|
|
/* Rate integration settings */
|
|
CHK_ERROR(Write16_0(state, FEC_OC_RCN_CTL_STEP_LO__A, 0x0000));
|
|
CHK_ERROR(Write16_0(state, FEC_OC_RCN_CTL_STEP_HI__A, 0x000C));
|
|
CHK_ERROR(Write16_0(state, FEC_OC_RCN_GAIN__A, 0x000A));
|
|
CHK_ERROR(Write16_0(state, FEC_OC_AVR_PARM_A__A, 0x0008));
|
|
CHK_ERROR(Write16_0(state, FEC_OC_AVR_PARM_B__A, 0x0006));
|
|
CHK_ERROR(Write16_0(state, FEC_OC_TMD_HI_MARGIN__A, 0x0680));
|
|
CHK_ERROR(Write16_0(state, FEC_OC_TMD_LO_MARGIN__A, 0x0080));
|
|
CHK_ERROR(Write16_0(state, FEC_OC_TMD_COUNT__A, 0x03F4));
|
|
|
|
/* Additional configuration */
|
|
CHK_ERROR(Write16_0(state, FEC_OC_OCR_INVERT__A, 0));
|
|
CHK_ERROR(Write16_0(state, FEC_OC_SNC_LWM__A, 2));
|
|
CHK_ERROR(Write16_0(state, FEC_OC_SNC_HWM__A, 12));
|
|
} while (0);
|
|
return status;
|
|
}
|
|
|
|
static int MPEGTSDtoSetup(struct drxk_state *state, enum OperationMode oMode)
|
|
{
|
|
int status = -1;
|
|
|
|
u16 fecOcRegMode = 0; /* FEC_OC_MODE register value */
|
|
u16 fecOcRegIprMode = 0; /* FEC_OC_IPR_MODE register value */
|
|
u16 fecOcDtoMode = 0; /* FEC_OC_IPR_INVERT register value */
|
|
u16 fecOcFctMode = 0; /* FEC_OC_IPR_INVERT register value */
|
|
u16 fecOcDtoPeriod = 2; /* FEC_OC_IPR_INVERT register value */
|
|
u16 fecOcDtoBurstLen = 188; /* FEC_OC_IPR_INVERT register value */
|
|
u32 fecOcRcnCtlRate = 0; /* FEC_OC_IPR_INVERT register value */
|
|
u16 fecOcTmdMode = 0;
|
|
u16 fecOcTmdIntUpdRate = 0;
|
|
u32 maxBitRate = 0;
|
|
bool staticCLK = false;
|
|
|
|
do {
|
|
/* Check insertion of the Reed-Solomon parity bytes */
|
|
CHK_ERROR(Read16_0(state, FEC_OC_MODE__A, &fecOcRegMode));
|
|
CHK_ERROR(Read16_0(state, FEC_OC_IPR_MODE__A,
|
|
&fecOcRegIprMode));
|
|
fecOcRegMode &= (~FEC_OC_MODE_PARITY__M);
|
|
fecOcRegIprMode &= (~FEC_OC_IPR_MODE_MVAL_DIS_PAR__M);
|
|
if (state->m_insertRSByte == true) {
|
|
/* enable parity symbol forward */
|
|
fecOcRegMode |= FEC_OC_MODE_PARITY__M;
|
|
/* MVAL disable during parity bytes */
|
|
fecOcRegIprMode |= FEC_OC_IPR_MODE_MVAL_DIS_PAR__M;
|
|
/* TS burst length to 204 */
|
|
fecOcDtoBurstLen = 204 ;
|
|
}
|
|
|
|
/* Check serial or parrallel output */
|
|
fecOcRegIprMode &= (~(FEC_OC_IPR_MODE_SERIAL__M));
|
|
if (state->m_enableParallel == false) {
|
|
/* MPEG data output is serial -> set ipr_mode[0] */
|
|
fecOcRegIprMode |= FEC_OC_IPR_MODE_SERIAL__M;
|
|
}
|
|
|
|
switch (oMode) {
|
|
case OM_DVBT:
|
|
maxBitRate = state->m_DVBTBitrate;
|
|
fecOcTmdMode = 3;
|
|
fecOcRcnCtlRate = 0xC00000;
|
|
staticCLK = state->m_DVBTStaticCLK;
|
|
break;
|
|
case OM_QAM_ITU_A:
|
|
case OM_QAM_ITU_C:
|
|
fecOcTmdMode = 0x0004;
|
|
fecOcRcnCtlRate = 0xD2B4EE; /* good for >63 Mb/s */
|
|
maxBitRate = state->m_DVBCBitrate;
|
|
staticCLK = state->m_DVBCStaticCLK;
|
|
break;
|
|
default:
|
|
status = -1;
|
|
} /* switch (standard) */
|
|
CHK_ERROR(status);
|
|
|
|
/* Configure DTO's */
|
|
if (staticCLK ) {
|
|
u32 bitRate = 0;
|
|
|
|
/* Rational DTO for MCLK source (static MCLK rate),
|
|
Dynamic DTO for optimal grouping
|
|
(avoid intra-packet gaps),
|
|
DTO offset enable to sync TS burst with MSTRT */
|
|
fecOcDtoMode = (FEC_OC_DTO_MODE_DYNAMIC__M |
|
|
FEC_OC_DTO_MODE_OFFSET_ENABLE__M);
|
|
fecOcFctMode = (FEC_OC_FCT_MODE_RAT_ENA__M |
|
|
FEC_OC_FCT_MODE_VIRT_ENA__M);
|
|
|
|
/* Check user defined bitrate */
|
|
bitRate = maxBitRate;
|
|
if (bitRate > 75900000UL)
|
|
{ /* max is 75.9 Mb/s */
|
|
bitRate = 75900000UL;
|
|
}
|
|
/* Rational DTO period:
|
|
dto_period = (Fsys / bitrate) - 2
|
|
|
|
Result should be floored,
|
|
to make sure >= requested bitrate
|
|
*/
|
|
fecOcDtoPeriod = (u16) (((state->m_sysClockFreq)
|
|
* 1000) / bitRate);
|
|
if (fecOcDtoPeriod <= 2)
|
|
fecOcDtoPeriod = 0;
|
|
else
|
|
fecOcDtoPeriod -= 2;
|
|
fecOcTmdIntUpdRate = 8;
|
|
} else {
|
|
/* (commonAttr->staticCLK == false) => dynamic mode */
|
|
fecOcDtoMode = FEC_OC_DTO_MODE_DYNAMIC__M;
|
|
fecOcFctMode = FEC_OC_FCT_MODE__PRE;
|
|
fecOcTmdIntUpdRate = 5;
|
|
}
|
|
|
|
/* Write appropriate registers with requested configuration */
|
|
CHK_ERROR(Write16_0(state, FEC_OC_DTO_BURST_LEN__A,
|
|
fecOcDtoBurstLen));
|
|
CHK_ERROR(Write16_0(state, FEC_OC_DTO_PERIOD__A,
|
|
fecOcDtoPeriod));
|
|
CHK_ERROR(Write16_0(state, FEC_OC_DTO_MODE__A,
|
|
fecOcDtoMode));
|
|
CHK_ERROR(Write16_0(state, FEC_OC_FCT_MODE__A,
|
|
fecOcFctMode));
|
|
CHK_ERROR(Write16_0(state, FEC_OC_MODE__A,
|
|
fecOcRegMode));
|
|
CHK_ERROR(Write16_0(state, FEC_OC_IPR_MODE__A,
|
|
fecOcRegIprMode));
|
|
|
|
/* Rate integration settings */
|
|
CHK_ERROR(Write32(state, FEC_OC_RCN_CTL_RATE_LO__A,
|
|
fecOcRcnCtlRate ,0));
|
|
CHK_ERROR(Write16_0(state, FEC_OC_TMD_INT_UPD_RATE__A,
|
|
fecOcTmdIntUpdRate));
|
|
CHK_ERROR(Write16_0(state, FEC_OC_TMD_MODE__A,
|
|
fecOcTmdMode));
|
|
} while (0);
|
|
return status;
|
|
}
|
|
|
|
static int MPEGTSConfigurePolarity(struct drxk_state *state)
|
|
{
|
|
int status;
|
|
u16 fecOcRegIprInvert = 0;
|
|
|
|
/* Data mask for the output data byte */
|
|
u16 InvertDataMask =
|
|
FEC_OC_IPR_INVERT_MD7__M | FEC_OC_IPR_INVERT_MD6__M |
|
|
FEC_OC_IPR_INVERT_MD5__M | FEC_OC_IPR_INVERT_MD4__M |
|
|
FEC_OC_IPR_INVERT_MD3__M | FEC_OC_IPR_INVERT_MD2__M |
|
|
FEC_OC_IPR_INVERT_MD1__M | FEC_OC_IPR_INVERT_MD0__M;
|
|
|
|
/* Control selective inversion of output bits */
|
|
fecOcRegIprInvert &= (~(InvertDataMask));
|
|
if (state->m_invertDATA == true)
|
|
fecOcRegIprInvert |= InvertDataMask;
|
|
fecOcRegIprInvert &= (~(FEC_OC_IPR_INVERT_MERR__M));
|
|
if (state->m_invertERR == true)
|
|
fecOcRegIprInvert |= FEC_OC_IPR_INVERT_MERR__M;
|
|
fecOcRegIprInvert &= (~(FEC_OC_IPR_INVERT_MSTRT__M));
|
|
if (state->m_invertSTR == true)
|
|
fecOcRegIprInvert |= FEC_OC_IPR_INVERT_MSTRT__M;
|
|
fecOcRegIprInvert &= (~(FEC_OC_IPR_INVERT_MVAL__M));
|
|
if (state->m_invertVAL == true)
|
|
fecOcRegIprInvert |= FEC_OC_IPR_INVERT_MVAL__M;
|
|
fecOcRegIprInvert &= (~(FEC_OC_IPR_INVERT_MCLK__M));
|
|
if (state->m_invertCLK == true)
|
|
fecOcRegIprInvert |= FEC_OC_IPR_INVERT_MCLK__M;
|
|
status = Write16_0(state,FEC_OC_IPR_INVERT__A, fecOcRegIprInvert);
|
|
return status;
|
|
}
|
|
|
|
#define SCU_RAM_AGC_KI_INV_RF_POL__M 0x4000
|
|
|
|
static int SetAgcRf(struct drxk_state *state,
|
|
struct SCfgAgc *pAgcCfg, bool isDTV)
|
|
{
|
|
int status = 0;
|
|
struct SCfgAgc *pIfAgcSettings;
|
|
|
|
if (pAgcCfg == NULL)
|
|
return -1;
|
|
|
|
do {
|
|
u16 data = 0;
|
|
|
|
switch (pAgcCfg->ctrlMode) {
|
|
case DRXK_AGC_CTRL_AUTO:
|
|
|
|
/* Enable RF AGC DAC */
|
|
CHK_ERROR(Read16_0(state, IQM_AF_STDBY__A , &data));
|
|
data &= ~IQM_AF_STDBY_STDBY_TAGC_RF_STANDBY;
|
|
CHK_ERROR(Write16_0(state, IQM_AF_STDBY__A, data));
|
|
|
|
CHK_ERROR(Read16(state, SCU_RAM_AGC_CONFIG__A,
|
|
&data, 0));
|
|
|
|
/* Enable SCU RF AGC loop */
|
|
data &= ~SCU_RAM_AGC_CONFIG_DISABLE_RF_AGC__M;
|
|
|
|
/* Polarity */
|
|
if (state->m_RfAgcPol)
|
|
data |= SCU_RAM_AGC_CONFIG_INV_RF_POL__M;
|
|
else
|
|
data &= ~SCU_RAM_AGC_CONFIG_INV_RF_POL__M;
|
|
CHK_ERROR(Write16_0(state,
|
|
SCU_RAM_AGC_CONFIG__A, data));
|
|
|
|
/* Set speed (using complementary reduction value) */
|
|
CHK_ERROR(Read16(state, SCU_RAM_AGC_KI_RED__A,
|
|
&data, 0));
|
|
|
|
data &= ~SCU_RAM_AGC_KI_RED_RAGC_RED__M;
|
|
data |= (~(pAgcCfg->speed <<
|
|
SCU_RAM_AGC_KI_RED_RAGC_RED__B)
|
|
& SCU_RAM_AGC_KI_RED_RAGC_RED__M);
|
|
|
|
CHK_ERROR(Write16_0(state,
|
|
SCU_RAM_AGC_KI_RED__A, data));
|
|
|
|
if (IsDVBT(state))
|
|
pIfAgcSettings = &state->m_dvbtIfAgcCfg;
|
|
else if (IsQAM(state))
|
|
pIfAgcSettings = &state->m_qamIfAgcCfg;
|
|
else
|
|
pIfAgcSettings = &state->m_atvIfAgcCfg;
|
|
if (pIfAgcSettings == NULL)
|
|
return -1;
|
|
|
|
/* Set TOP, only if IF-AGC is in AUTO mode */
|
|
if (pIfAgcSettings->ctrlMode == DRXK_AGC_CTRL_AUTO)
|
|
CHK_ERROR(Write16_0(state,
|
|
SCU_RAM_AGC_IF_IACCU_HI_TGT_MAX__A,
|
|
pAgcCfg->top));
|
|
|
|
/* Cut-Off current */
|
|
CHK_ERROR(Write16_0(state,
|
|
SCU_RAM_AGC_RF_IACCU_HI_CO__A,
|
|
pAgcCfg->cutOffCurrent));
|
|
|
|
/* Max. output level */
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_RF_MAX__A,
|
|
pAgcCfg->maxOutputLevel));
|
|
|
|
break;
|
|
|
|
case DRXK_AGC_CTRL_USER:
|
|
/* Enable RF AGC DAC */
|
|
CHK_ERROR(Read16_0(state, IQM_AF_STDBY__A, &data));
|
|
data &= ~IQM_AF_STDBY_STDBY_TAGC_RF_STANDBY;
|
|
CHK_ERROR(Write16_0(state, IQM_AF_STDBY__A, data));
|
|
|
|
/* Disable SCU RF AGC loop */
|
|
CHK_ERROR(Read16_0(state,
|
|
SCU_RAM_AGC_CONFIG__A, &data));
|
|
data |= SCU_RAM_AGC_CONFIG_DISABLE_RF_AGC__M;
|
|
if (state->m_RfAgcPol)
|
|
data |= SCU_RAM_AGC_CONFIG_INV_RF_POL__M;
|
|
else
|
|
data &= ~SCU_RAM_AGC_CONFIG_INV_RF_POL__M;
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_CONFIG__A,
|
|
data));
|
|
|
|
/* SCU c.o.c. to 0, enabling full control range */
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_RF_IACCU_HI_CO__A,
|
|
0));
|
|
|
|
/* Write value to output pin */
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_RF_IACCU_HI__A,
|
|
pAgcCfg->outputLevel));
|
|
break;
|
|
|
|
case DRXK_AGC_CTRL_OFF:
|
|
/* Disable RF AGC DAC */
|
|
CHK_ERROR(Read16_0(state, IQM_AF_STDBY__A , &data));
|
|
data |= IQM_AF_STDBY_STDBY_TAGC_RF_STANDBY;
|
|
CHK_ERROR(Write16_0(state, IQM_AF_STDBY__A , data));
|
|
|
|
/* Disable SCU RF AGC loop */
|
|
CHK_ERROR(Read16_0(state,
|
|
SCU_RAM_AGC_CONFIG__A, &data));
|
|
data |= SCU_RAM_AGC_CONFIG_DISABLE_RF_AGC__M;
|
|
CHK_ERROR(Write16_0(state,
|
|
SCU_RAM_AGC_CONFIG__A, data));
|
|
break;
|
|
|
|
default:
|
|
return -1;
|
|
|
|
} /* switch (agcsettings->ctrlMode) */
|
|
} while(0);
|
|
return status;
|
|
}
|
|
|
|
#define SCU_RAM_AGC_KI_INV_IF_POL__M 0x2000
|
|
|
|
static int SetAgcIf (struct drxk_state *state,
|
|
struct SCfgAgc *pAgcCfg, bool isDTV)
|
|
{
|
|
u16 data = 0;
|
|
int status = 0;
|
|
struct SCfgAgc *pRfAgcSettings;
|
|
|
|
do {
|
|
switch (pAgcCfg->ctrlMode) {
|
|
case DRXK_AGC_CTRL_AUTO:
|
|
|
|
/* Enable IF AGC DAC */
|
|
CHK_ERROR(Read16_0(state, IQM_AF_STDBY__A , &data));
|
|
data &= ~IQM_AF_STDBY_STDBY_TAGC_IF_STANDBY;
|
|
CHK_ERROR(Write16_0(state, IQM_AF_STDBY__A , data));
|
|
|
|
CHK_ERROR(Read16_0(state, SCU_RAM_AGC_CONFIG__A,
|
|
&data));
|
|
|
|
/* Enable SCU IF AGC loop */
|
|
data &= ~SCU_RAM_AGC_CONFIG_DISABLE_IF_AGC__M;
|
|
|
|
/* Polarity */
|
|
if (state->m_IfAgcPol)
|
|
data |= SCU_RAM_AGC_CONFIG_INV_IF_POL__M;
|
|
else
|
|
data &= ~SCU_RAM_AGC_CONFIG_INV_IF_POL__M;
|
|
CHK_ERROR(Write16_0(state,
|
|
SCU_RAM_AGC_CONFIG__A, data));
|
|
|
|
/* Set speed (using complementary reduction value) */
|
|
CHK_ERROR(Read16_0(state, SCU_RAM_AGC_KI_RED__A,
|
|
&data));
|
|
data &= ~SCU_RAM_AGC_KI_RED_IAGC_RED__M;
|
|
data |= (~(pAgcCfg->speed <<
|
|
SCU_RAM_AGC_KI_RED_IAGC_RED__B)
|
|
& SCU_RAM_AGC_KI_RED_IAGC_RED__M);
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_KI_RED__A ,
|
|
data));
|
|
|
|
if (IsQAM(state))
|
|
pRfAgcSettings = &state->m_qamRfAgcCfg;
|
|
else
|
|
pRfAgcSettings = &state->m_atvRfAgcCfg;
|
|
if (pRfAgcSettings == NULL)
|
|
return -1;
|
|
/* Restore TOP */
|
|
CHK_ERROR(Write16_0(state,
|
|
SCU_RAM_AGC_IF_IACCU_HI_TGT_MAX__A,
|
|
pRfAgcSettings->top));
|
|
break;
|
|
|
|
case DRXK_AGC_CTRL_USER:
|
|
|
|
/* Enable IF AGC DAC */
|
|
CHK_ERROR(Read16_0(state, IQM_AF_STDBY__A , &data));
|
|
data &= ~IQM_AF_STDBY_STDBY_TAGC_IF_STANDBY;
|
|
CHK_ERROR(Write16_0(state, IQM_AF_STDBY__A , data));
|
|
|
|
CHK_ERROR(Read16_0(state,
|
|
SCU_RAM_AGC_CONFIG__A, &data));
|
|
|
|
/* Disable SCU IF AGC loop */
|
|
data |= SCU_RAM_AGC_CONFIG_DISABLE_IF_AGC__M;
|
|
|
|
/* Polarity */
|
|
if (state->m_IfAgcPol)
|
|
data |= SCU_RAM_AGC_CONFIG_INV_IF_POL__M;
|
|
else
|
|
data &= ~SCU_RAM_AGC_CONFIG_INV_IF_POL__M;
|
|
CHK_ERROR(Write16_0(state,
|
|
SCU_RAM_AGC_CONFIG__A, data));
|
|
|
|
/* Write value to output pin */
|
|
CHK_ERROR(Write16_0(state,
|
|
SCU_RAM_AGC_IF_IACCU_HI_TGT_MAX__A,
|
|
pAgcCfg->outputLevel));
|
|
break;
|
|
|
|
case DRXK_AGC_CTRL_OFF:
|
|
|
|
/* Disable If AGC DAC */
|
|
CHK_ERROR(Read16_0(state, IQM_AF_STDBY__A , &data));
|
|
data |= IQM_AF_STDBY_STDBY_TAGC_IF_STANDBY;
|
|
CHK_ERROR(Write16_0(state, IQM_AF_STDBY__A , data));
|
|
|
|
/* Disable SCU IF AGC loop */
|
|
CHK_ERROR(Read16_0(state,
|
|
SCU_RAM_AGC_CONFIG__A, &data));
|
|
data |= SCU_RAM_AGC_CONFIG_DISABLE_IF_AGC__M;
|
|
CHK_ERROR(Write16_0(state,
|
|
SCU_RAM_AGC_CONFIG__A, data));
|
|
break;
|
|
} /* switch (agcSettingsIf->ctrlMode) */
|
|
|
|
/* always set the top to support
|
|
configurations without if-loop */
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_INGAIN_TGT_MIN__A,
|
|
pAgcCfg->top));
|
|
|
|
|
|
} while(0);
|
|
return status;
|
|
}
|
|
|
|
static int ReadIFAgc(struct drxk_state *state, u32 *pValue)
|
|
{
|
|
u16 agcDacLvl;
|
|
int status = Read16_0(state, IQM_AF_AGC_IF__A, &agcDacLvl);
|
|
|
|
*pValue = 0;
|
|
|
|
if (status==0) {
|
|
u16 Level = 0;
|
|
if (agcDacLvl > DRXK_AGC_DAC_OFFSET)
|
|
Level = agcDacLvl - DRXK_AGC_DAC_OFFSET;
|
|
if (Level < 14000)
|
|
*pValue = (14000 - Level) / 4 ;
|
|
else
|
|
*pValue = 0;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static int GetQAMSignalToNoise(struct drxk_state *state, s32 *pSignalToNoise)
|
|
{
|
|
int status = 0;
|
|
|
|
do {
|
|
/* MER calculation */
|
|
u16 qamSlErrPower = 0; /* accum. error between
|
|
raw and sliced symbols */
|
|
u32 qamSlSigPower = 0; /* used for MER, depends of
|
|
QAM constellation */
|
|
u32 qamSlMer = 0; /* QAM MER */
|
|
|
|
/* get the register value needed for MER */
|
|
CHK_ERROR(Read16_0(state,QAM_SL_ERR_POWER__A, &qamSlErrPower));
|
|
|
|
#ifndef USE_API3
|
|
switch(state->props.modulation) {
|
|
#else
|
|
switch(state->param.u.qam.modulation) {
|
|
#endif
|
|
case QAM_16:
|
|
qamSlSigPower = DRXK_QAM_SL_SIG_POWER_QAM16 << 2;
|
|
break;
|
|
case QAM_32:
|
|
qamSlSigPower = DRXK_QAM_SL_SIG_POWER_QAM32 << 2;
|
|
break;
|
|
case QAM_64:
|
|
qamSlSigPower = DRXK_QAM_SL_SIG_POWER_QAM64 << 2;
|
|
break;
|
|
case QAM_128:
|
|
qamSlSigPower = DRXK_QAM_SL_SIG_POWER_QAM128 << 2;
|
|
break;
|
|
default:
|
|
case QAM_256:
|
|
qamSlSigPower = DRXK_QAM_SL_SIG_POWER_QAM256 << 2;
|
|
break;
|
|
}
|
|
|
|
if (qamSlErrPower > 0) {
|
|
qamSlMer = Log10Times100(qamSlSigPower) -
|
|
Log10Times100((u32) qamSlErrPower);
|
|
}
|
|
*pSignalToNoise = qamSlMer;
|
|
} while(0);
|
|
return status;
|
|
}
|
|
|
|
static int GetDVBTSignalToNoise(struct drxk_state *state, s32 *pSignalToNoise)
|
|
{
|
|
int status = 0;
|
|
|
|
u16 regData = 0;
|
|
u32 EqRegTdSqrErrI = 0;
|
|
u32 EqRegTdSqrErrQ = 0;
|
|
u16 EqRegTdSqrErrExp = 0;
|
|
u16 EqRegTdTpsPwrOfs = 0;
|
|
u16 EqRegTdReqSmbCnt = 0;
|
|
u32 tpsCnt = 0;
|
|
u32 SqrErrIQ = 0;
|
|
u32 a = 0;
|
|
u32 b = 0;
|
|
u32 c = 0;
|
|
u32 iMER = 0;
|
|
u16 transmissionParams = 0;
|
|
|
|
do {
|
|
CHK_ERROR(Read16_0(state, OFDM_EQ_TOP_TD_TPS_PWR_OFS__A,
|
|
&EqRegTdTpsPwrOfs));
|
|
CHK_ERROR(Read16_0(state, OFDM_EQ_TOP_TD_REQ_SMB_CNT__A,
|
|
&EqRegTdReqSmbCnt));
|
|
CHK_ERROR(Read16_0(state, OFDM_EQ_TOP_TD_SQR_ERR_EXP__A,
|
|
&EqRegTdSqrErrExp));
|
|
CHK_ERROR(Read16_0(state, OFDM_EQ_TOP_TD_SQR_ERR_I__A,
|
|
®Data));
|
|
/* Extend SQR_ERR_I operational range */
|
|
EqRegTdSqrErrI = (u32) regData;
|
|
if ((EqRegTdSqrErrExp > 11) &&
|
|
(EqRegTdSqrErrI < 0x00000FFFUL)) {
|
|
EqRegTdSqrErrI += 0x00010000UL;
|
|
}
|
|
CHK_ERROR(Read16_0(state,OFDM_EQ_TOP_TD_SQR_ERR_Q__A,
|
|
®Data));
|
|
/* Extend SQR_ERR_Q operational range */
|
|
EqRegTdSqrErrQ = (u32)regData;
|
|
if ((EqRegTdSqrErrExp > 11) &&
|
|
(EqRegTdSqrErrQ < 0x00000FFFUL))
|
|
EqRegTdSqrErrQ += 0x00010000UL;
|
|
|
|
CHK_ERROR(Read16_0(state,OFDM_SC_RA_RAM_OP_PARAM__A,
|
|
&transmissionParams));
|
|
|
|
/* Check input data for MER */
|
|
|
|
/* MER calculation (in 0.1 dB) without math.h */
|
|
if ((EqRegTdTpsPwrOfs == 0) || (EqRegTdReqSmbCnt == 0))
|
|
iMER = 0;
|
|
else if ((EqRegTdSqrErrI + EqRegTdSqrErrQ) == 0) {
|
|
/* No error at all, this must be the HW reset value
|
|
* Apparently no first measurement yet
|
|
* Set MER to 0.0 */
|
|
iMER = 0;
|
|
} else {
|
|
SqrErrIQ = (EqRegTdSqrErrI + EqRegTdSqrErrQ) <<
|
|
EqRegTdSqrErrExp;
|
|
if ((transmissionParams &
|
|
OFDM_SC_RA_RAM_OP_PARAM_MODE__M)
|
|
== OFDM_SC_RA_RAM_OP_PARAM_MODE_2K)
|
|
tpsCnt = 17;
|
|
else
|
|
tpsCnt = 68;
|
|
|
|
/* IMER = 100 * log10 (x)
|
|
where x = (EqRegTdTpsPwrOfs^2 *
|
|
EqRegTdReqSmbCnt * tpsCnt)/SqrErrIQ
|
|
|
|
=> IMER = a + b -c
|
|
where a = 100 * log10 (EqRegTdTpsPwrOfs^2)
|
|
b = 100 * log10 (EqRegTdReqSmbCnt * tpsCnt)
|
|
c = 100 * log10 (SqrErrIQ)
|
|
*/
|
|
|
|
/* log(x) x = 9bits * 9bits->18 bits */
|
|
a = Log10Times100(EqRegTdTpsPwrOfs*EqRegTdTpsPwrOfs);
|
|
/* log(x) x = 16bits * 7bits->23 bits */
|
|
b = Log10Times100(EqRegTdReqSmbCnt*tpsCnt);
|
|
/* log(x) x = (16bits + 16bits) << 15 ->32 bits */
|
|
c = Log10Times100(SqrErrIQ);
|
|
|
|
iMER = a + b;
|
|
/* No negative MER, clip to zero */
|
|
if (iMER > c)
|
|
iMER -= c;
|
|
else
|
|
iMER = 0;
|
|
}
|
|
*pSignalToNoise = iMER;
|
|
} while(0);
|
|
|
|
return status;
|
|
}
|
|
|
|
static int GetSignalToNoise(struct drxk_state *state, s32 *pSignalToNoise)
|
|
{
|
|
*pSignalToNoise = 0;
|
|
switch(state->m_OperationMode) {
|
|
case OM_DVBT:
|
|
return GetDVBTSignalToNoise(state, pSignalToNoise);
|
|
case OM_QAM_ITU_A:
|
|
case OM_QAM_ITU_C:
|
|
return GetQAMSignalToNoise(state, pSignalToNoise);
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#if 0
|
|
static int GetDVBTQuality(struct drxk_state *state, s32 *pQuality)
|
|
{
|
|
/* SNR Values for quasi errorfree reception rom Nordig 2.2 */
|
|
int status = 0;
|
|
|
|
static s32 QE_SN[] =
|
|
{
|
|
51, // QPSK 1/2
|
|
69, // QPSK 2/3
|
|
79, // QPSK 3/4
|
|
89, // QPSK 5/6
|
|
97, // QPSK 7/8
|
|
108, // 16-QAM 1/2
|
|
131, // 16-QAM 2/3
|
|
146, // 16-QAM 3/4
|
|
156, // 16-QAM 5/6
|
|
160, // 16-QAM 7/8
|
|
165, // 64-QAM 1/2
|
|
187, // 64-QAM 2/3
|
|
202, // 64-QAM 3/4
|
|
216, // 64-QAM 5/6
|
|
225, // 64-QAM 7/8
|
|
};
|
|
|
|
*pQuality = 0;
|
|
|
|
do {
|
|
s32 SignalToNoise = 0;
|
|
u16 Constellation = 0;
|
|
u16 CodeRate = 0;
|
|
u32 SignalToNoiseRel;
|
|
u32 BERQuality;
|
|
|
|
CHK_ERROR(GetDVBTSignalToNoise(state,&SignalToNoise));
|
|
CHK_ERROR(Read16_0(state,OFDM_EQ_TOP_TD_TPS_CONST__A,
|
|
&Constellation));
|
|
Constellation &= OFDM_EQ_TOP_TD_TPS_CONST__M;
|
|
|
|
CHK_ERROR(Read16_0(state,OFDM_EQ_TOP_TD_TPS_CODE_HP__A,
|
|
&CodeRate));
|
|
CodeRate &= OFDM_EQ_TOP_TD_TPS_CODE_HP__M;
|
|
|
|
if (Constellation > OFDM_EQ_TOP_TD_TPS_CONST_64QAM ||
|
|
CodeRate > OFDM_EQ_TOP_TD_TPS_CODE_LP_7_8)
|
|
break;
|
|
SignalToNoiseRel = SignalToNoise -
|
|
QE_SN[Constellation * 5 + CodeRate];
|
|
BERQuality = 100;
|
|
|
|
if (SignalToNoiseRel < -70) *pQuality = 0;
|
|
else if (SignalToNoiseRel < 30)
|
|
*pQuality = ((SignalToNoiseRel + 70) *
|
|
BERQuality) / 100;
|
|
else
|
|
*pQuality = BERQuality;
|
|
} while(0);
|
|
return 0;
|
|
};
|
|
|
|
static int GetDVBCQuality(struct drxk_state *state, s32 *pQuality)
|
|
{
|
|
int status = 0;
|
|
*pQuality = 0;
|
|
|
|
do {
|
|
u32 SignalToNoise = 0;
|
|
u32 BERQuality = 100;
|
|
u32 SignalToNoiseRel = 0;
|
|
|
|
CHK_ERROR(GetQAMSignalToNoise(state, &SignalToNoise));
|
|
|
|
#ifndef USE_API3
|
|
switch(state->props.modulation) {
|
|
#else
|
|
switch(state->param.u.qam.modulation) {
|
|
#endif
|
|
case QAM_16:
|
|
SignalToNoiseRel = SignalToNoise - 200;
|
|
break;
|
|
case QAM_32:
|
|
SignalToNoiseRel = SignalToNoise - 230;
|
|
break; /* Not in NorDig */
|
|
case QAM_64:
|
|
SignalToNoiseRel = SignalToNoise - 260;
|
|
break;
|
|
case QAM_128:
|
|
SignalToNoiseRel = SignalToNoise - 290;
|
|
break;
|
|
default:
|
|
case QAM_256:
|
|
SignalToNoiseRel = SignalToNoise - 320;
|
|
break;
|
|
}
|
|
|
|
if (SignalToNoiseRel < -70)
|
|
*pQuality = 0;
|
|
else if (SignalToNoiseRel < 30)
|
|
*pQuality = ((SignalToNoiseRel + 70) *
|
|
BERQuality) / 100;
|
|
else
|
|
*pQuality = BERQuality;
|
|
} while(0);
|
|
|
|
return status;
|
|
}
|
|
|
|
static int GetQuality(struct drxk_state *state, s32 *pQuality)
|
|
{
|
|
switch(state->m_OperationMode) {
|
|
case OM_DVBT:
|
|
return GetDVBTQuality(state, pQuality);
|
|
case OM_QAM_ITU_A:
|
|
return GetDVBCQuality(state, pQuality);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* Free data ram in SIO HI */
|
|
#define SIO_HI_RA_RAM_USR_BEGIN__A 0x420040
|
|
#define SIO_HI_RA_RAM_USR_END__A 0x420060
|
|
|
|
#define DRXK_HI_ATOMIC_BUF_START (SIO_HI_RA_RAM_USR_BEGIN__A)
|
|
#define DRXK_HI_ATOMIC_BUF_END (SIO_HI_RA_RAM_USR_BEGIN__A + 7)
|
|
#define DRXK_HI_ATOMIC_READ SIO_HI_RA_RAM_PAR_3_ACP_RW_READ
|
|
#define DRXK_HI_ATOMIC_WRITE SIO_HI_RA_RAM_PAR_3_ACP_RW_WRITE
|
|
|
|
#define DRXDAP_FASI_ADDR2BLOCK(addr) (((addr) >> 22) & 0x3F)
|
|
#define DRXDAP_FASI_ADDR2BANK(addr) (((addr) >> 16) & 0x3F)
|
|
#define DRXDAP_FASI_ADDR2OFFSET(addr) ((addr) & 0x7FFF)
|
|
|
|
static int ConfigureI2CBridge(struct drxk_state *state, bool bEnableBridge)
|
|
{
|
|
int status;
|
|
|
|
if (state->m_DrxkState == DRXK_UNINITIALIZED)
|
|
return -1;
|
|
if (state->m_DrxkState == DRXK_POWERED_DOWN)
|
|
return -1;
|
|
|
|
do {
|
|
CHK_ERROR(Write16_0(state, SIO_HI_RA_RAM_PAR_1__A,
|
|
SIO_HI_RA_RAM_PAR_1_PAR1_SEC_KEY));
|
|
if (bEnableBridge) {
|
|
CHK_ERROR(Write16_0(state, SIO_HI_RA_RAM_PAR_2__A,
|
|
SIO_HI_RA_RAM_PAR_2_BRD_CFG_CLOSED));
|
|
} else {
|
|
CHK_ERROR(Write16_0(state, SIO_HI_RA_RAM_PAR_2__A,
|
|
SIO_HI_RA_RAM_PAR_2_BRD_CFG_OPEN));
|
|
}
|
|
|
|
CHK_ERROR(HI_Command(state, SIO_HI_RA_RAM_CMD_BRDCTRL,0));
|
|
} while(0);
|
|
return status;
|
|
}
|
|
|
|
static int SetPreSaw(struct drxk_state *state, struct SCfgPreSaw *pPreSawCfg)
|
|
{
|
|
int status;
|
|
|
|
if ((pPreSawCfg == NULL) || (pPreSawCfg->reference>IQM_AF_PDREF__M))
|
|
return -1;
|
|
|
|
status = Write16_0(state, IQM_AF_PDREF__A, pPreSawCfg->reference);
|
|
return status;
|
|
}
|
|
|
|
static int BLDirectCmd(struct drxk_state *state, u32 targetAddr,
|
|
u16 romOffset, u16 nrOfElements, u32 timeOut)
|
|
{
|
|
u16 blStatus = 0;
|
|
u16 offset = (u16)((targetAddr >> 0) & 0x00FFFF);
|
|
u16 blockbank = (u16)((targetAddr >> 16) & 0x000FFF);
|
|
int status ;
|
|
unsigned long end;
|
|
|
|
mutex_lock(&state->mutex);
|
|
do {
|
|
CHK_ERROR(Write16_0(state, SIO_BL_MODE__A, SIO_BL_MODE_DIRECT));
|
|
CHK_ERROR(Write16_0(state, SIO_BL_TGT_HDR__A, blockbank));
|
|
CHK_ERROR(Write16_0(state, SIO_BL_TGT_ADDR__A, offset));
|
|
CHK_ERROR(Write16_0(state, SIO_BL_SRC_ADDR__A, romOffset));
|
|
CHK_ERROR(Write16_0(state, SIO_BL_SRC_LEN__A, nrOfElements));
|
|
CHK_ERROR(Write16_0(state, SIO_BL_ENABLE__A, SIO_BL_ENABLE_ON));
|
|
|
|
end=jiffies+msecs_to_jiffies(timeOut);
|
|
do {
|
|
CHK_ERROR(Read16_0(state, SIO_BL_STATUS__A, &blStatus));
|
|
} while ((blStatus == 0x1) &&
|
|
time_is_after_jiffies(end));
|
|
if (blStatus == 0x1) {
|
|
printk("SIO not ready\n");
|
|
mutex_unlock(&state->mutex);
|
|
return -1;
|
|
}
|
|
} while(0);
|
|
mutex_unlock(&state->mutex);
|
|
return status;
|
|
|
|
}
|
|
|
|
static int ADCSyncMeasurement(struct drxk_state *state, u16 *count)
|
|
{
|
|
u16 data = 0;
|
|
int status;
|
|
|
|
do {
|
|
/* Start measurement */
|
|
CHK_ERROR(Write16_0(state, IQM_AF_COMM_EXEC__A,
|
|
IQM_AF_COMM_EXEC_ACTIVE));
|
|
CHK_ERROR(Write16_0(state,IQM_AF_START_LOCK__A, 1));
|
|
|
|
*count = 0;
|
|
CHK_ERROR(Read16_0(state,IQM_AF_PHASE0__A, &data));
|
|
if (data == 127)
|
|
*count = *count+1;
|
|
CHK_ERROR(Read16_0(state,IQM_AF_PHASE1__A, &data));
|
|
if (data == 127)
|
|
*count = *count+1;
|
|
CHK_ERROR(Read16_0(state,IQM_AF_PHASE2__A, &data));
|
|
if (data == 127)
|
|
*count = *count+1;
|
|
} while(0);
|
|
return status;
|
|
}
|
|
|
|
static int ADCSynchronization(struct drxk_state *state)
|
|
{
|
|
u16 count = 0;
|
|
int status;
|
|
|
|
do {
|
|
CHK_ERROR(ADCSyncMeasurement(state, &count));
|
|
|
|
if (count==1) {
|
|
/* Try sampling on a diffrent edge */
|
|
u16 clkNeg = 0;
|
|
|
|
CHK_ERROR(Read16_0(state, IQM_AF_CLKNEG__A, &clkNeg));
|
|
if ((clkNeg | IQM_AF_CLKNEG_CLKNEGDATA__M) ==
|
|
IQM_AF_CLKNEG_CLKNEGDATA_CLK_ADC_DATA_POS) {
|
|
clkNeg &= (~(IQM_AF_CLKNEG_CLKNEGDATA__M));
|
|
clkNeg |=
|
|
IQM_AF_CLKNEG_CLKNEGDATA_CLK_ADC_DATA_NEG;
|
|
} else {
|
|
clkNeg &= (~(IQM_AF_CLKNEG_CLKNEGDATA__M));
|
|
clkNeg |=
|
|
IQM_AF_CLKNEG_CLKNEGDATA_CLK_ADC_DATA_POS;
|
|
}
|
|
CHK_ERROR(Write16_0(state, IQM_AF_CLKNEG__A, clkNeg));
|
|
CHK_ERROR(ADCSyncMeasurement(state, &count));
|
|
}
|
|
|
|
if (count < 2)
|
|
status = -1;
|
|
} while (0);
|
|
return status;
|
|
}
|
|
|
|
static int SetFrequencyShifter(struct drxk_state *state,
|
|
u16 intermediateFreqkHz,
|
|
s32 tunerFreqOffset,
|
|
bool isDTV)
|
|
{
|
|
bool selectPosImage = false;
|
|
u32 rfFreqResidual = tunerFreqOffset;
|
|
u32 fmFrequencyShift = 0;
|
|
bool tunerMirror = !state->m_bMirrorFreqSpect;
|
|
u32 adcFreq;
|
|
bool adcFlip;
|
|
int status;
|
|
u32 ifFreqActual;
|
|
u32 samplingFrequency = (u32)(state->m_sysClockFreq / 3);
|
|
u32 frequencyShift;
|
|
bool imageToSelect;
|
|
|
|
/*
|
|
Program frequency shifter
|
|
No need to account for mirroring on RF
|
|
*/
|
|
if (isDTV) {
|
|
if ((state->m_OperationMode == OM_QAM_ITU_A) ||
|
|
(state->m_OperationMode == OM_QAM_ITU_C) ||
|
|
(state->m_OperationMode == OM_DVBT))
|
|
selectPosImage = true;
|
|
else
|
|
selectPosImage = false;
|
|
}
|
|
if (tunerMirror)
|
|
/* tuner doesn't mirror */
|
|
ifFreqActual = intermediateFreqkHz +
|
|
rfFreqResidual + fmFrequencyShift;
|
|
else
|
|
/* tuner mirrors */
|
|
ifFreqActual = intermediateFreqkHz -
|
|
rfFreqResidual - fmFrequencyShift;
|
|
if (ifFreqActual > samplingFrequency / 2) {
|
|
/* adc mirrors */
|
|
adcFreq = samplingFrequency - ifFreqActual;
|
|
adcFlip = true;
|
|
} else {
|
|
/* adc doesn't mirror */
|
|
adcFreq = ifFreqActual;
|
|
adcFlip = false;
|
|
}
|
|
|
|
frequencyShift = adcFreq;
|
|
imageToSelect = state->m_rfmirror ^ tunerMirror ^
|
|
adcFlip ^ selectPosImage;
|
|
state->m_IqmFsRateOfs = Frac28a((frequencyShift), samplingFrequency);
|
|
|
|
if (imageToSelect)
|
|
state->m_IqmFsRateOfs = ~state->m_IqmFsRateOfs + 1;
|
|
|
|
/* Program frequency shifter with tuner offset compensation */
|
|
/* frequencyShift += tunerFreqOffset; TODO */
|
|
status = Write32(state, IQM_FS_RATE_OFS_LO__A ,
|
|
state->m_IqmFsRateOfs, 0);
|
|
return status;
|
|
}
|
|
|
|
static int InitAGC(struct drxk_state *state, bool isDTV)
|
|
{
|
|
u16 ingainTgt = 0;
|
|
u16 ingainTgtMin = 0;
|
|
u16 ingainTgtMax = 0;
|
|
u16 clpCyclen = 0;
|
|
u16 clpSumMin = 0;
|
|
u16 clpDirTo = 0;
|
|
u16 snsSumMin = 0;
|
|
u16 snsSumMax = 0;
|
|
u16 clpSumMax = 0;
|
|
u16 snsDirTo = 0;
|
|
u16 kiInnergainMin = 0;
|
|
u16 ifIaccuHiTgt = 0;
|
|
u16 ifIaccuHiTgtMin = 0;
|
|
u16 ifIaccuHiTgtMax = 0;
|
|
u16 data = 0;
|
|
u16 fastClpCtrlDelay = 0;
|
|
u16 clpCtrlMode = 0;
|
|
int status = 0;
|
|
|
|
do {
|
|
/* Common settings */
|
|
snsSumMax = 1023;
|
|
ifIaccuHiTgtMin = 2047;
|
|
clpCyclen = 500;
|
|
clpSumMax = 1023;
|
|
|
|
if (IsQAM(state)) {
|
|
/* Standard specific settings */
|
|
clpSumMin = 8;
|
|
clpDirTo = (u16) - 9;
|
|
clpCtrlMode = 0;
|
|
snsSumMin = 8;
|
|
snsDirTo = (u16) - 9;
|
|
kiInnergainMin = (u16) - 1030;
|
|
} else
|
|
status = -1;
|
|
CHK_ERROR((status));
|
|
if (IsQAM(state)) {
|
|
ifIaccuHiTgtMax = 0x2380;
|
|
ifIaccuHiTgt = 0x2380;
|
|
ingainTgtMin = 0x0511;
|
|
ingainTgt = 0x0511;
|
|
ingainTgtMax = 5119;
|
|
fastClpCtrlDelay =
|
|
state->m_qamIfAgcCfg.FastClipCtrlDelay;
|
|
} else {
|
|
ifIaccuHiTgtMax = 0x1200;
|
|
ifIaccuHiTgt = 0x1200;
|
|
ingainTgtMin = 13424;
|
|
ingainTgt = 13424;
|
|
ingainTgtMax = 30000;
|
|
fastClpCtrlDelay =
|
|
state->m_dvbtIfAgcCfg.FastClipCtrlDelay;
|
|
}
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_FAST_CLP_CTRL_DELAY__A,
|
|
fastClpCtrlDelay));
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_CLP_CTRL_MODE__A,
|
|
clpCtrlMode));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_INGAIN_TGT__A,
|
|
ingainTgt));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_INGAIN_TGT_MIN__A,
|
|
ingainTgtMin));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_INGAIN_TGT_MAX__A,
|
|
ingainTgtMax));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_IF_IACCU_HI_TGT_MIN__A,
|
|
ifIaccuHiTgtMin));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_IF_IACCU_HI_TGT_MAX__A,
|
|
ifIaccuHiTgtMax));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_IF_IACCU_HI__A, 0));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_IF_IACCU_LO__A, 0));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_RF_IACCU_HI__A, 0));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_RF_IACCU_LO__A, 0));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_CLP_SUM_MAX__A,
|
|
clpSumMax));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_SNS_SUM_MAX__A,
|
|
snsSumMax));
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_KI_INNERGAIN_MIN__A,
|
|
kiInnergainMin));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_IF_IACCU_HI_TGT__A,
|
|
ifIaccuHiTgt));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_CLP_CYCLEN__A,
|
|
clpCyclen));
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_RF_SNS_DEV_MAX__A,
|
|
1023));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_RF_SNS_DEV_MIN__A,
|
|
(u16) -1023));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_FAST_SNS_CTRL_DELAY__A,
|
|
50));
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_KI_MAXMINGAIN_TH__A,
|
|
20));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_CLP_SUM_MIN__A,
|
|
clpSumMin));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_SNS_SUM_MIN__A,
|
|
snsSumMin));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_CLP_DIR_TO__A,
|
|
clpDirTo));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_SNS_DIR_TO__A,
|
|
snsDirTo));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_KI_MINGAIN__A, 0x7fff));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_KI_MAXGAIN__A, 0x0));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_KI_MIN__A, 0x0117));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_KI_MAX__A, 0x0657));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_CLP_SUM__A, 0));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_CLP_CYCCNT__A, 0));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_CLP_DIR_WD__A, 0));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_CLP_DIR_STP__A, 1));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_SNS_SUM__A, 0));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_SNS_CYCCNT__A, 0));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_SNS_DIR_WD__A, 0));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_SNS_DIR_STP__A, 1));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_SNS_CYCLEN__A, 500));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_KI_CYCLEN__A, 500));
|
|
|
|
/* Initialize inner-loop KI gain factors */
|
|
CHK_ERROR(Read16_0(state, SCU_RAM_AGC_KI__A, &data));
|
|
if (IsQAM(state)) {
|
|
data = 0x0657;
|
|
data &= ~SCU_RAM_AGC_KI_RF__M;
|
|
data |= (DRXK_KI_RAGC_QAM << SCU_RAM_AGC_KI_RF__B);
|
|
data &= ~SCU_RAM_AGC_KI_IF__M;
|
|
data |= (DRXK_KI_IAGC_QAM << SCU_RAM_AGC_KI_IF__B);
|
|
}
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_KI__A, data));
|
|
} while(0);
|
|
return status;
|
|
}
|
|
|
|
static int DVBTQAMGetAccPktErr(struct drxk_state *state, u16 * packetErr)
|
|
{
|
|
int status;
|
|
|
|
do {
|
|
if (packetErr == NULL) {
|
|
CHK_ERROR(Write16_0(state,
|
|
SCU_RAM_FEC_ACCUM_PKT_FAILURES__A,
|
|
0));
|
|
} else {
|
|
CHK_ERROR(Read16_0(state,
|
|
SCU_RAM_FEC_ACCUM_PKT_FAILURES__A,
|
|
packetErr));
|
|
}
|
|
} while (0);
|
|
return status;
|
|
}
|
|
|
|
static int DVBTScCommand(struct drxk_state *state,
|
|
u16 cmd, u16 subcmd,
|
|
u16 param0, u16 param1, u16 param2,
|
|
u16 param3, u16 param4)
|
|
{
|
|
u16 curCmd = 0;
|
|
u16 errCode = 0;
|
|
u16 retryCnt = 0;
|
|
u16 scExec = 0;
|
|
int status;
|
|
|
|
status = Read16_0(state, OFDM_SC_COMM_EXEC__A, &scExec);
|
|
if (scExec != 1) {
|
|
/* SC is not running */
|
|
return -1;
|
|
}
|
|
|
|
/* Wait until sc is ready to receive command */
|
|
retryCnt =0;
|
|
do {
|
|
msleep(1);
|
|
status = Read16_0(state, OFDM_SC_RA_RAM_CMD__A, &curCmd);
|
|
retryCnt++;
|
|
} while ((curCmd != 0) && (retryCnt < DRXK_MAX_RETRIES));
|
|
if (retryCnt >= DRXK_MAX_RETRIES)
|
|
return -1;
|
|
/* Write sub-command */
|
|
switch (cmd) {
|
|
/* All commands using sub-cmd */
|
|
case OFDM_SC_RA_RAM_CMD_PROC_START:
|
|
case OFDM_SC_RA_RAM_CMD_SET_PREF_PARAM:
|
|
case OFDM_SC_RA_RAM_CMD_PROGRAM_PARAM:
|
|
status = Write16_0(state, OFDM_SC_RA_RAM_CMD_ADDR__A, subcmd);
|
|
break;
|
|
default:
|
|
/* Do nothing */
|
|
break;
|
|
} /* switch (cmd->cmd) */
|
|
|
|
/* Write needed parameters and the command */
|
|
switch (cmd) {
|
|
/* All commands using 5 parameters */
|
|
/* All commands using 4 parameters */
|
|
/* All commands using 3 parameters */
|
|
/* All commands using 2 parameters */
|
|
case OFDM_SC_RA_RAM_CMD_PROC_START:
|
|
case OFDM_SC_RA_RAM_CMD_SET_PREF_PARAM:
|
|
case OFDM_SC_RA_RAM_CMD_PROGRAM_PARAM:
|
|
status = Write16_0(state, OFDM_SC_RA_RAM_PARAM1__A, param1);
|
|
/* All commands using 1 parameters */
|
|
fallthrough;
|
|
case OFDM_SC_RA_RAM_CMD_SET_ECHO_TIMING:
|
|
case OFDM_SC_RA_RAM_CMD_USER_IO:
|
|
status = Write16_0(state, OFDM_SC_RA_RAM_PARAM0__A, param0);
|
|
/* All commands using 0 parameters */
|
|
fallthrough;
|
|
case OFDM_SC_RA_RAM_CMD_GET_OP_PARAM:
|
|
case OFDM_SC_RA_RAM_CMD_NULL:
|
|
/* Write command */
|
|
status = Write16_0(state, OFDM_SC_RA_RAM_CMD__A, cmd);
|
|
break;
|
|
default:
|
|
/* Unknown command */
|
|
return -EINVAL;
|
|
} /* switch (cmd->cmd) */
|
|
|
|
/* Wait until sc is ready processing command */
|
|
retryCnt = 0;
|
|
do{
|
|
msleep(1);
|
|
status = Read16_0(state, OFDM_SC_RA_RAM_CMD__A, &curCmd);
|
|
retryCnt++;
|
|
} while ((curCmd != 0) && (retryCnt < DRXK_MAX_RETRIES));
|
|
if (retryCnt >= DRXK_MAX_RETRIES)
|
|
return -1;
|
|
|
|
/* Check for illegal cmd */
|
|
status = Read16_0(state, OFDM_SC_RA_RAM_CMD_ADDR__A, &errCode);
|
|
if (errCode == 0xFFFF)
|
|
{
|
|
/* illegal command */
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Retreive results parameters from SC */
|
|
switch (cmd) {
|
|
/* All commands yielding 5 results */
|
|
/* All commands yielding 4 results */
|
|
/* All commands yielding 3 results */
|
|
/* All commands yielding 2 results */
|
|
/* All commands yielding 1 result */
|
|
case OFDM_SC_RA_RAM_CMD_USER_IO:
|
|
case OFDM_SC_RA_RAM_CMD_GET_OP_PARAM:
|
|
status = Read16_0(state, OFDM_SC_RA_RAM_PARAM0__A, &(param0));
|
|
/* All commands yielding 0 results */
|
|
case OFDM_SC_RA_RAM_CMD_SET_ECHO_TIMING:
|
|
case OFDM_SC_RA_RAM_CMD_SET_TIMER:
|
|
case OFDM_SC_RA_RAM_CMD_PROC_START:
|
|
case OFDM_SC_RA_RAM_CMD_SET_PREF_PARAM:
|
|
case OFDM_SC_RA_RAM_CMD_PROGRAM_PARAM:
|
|
case OFDM_SC_RA_RAM_CMD_NULL:
|
|
break;
|
|
default:
|
|
/* Unknown command */
|
|
return -EINVAL;
|
|
break;
|
|
} /* switch (cmd->cmd) */
|
|
return status;
|
|
}
|
|
|
|
static int PowerUpDVBT (struct drxk_state *state)
|
|
{
|
|
DRXPowerMode_t powerMode = DRX_POWER_UP;
|
|
int status;
|
|
|
|
do {
|
|
CHK_ERROR(CtrlPowerMode(state, &powerMode));
|
|
} while (0);
|
|
return status;
|
|
}
|
|
|
|
static int DVBTCtrlSetIncEnable (struct drxk_state *state, bool* enabled)
|
|
{
|
|
int status;
|
|
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
|
|
if (*enabled == true)
|
|
{
|
|
status = Write16_0(state, IQM_CF_BYPASSDET__A, 0);
|
|
}
|
|
else
|
|
{
|
|
status = Write16_0(state, IQM_CF_BYPASSDET__A, 1);
|
|
}
|
|
if (status<0)
|
|
{
|
|
//KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
|
|
}
|
|
|
|
return status;
|
|
}
|
|
#define DEFAULT_FR_THRES_8K 4000
|
|
static int DVBTCtrlSetFrEnable (struct drxk_state *state, bool* enabled)
|
|
{
|
|
|
|
int status;
|
|
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
|
|
|
|
if (*enabled == true)
|
|
{
|
|
/* write mask to 1 */
|
|
status = Write16_0(state, OFDM_SC_RA_RAM_FR_THRES_8K__A,
|
|
DEFAULT_FR_THRES_8K);
|
|
}
|
|
else
|
|
{
|
|
/* write mask to 0 */
|
|
status = Write16_0(state, OFDM_SC_RA_RAM_FR_THRES_8K__A, 0);
|
|
}
|
|
|
|
if (status<0)
|
|
{
|
|
//KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static int DVBTCtrlSetEchoThreshold (struct drxk_state *state,
|
|
struct DRXKCfgDvbtEchoThres_t* echoThres)
|
|
{
|
|
u16 data = 0;
|
|
int status;
|
|
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
|
|
|
|
do {
|
|
CHK_ERROR(Read16_0(state, OFDM_SC_RA_RAM_ECHO_THRES__A, &data));
|
|
|
|
switch (echoThres->fftMode)
|
|
{
|
|
case DRX_FFTMODE_2K:
|
|
data &= ~ OFDM_SC_RA_RAM_ECHO_THRES_2K__M;
|
|
data |= ((echoThres->threshold << OFDM_SC_RA_RAM_ECHO_THRES_2K__B) &
|
|
(OFDM_SC_RA_RAM_ECHO_THRES_2K__M));
|
|
break;
|
|
case DRX_FFTMODE_8K:
|
|
data &= ~ OFDM_SC_RA_RAM_ECHO_THRES_8K__M;
|
|
data |= ((echoThres->threshold << OFDM_SC_RA_RAM_ECHO_THRES_8K__B) &
|
|
(OFDM_SC_RA_RAM_ECHO_THRES_8K__M));
|
|
break;
|
|
default:
|
|
return -1;
|
|
break;
|
|
}
|
|
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_ECHO_THRES__A, data));
|
|
} while (0);
|
|
|
|
if (status<0)
|
|
{
|
|
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ " status - %08x\n",status));
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static int DVBTCtrlSetSqiSpeed(struct drxk_state *state,
|
|
enum DRXKCfgDvbtSqiSpeed* speed)
|
|
{
|
|
int status;
|
|
|
|
switch (*speed) {
|
|
case DRXK_DVBT_SQI_SPEED_FAST:
|
|
case DRXK_DVBT_SQI_SPEED_MEDIUM:
|
|
case DRXK_DVBT_SQI_SPEED_SLOW:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
status = Write16_0 (state,SCU_RAM_FEC_PRE_RS_BER_FILTER_SH__A,
|
|
(u16) *speed);
|
|
return status;
|
|
}
|
|
|
|
/*============================================================================*/
|
|
|
|
/**
|
|
* \brief Activate DVBT specific presets
|
|
* \param demod instance of demodulator.
|
|
* \return DRXStatus_t.
|
|
*
|
|
* Called in DVBTSetStandard
|
|
*
|
|
*/
|
|
static int DVBTActivatePresets (struct drxk_state *state)
|
|
{
|
|
int status;
|
|
|
|
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
|
|
|
|
struct DRXKCfgDvbtEchoThres_t echoThres2k = {0, DRX_FFTMODE_2K};
|
|
struct DRXKCfgDvbtEchoThres_t echoThres8k = {0, DRX_FFTMODE_8K};
|
|
|
|
do {
|
|
bool setincenable = false;
|
|
bool setfrenable = true;
|
|
CHK_ERROR(DVBTCtrlSetIncEnable (state, &setincenable));
|
|
CHK_ERROR(DVBTCtrlSetFrEnable (state, &setfrenable));
|
|
CHK_ERROR(DVBTCtrlSetEchoThreshold(state, &echoThres2k));
|
|
CHK_ERROR(DVBTCtrlSetEchoThreshold(state, &echoThres8k));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_INGAIN_TGT_MAX__A,
|
|
state->m_dvbtIfAgcCfg.IngainTgtMax));
|
|
} while (0);
|
|
|
|
if (status<0)
|
|
{
|
|
//KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
|
|
}
|
|
|
|
return status;
|
|
}
|
|
/*============================================================================*/
|
|
|
|
/**
|
|
* \brief Initialize channelswitch-independent settings for DVBT.
|
|
* \param demod instance of demodulator.
|
|
* \return DRXStatus_t.
|
|
*
|
|
* For ROM code channel filter taps are loaded from the bootloader. For microcode
|
|
* the DVB-T taps from the drxk_filters.h are used.
|
|
*/
|
|
static int SetDVBTStandard (struct drxk_state *state,enum OperationMode oMode)
|
|
{
|
|
u16 cmdResult = 0;
|
|
u16 data = 0;
|
|
int status;
|
|
|
|
//printk("%s\n", __FUNCTION__);
|
|
|
|
PowerUpDVBT(state);
|
|
|
|
do {
|
|
/* added antenna switch */
|
|
SwitchAntennaToDVBT(state);
|
|
/* send OFDM reset command */
|
|
CHK_ERROR(scu_command(state,SCU_RAM_COMMAND_STANDARD_OFDM | SCU_RAM_COMMAND_CMD_DEMOD_RESET,0,NULL,1,&cmdResult));
|
|
|
|
/* send OFDM setenv command */
|
|
CHK_ERROR(scu_command(state,SCU_RAM_COMMAND_STANDARD_OFDM | SCU_RAM_COMMAND_CMD_DEMOD_SET_ENV,0,NULL,1,&cmdResult));
|
|
|
|
/* reset datapath for OFDM, processors first */
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_COMM_EXEC__A, OFDM_SC_COMM_EXEC_STOP));
|
|
CHK_ERROR(Write16_0(state, OFDM_LC_COMM_EXEC__A, OFDM_LC_COMM_EXEC_STOP));
|
|
CHK_ERROR(Write16_0(state, IQM_COMM_EXEC__A, IQM_COMM_EXEC_B_STOP ));
|
|
|
|
/* IQM setup */
|
|
/* synchronize on ofdstate->m_festart */
|
|
CHK_ERROR(Write16_0(state, IQM_AF_UPD_SEL__A, 1));
|
|
/* window size for clipping ADC detection */
|
|
CHK_ERROR(Write16_0(state, IQM_AF_CLP_LEN__A, 0));
|
|
/* window size for for sense pre-SAW detection */
|
|
CHK_ERROR(Write16_0(state, IQM_AF_SNS_LEN__A, 0));
|
|
/* sense threshold for sense pre-SAW detection */
|
|
CHK_ERROR(Write16_0(state, IQM_AF_AMUX__A, IQM_AF_AMUX_SIGNAL2ADC));
|
|
CHK_ERROR(SetIqmAf(state,true));
|
|
|
|
CHK_ERROR(Write16_0(state, IQM_AF_AGC_RF__A, 0));
|
|
|
|
/* Impulse noise cruncher setup */
|
|
CHK_ERROR(Write16_0(state, IQM_AF_INC_LCT__A, 0)); /* crunch in IQM_CF */
|
|
CHK_ERROR(Write16_0(state, IQM_CF_DET_LCT__A, 0)); /* detect in IQM_CF */
|
|
CHK_ERROR(Write16_0(state, IQM_CF_WND_LEN__A, 3)); /* peak detector window length */
|
|
|
|
CHK_ERROR(Write16_0(state, IQM_RC_STRETCH__A, 16));
|
|
CHK_ERROR(Write16_0(state, IQM_CF_OUT_ENA__A, 0x4)); /* enable output 2 */
|
|
CHK_ERROR(Write16_0(state, IQM_CF_DS_ENA__A, 0x4)); /* decimate output 2 */
|
|
CHK_ERROR(Write16_0(state, IQM_CF_SCALE__A, 1600));
|
|
CHK_ERROR(Write16_0(state, IQM_CF_SCALE_SH__A, 0));
|
|
|
|
/* virtual clipping threshold for clipping ADC detection */
|
|
CHK_ERROR(Write16_0(state, IQM_AF_CLP_TH__A, 448));
|
|
CHK_ERROR(Write16_0(state, IQM_CF_DATATH__A, 495)); /* crunching threshold */
|
|
|
|
CHK_ERROR(BLChainCmd(state,
|
|
DRXK_BL_ROM_OFFSET_TAPS_DVBT,
|
|
DRXK_BLCC_NR_ELEMENTS_TAPS,
|
|
DRXK_BLC_TIMEOUT));
|
|
|
|
CHK_ERROR(Write16_0(state, IQM_CF_PKDTH__A, 2)); /* peak detector threshold */
|
|
CHK_ERROR(Write16_0(state, IQM_CF_POW_MEAS_LEN__A, 2));
|
|
/* enable power measurement interrupt */
|
|
CHK_ERROR(Write16_0(state, IQM_CF_COMM_INT_MSK__A, 1));
|
|
CHK_ERROR(Write16_0(state, IQM_COMM_EXEC__A, IQM_COMM_EXEC_B_ACTIVE));
|
|
|
|
/* IQM will not be reset from here, sync ADC and update/init AGC */
|
|
CHK_ERROR(ADCSynchronization(state));
|
|
CHK_ERROR(SetPreSaw(state, &state->m_dvbtPreSawCfg));
|
|
|
|
/* Halt SCU to enable safe non-atomic accesses */
|
|
CHK_ERROR(Write16_0(state,SCU_COMM_EXEC__A, SCU_COMM_EXEC_HOLD));
|
|
|
|
CHK_ERROR(SetAgcRf(state, &state->m_dvbtRfAgcCfg, true)) ;
|
|
CHK_ERROR(SetAgcIf (state, &state->m_dvbtIfAgcCfg, true));
|
|
|
|
/* Set Noise Estimation notch width and enable DC fix */
|
|
CHK_ERROR(Read16_0(state, OFDM_SC_RA_RAM_CONFIG__A, &data));
|
|
data |= OFDM_SC_RA_RAM_CONFIG_NE_FIX_ENABLE__M;
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_CONFIG__A, data));
|
|
|
|
/* Activate SCU to enable SCU commands */
|
|
CHK_ERROR(Write16_0(state,SCU_COMM_EXEC__A, SCU_COMM_EXEC_ACTIVE));
|
|
|
|
if (!state->m_DRXK_A3_ROM_CODE)
|
|
{
|
|
/* AGCInit() is not done for DVBT, so set agcFastClipCtrlDelay */
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_AGC_FAST_CLP_CTRL_DELAY__A,
|
|
state->m_dvbtIfAgcCfg.FastClipCtrlDelay));
|
|
}
|
|
|
|
/* OFDM_SC setup */
|
|
#ifdef COMPILE_FOR_NONRT
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_BE_OPT_DELAY__A, 1));
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_BE_OPT_INIT_DELAY__A, 2));
|
|
#endif
|
|
|
|
/* FEC setup */
|
|
CHK_ERROR(Write16_0(state, FEC_DI_INPUT_CTL__A, 1)); /* OFDM input */
|
|
|
|
|
|
#ifdef COMPILE_FOR_NONRT
|
|
CHK_ERROR(Write16_0(state, FEC_RS_MEASUREMENT_PERIOD__A , 0x400));
|
|
#else
|
|
CHK_ERROR(Write16_0(state, FEC_RS_MEASUREMENT_PERIOD__A , 0x1000));
|
|
#endif
|
|
CHK_ERROR(Write16_0(state, FEC_RS_MEASUREMENT_PRESCALE__A , 0x0001));
|
|
|
|
/* Setup MPEG bus */
|
|
CHK_ERROR(MPEGTSDtoSetup (state,OM_DVBT));
|
|
/* Set DVBT Presets */
|
|
CHK_ERROR (DVBTActivatePresets (state));
|
|
|
|
} while (0);
|
|
|
|
if (status<0)
|
|
{
|
|
printk("%s status - %08x\n",__FUNCTION__,status);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/*============================================================================*/
|
|
/**
|
|
* \brief Start dvbt demodulating for channel.
|
|
* \param demod instance of demodulator.
|
|
* \return DRXStatus_t.
|
|
*/
|
|
static int DVBTStart(struct drxk_state *state)
|
|
{
|
|
u16 param1;
|
|
|
|
int status;
|
|
// DRXKOfdmScCmd_t scCmd;
|
|
|
|
//printk("%s\n",__FUNCTION__);
|
|
/* Start correct processes to get in lock */
|
|
/* DRXK: OFDM_SC_RA_RAM_PROC_LOCKTRACK is no longer in mapfile! */
|
|
do {
|
|
param1 = OFDM_SC_RA_RAM_LOCKTRACK_MIN;
|
|
CHK_ERROR(DVBTScCommand(state,OFDM_SC_RA_RAM_CMD_PROC_START,0,OFDM_SC_RA_RAM_SW_EVENT_RUN_NMASK__M,param1,0,0,0));
|
|
/* Start FEC OC */
|
|
CHK_ERROR(MPEGTSStart(state));
|
|
CHK_ERROR(Write16_0(state,FEC_COMM_EXEC__A, FEC_COMM_EXEC_ACTIVE));
|
|
} while (0);
|
|
return (status);
|
|
}
|
|
|
|
|
|
/*============================================================================*/
|
|
|
|
/**
|
|
* \brief Set up dvbt demodulator for channel.
|
|
* \param demod instance of demodulator.
|
|
* \return DRXStatus_t.
|
|
* // original DVBTSetChannel()
|
|
*/
|
|
static int SetDVBT (struct drxk_state *state,u16 IntermediateFreqkHz, s32 tunerFreqOffset)
|
|
{
|
|
u16 cmdResult = 0;
|
|
u16 transmissionParams = 0;
|
|
u16 operationMode = 0;
|
|
u32 iqmRcRateOfs = 0;
|
|
u32 bandwidth = 0;
|
|
u16 param1;
|
|
int status;
|
|
|
|
//printk("%s IF =%d, TFO = %d\n",__FUNCTION__,IntermediateFreqkHz,tunerFreqOffset);
|
|
do {
|
|
CHK_ERROR(scu_command(state,SCU_RAM_COMMAND_STANDARD_OFDM |
|
|
SCU_RAM_COMMAND_CMD_DEMOD_STOP,
|
|
0,NULL,1,&cmdResult));
|
|
|
|
/* Halt SCU to enable safe non-atomic accesses */
|
|
CHK_ERROR(Write16_0(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_HOLD));
|
|
|
|
/* Stop processors */
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_COMM_EXEC__A, OFDM_SC_COMM_EXEC_STOP));
|
|
CHK_ERROR(Write16_0(state, OFDM_LC_COMM_EXEC__A, OFDM_LC_COMM_EXEC_STOP));
|
|
|
|
/* Mandatory fix, always stop CP, required to set spl offset back to
|
|
hardware default (is set to 0 by ucode during pilot detection */
|
|
CHK_ERROR(Write16_0(state, OFDM_CP_COMM_EXEC__A, OFDM_CP_COMM_EXEC_STOP));
|
|
|
|
/*== Write channel settings to device =====================================*/
|
|
|
|
/* mode */
|
|
#ifndef USE_API3
|
|
switch(state->props.transmission_mode) {
|
|
#else
|
|
switch(state->param.u.ofdm.transmission_mode) {
|
|
#endif
|
|
case TRANSMISSION_MODE_AUTO:
|
|
default:
|
|
operationMode |= OFDM_SC_RA_RAM_OP_AUTO_MODE__M;
|
|
/* try first guess DRX_FFTMODE_8K */
|
|
fallthrough;
|
|
case TRANSMISSION_MODE_8K:
|
|
transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_MODE_8K;
|
|
break;
|
|
case TRANSMISSION_MODE_2K:
|
|
transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_MODE_2K;
|
|
break;
|
|
}
|
|
|
|
/* guard */
|
|
#ifndef USE_API3
|
|
switch(state->props.guard_interval) {
|
|
#else
|
|
switch(state->param.u.ofdm.guard_interval) {
|
|
#endif
|
|
default:
|
|
case GUARD_INTERVAL_AUTO:
|
|
operationMode |= OFDM_SC_RA_RAM_OP_AUTO_GUARD__M;
|
|
/* try first guess DRX_GUARD_1DIV4 */
|
|
fallthrough;
|
|
case GUARD_INTERVAL_1_4:
|
|
transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_GUARD_4;
|
|
break;
|
|
case GUARD_INTERVAL_1_32:
|
|
transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_GUARD_32;
|
|
break;
|
|
case GUARD_INTERVAL_1_16:
|
|
transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_GUARD_16;
|
|
break;
|
|
case GUARD_INTERVAL_1_8:
|
|
transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_GUARD_8;
|
|
break;
|
|
}
|
|
|
|
/* hierarchy */
|
|
#ifndef USE_API3
|
|
switch(state->props.hierarchy) {
|
|
#else
|
|
switch(state->param.u.ofdm.hierarchy_information) {
|
|
#endif
|
|
case HIERARCHY_AUTO:
|
|
case HIERARCHY_NONE:
|
|
default:
|
|
operationMode |= OFDM_SC_RA_RAM_OP_AUTO_HIER__M;
|
|
/* try first guess SC_RA_RAM_OP_PARAM_HIER_NO */
|
|
// transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_HIER_NO;
|
|
//break;
|
|
fallthrough;
|
|
case HIERARCHY_1:
|
|
transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_HIER_A1;
|
|
break;
|
|
case HIERARCHY_2:
|
|
transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_HIER_A2;
|
|
break;
|
|
case HIERARCHY_4:
|
|
transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_HIER_A4;
|
|
break;
|
|
}
|
|
|
|
|
|
/* constellation */
|
|
#ifndef USE_API3
|
|
switch(state->props.modulation) {
|
|
#else
|
|
switch(state->param.u.ofdm.constellation) {
|
|
#endif
|
|
case QAM_AUTO:
|
|
default:
|
|
operationMode |= OFDM_SC_RA_RAM_OP_AUTO_CONST__M;
|
|
/* try first guess DRX_CONSTELLATION_QAM64 */
|
|
fallthrough;
|
|
case QAM_64:
|
|
transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_CONST_QAM64;
|
|
break;
|
|
case QPSK:
|
|
transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_CONST_QPSK;
|
|
break;
|
|
case QAM_16:
|
|
transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_CONST_QAM16;
|
|
break;
|
|
}
|
|
#if 0
|
|
// No hierachical channels support in BDA
|
|
/* Priority (only for hierarchical channels) */
|
|
switch (channel->priority) {
|
|
case DRX_PRIORITY_LOW :
|
|
transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_PRIO_LO;
|
|
WR16(devAddr, OFDM_EC_SB_PRIOR__A, OFDM_EC_SB_PRIOR_LO);
|
|
break;
|
|
case DRX_PRIORITY_HIGH :
|
|
transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_PRIO_HI;
|
|
WR16(devAddr, OFDM_EC_SB_PRIOR__A, OFDM_EC_SB_PRIOR_HI));
|
|
break;
|
|
case DRX_PRIORITY_UNKNOWN:
|
|
default:
|
|
return (DRX_STS_INVALID_ARG);
|
|
break;
|
|
}
|
|
#else
|
|
// Set Priorty high
|
|
transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_PRIO_HI;
|
|
CHK_ERROR(Write16_0(state, OFDM_EC_SB_PRIOR__A, OFDM_EC_SB_PRIOR_HI));
|
|
#endif
|
|
|
|
/* coderate */
|
|
#ifndef USE_API3
|
|
switch(state->props.code_rate_HP) {
|
|
#else
|
|
switch(state->param.u.ofdm.code_rate_HP) {
|
|
#endif
|
|
case FEC_AUTO:
|
|
default:
|
|
operationMode |= OFDM_SC_RA_RAM_OP_AUTO_RATE__M;
|
|
/* try first guess DRX_CODERATE_2DIV3 */
|
|
fallthrough;
|
|
case FEC_2_3 :
|
|
transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_RATE_2_3;
|
|
break;
|
|
case FEC_1_2 :
|
|
transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_RATE_1_2;
|
|
break;
|
|
case FEC_3_4 :
|
|
transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_RATE_3_4;
|
|
break;
|
|
case FEC_5_6 :
|
|
transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_RATE_5_6;
|
|
break;
|
|
case FEC_7_8 :
|
|
transmissionParams |= OFDM_SC_RA_RAM_OP_PARAM_RATE_7_8;
|
|
break;
|
|
}
|
|
|
|
/* SAW filter selection: normaly not necesarry, but if wanted
|
|
the application can select a SAW filter via the driver by using UIOs */
|
|
/* First determine real bandwidth (Hz) */
|
|
/* Also set delay for impulse noise cruncher */
|
|
/* Also set parameters for EC_OC fix, note EC_OC_REG_TMD_HIL_MAR is changed
|
|
by SC for fix for some 8K,1/8 guard but is restored by InitEC and ResetEC
|
|
functions */
|
|
#ifndef USE_API3
|
|
switch(state->props.bandwidth_hz) {
|
|
#else
|
|
switch(state->param.u.ofdm.bandwidth) {
|
|
#endif
|
|
#ifndef USE_API3
|
|
case 0:
|
|
case 8000000:
|
|
#else
|
|
case BANDWIDTH_AUTO:
|
|
case BANDWIDTH_8_MHZ:
|
|
#endif
|
|
bandwidth = DRXK_BANDWIDTH_8MHZ_IN_HZ;
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_SRMM_FIX_FACT_8K__A, 3052));
|
|
/* cochannel protection for PAL 8 MHz */
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_8K_PER_LEFT__A, 7));
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_8K_PER_RIGHT__A, 7));
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_2K_PER_LEFT__A, 7));
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_2K_PER_RIGHT__A, 1));
|
|
break;
|
|
#ifndef USE_API3
|
|
case 7000000:
|
|
#else
|
|
case BANDWIDTH_7_MHZ:
|
|
#endif
|
|
bandwidth = DRXK_BANDWIDTH_7MHZ_IN_HZ;
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_SRMM_FIX_FACT_8K__A, 3491));
|
|
/* cochannel protection for PAL 7 MHz */
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_8K_PER_LEFT__A, 8));
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_8K_PER_RIGHT__A, 8));
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_2K_PER_LEFT__A, 4));
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_2K_PER_RIGHT__A, 1));
|
|
break;
|
|
#ifndef USE_API3
|
|
case 6000000:
|
|
#else
|
|
case BANDWIDTH_6_MHZ:
|
|
#endif
|
|
bandwidth = DRXK_BANDWIDTH_6MHZ_IN_HZ;
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_SRMM_FIX_FACT_8K__A, 4073));
|
|
/* cochannel protection for NTSC 6 MHz */
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_8K_PER_LEFT__A, 19));
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_8K_PER_RIGHT__A, 19));
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_2K_PER_LEFT__A, 14));
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_RA_RAM_NI_INIT_2K_PER_RIGHT__A, 1));
|
|
break;
|
|
}
|
|
|
|
if (iqmRcRateOfs == 0)
|
|
{
|
|
/* Now compute IQM_RC_RATE_OFS
|
|
(((SysFreq/BandWidth)/2)/2) -1) * 2^23)
|
|
=>
|
|
((SysFreq / BandWidth) * (2^21)) - (2^23)
|
|
*/
|
|
/* (SysFreq / BandWidth) * (2^28) */
|
|
/* assert (MAX(sysClk)/MIN(bandwidth) < 16)
|
|
=> assert(MAX(sysClk) < 16*MIN(bandwidth))
|
|
=> assert(109714272 > 48000000) = true so Frac 28 can be used */
|
|
iqmRcRateOfs = Frac28a((u32)((state->m_sysClockFreq * 1000)/3), bandwidth);
|
|
/* (SysFreq / BandWidth) * (2^21), rounding before truncating */
|
|
if ((iqmRcRateOfs & 0x7fL) >= 0x40)
|
|
{
|
|
iqmRcRateOfs += 0x80L;
|
|
}
|
|
iqmRcRateOfs = iqmRcRateOfs >> 7 ;
|
|
/* ((SysFreq / BandWidth) * (2^21)) - (2^23) */
|
|
iqmRcRateOfs = iqmRcRateOfs - (1<<23);
|
|
}
|
|
|
|
iqmRcRateOfs &= ((((u32)IQM_RC_RATE_OFS_HI__M)<<IQM_RC_RATE_OFS_LO__W) |
|
|
IQM_RC_RATE_OFS_LO__M);
|
|
CHK_ERROR(Write32(state, IQM_RC_RATE_OFS_LO__A, iqmRcRateOfs,0));
|
|
|
|
/* Bandwidth setting done */
|
|
|
|
// CHK_ERROR(DVBTSetFrequencyShift(demod, channel, tunerOffset));
|
|
CHK_ERROR (SetFrequencyShifter (state, IntermediateFreqkHz, tunerFreqOffset, true));
|
|
|
|
/*== Start SC, write channel settings to SC ===============================*/
|
|
|
|
/* Activate SCU to enable SCU commands */
|
|
CHK_ERROR(Write16_0(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_ACTIVE));
|
|
|
|
/* Enable SC after setting all other parameters */
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_COMM_STATE__A, 0));
|
|
CHK_ERROR(Write16_0(state, OFDM_SC_COMM_EXEC__A, 1));
|
|
|
|
|
|
CHK_ERROR(scu_command(state,SCU_RAM_COMMAND_STANDARD_OFDM |
|
|
SCU_RAM_COMMAND_CMD_DEMOD_START,0,NULL,1,&cmdResult));
|
|
|
|
/* Write SC parameter registers, set all AUTO flags in operation mode */
|
|
param1 = (OFDM_SC_RA_RAM_OP_AUTO_MODE__M |
|
|
OFDM_SC_RA_RAM_OP_AUTO_GUARD__M |
|
|
OFDM_SC_RA_RAM_OP_AUTO_CONST__M |
|
|
OFDM_SC_RA_RAM_OP_AUTO_HIER__M |
|
|
OFDM_SC_RA_RAM_OP_AUTO_RATE__M );
|
|
status = DVBTScCommand(state,OFDM_SC_RA_RAM_CMD_SET_PREF_PARAM,0,transmissionParams,param1,0,0,0);
|
|
if (!state->m_DRXK_A3_ROM_CODE)
|
|
CHK_ERROR (DVBTCtrlSetSqiSpeed(state,&state->m_sqiSpeed));
|
|
|
|
} while(0);
|
|
if (status<0) {
|
|
//printk("%s status - %08x\n",__FUNCTION__,status);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
/*============================================================================*/
|
|
|
|
/**
|
|
* \brief Retreive lock status .
|
|
* \param demod Pointer to demodulator instance.
|
|
* \param lockStat Pointer to lock status structure.
|
|
* \return DRXStatus_t.
|
|
*
|
|
*/
|
|
static int GetDVBTLockStatus(struct drxk_state *state, u32 *pLockStatus)
|
|
{
|
|
int status;
|
|
const u16 mpeg_lock_mask = (OFDM_SC_RA_RAM_LOCK_MPEG__M |
|
|
OFDM_SC_RA_RAM_LOCK_FEC__M );
|
|
const u16 fec_lock_mask = (OFDM_SC_RA_RAM_LOCK_FEC__M);
|
|
const u16 demod_lock_mask = OFDM_SC_RA_RAM_LOCK_DEMOD__M ;
|
|
|
|
u16 ScRaRamLock = 0;
|
|
u16 ScCommExec = 0;
|
|
|
|
/* driver 0.9.0 */
|
|
/* Check if SC is running */
|
|
status = Read16_0(state, OFDM_SC_COMM_EXEC__A, &ScCommExec);
|
|
if (ScCommExec == OFDM_SC_COMM_EXEC_STOP)
|
|
{
|
|
/* SC not active; return DRX_NOT_LOCKED */
|
|
*pLockStatus = NOT_LOCKED;
|
|
return status;
|
|
}
|
|
|
|
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
|
|
|
|
status = Read16_0(state, OFDM_SC_RA_RAM_LOCK__A, &ScRaRamLock);
|
|
|
|
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "RamLock: %04X\n",ScRaRamLock));
|
|
|
|
if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
|
|
*pLockStatus = MPEG_LOCK;
|
|
} else if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask) {
|
|
*pLockStatus = FEC_LOCK;
|
|
} else if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask) {
|
|
*pLockStatus = DEMOD_LOCK;
|
|
} else if (ScRaRamLock & OFDM_SC_RA_RAM_LOCK_NODVBT__M) {
|
|
*pLockStatus = NEVER_LOCK;
|
|
} else {
|
|
*pLockStatus = NOT_LOCKED;
|
|
}
|
|
|
|
if (status<0)
|
|
{
|
|
//KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static int PowerUpQAM (struct drxk_state *state)
|
|
{
|
|
DRXPowerMode_t powerMode = DRXK_POWER_DOWN_OFDM;
|
|
|
|
|
|
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
|
|
int status = 0;
|
|
do
|
|
{
|
|
CHK_ERROR(CtrlPowerMode(state, &powerMode));
|
|
|
|
}while(0);
|
|
|
|
if (status<0)
|
|
{
|
|
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ " status - %08x\n",status));
|
|
}
|
|
return status;
|
|
}
|
|
|
|
|
|
/// Power Down QAM
|
|
static int PowerDownQAM(struct drxk_state *state)
|
|
{
|
|
u16 data = 0;
|
|
u16 cmdResult;
|
|
|
|
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
|
|
int status = 0;
|
|
do
|
|
{
|
|
CHK_ERROR(Read16_0(state, SCU_COMM_EXEC__A, &data));
|
|
if (data == SCU_COMM_EXEC_ACTIVE)
|
|
{
|
|
/*
|
|
STOP demodulator
|
|
QAM and HW blocks
|
|
*/
|
|
/* stop all comstate->m_exec */
|
|
CHK_ERROR(Write16_0(state, QAM_COMM_EXEC__A, QAM_COMM_EXEC_STOP));
|
|
CHK_ERROR(scu_command(state,SCU_RAM_COMMAND_STANDARD_QAM | SCU_RAM_COMMAND_CMD_DEMOD_STOP,0,NULL,1,&cmdResult));
|
|
}
|
|
/* powerdown AFE */
|
|
CHK_ERROR(SetIqmAf(state, false));
|
|
}
|
|
while(0);
|
|
|
|
if (status<0)
|
|
{
|
|
//KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
|
|
}
|
|
return status;
|
|
}
|
|
/*============================================================================*/
|
|
|
|
/**
|
|
* \brief Setup of the QAM Measurement intervals for signal quality
|
|
* \param demod instance of demod.
|
|
* \param constellation current constellation.
|
|
* \return DRXStatus_t.
|
|
*
|
|
* NOTE:
|
|
* Take into account that for certain settings the errorcounters can overflow.
|
|
* The implementation does not check this.
|
|
*
|
|
*/
|
|
static int SetQAMMeasurement(struct drxk_state *state,
|
|
enum EDrxkConstellation constellation,
|
|
u32 symbolRate)
|
|
{
|
|
//KdPrintEx((MSG_ERROR " - " __FUNCTION__ "(%d,%d) om = %d\n", constellation, symbolRate,state->m_OperationMode));
|
|
|
|
u32 fecBitsDesired = 0; /* BER accounting period */
|
|
u32 fecRsPeriodTotal = 0; /* Total period */
|
|
u16 fecRsPrescale = 0; /* ReedSolomon Measurement Prescale */
|
|
u16 fecRsPeriod = 0; /* Value for corresponding I2C register */
|
|
int status = 0;
|
|
|
|
fecRsPrescale = 1;
|
|
|
|
do {
|
|
|
|
/* fecBitsDesired = symbolRate [kHz] *
|
|
FrameLenght [ms] *
|
|
(constellation + 1) *
|
|
SyncLoss (== 1) *
|
|
ViterbiLoss (==1)
|
|
*/
|
|
switch (constellation)
|
|
{
|
|
case DRX_CONSTELLATION_QAM16:
|
|
fecBitsDesired = 4 * symbolRate;
|
|
break;
|
|
case DRX_CONSTELLATION_QAM32:
|
|
fecBitsDesired = 5 * symbolRate;
|
|
break;
|
|
case DRX_CONSTELLATION_QAM64:
|
|
fecBitsDesired = 6 * symbolRate;
|
|
break;
|
|
case DRX_CONSTELLATION_QAM128:
|
|
fecBitsDesired = 7 * symbolRate;
|
|
break;
|
|
case DRX_CONSTELLATION_QAM256:
|
|
fecBitsDesired = 8 * symbolRate;
|
|
break;
|
|
default:
|
|
status = -EINVAL;
|
|
}
|
|
CHK_ERROR(status);
|
|
|
|
fecBitsDesired /= 1000; /* symbolRate [Hz] -> symbolRate [kHz] */
|
|
fecBitsDesired *= 500; /* meas. period [ms] */
|
|
|
|
/* Annex A/C: bits/RsPeriod = 204 * 8 = 1632 */
|
|
/* fecRsPeriodTotal = fecBitsDesired / 1632 */
|
|
fecRsPeriodTotal = (fecBitsDesired / 1632UL) + 1; /* roughly ceil*/
|
|
|
|
/* fecRsPeriodTotal = fecRsPrescale * fecRsPeriod */
|
|
fecRsPrescale = 1 + (u16) (fecRsPeriodTotal >> 16);
|
|
if (fecRsPrescale == 0) {
|
|
/* Divide by zero (though impossible) */
|
|
status = -1;
|
|
}
|
|
CHK_ERROR(status);
|
|
fecRsPeriod = ((u16) fecRsPeriodTotal + (fecRsPrescale >> 1)) /
|
|
fecRsPrescale;
|
|
|
|
/* write corresponding registers */
|
|
CHK_ERROR(Write16_0(state, FEC_RS_MEASUREMENT_PERIOD__A, fecRsPeriod));
|
|
CHK_ERROR(Write16_0(state, FEC_RS_MEASUREMENT_PRESCALE__A, fecRsPrescale));
|
|
CHK_ERROR(Write16_0(state, FEC_OC_SNC_FAIL_PERIOD__A, fecRsPeriod));
|
|
|
|
} while (0);
|
|
|
|
if (status<0) {
|
|
printk("%s: status - %08x\n",__FUNCTION__,status);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static int SetQAM16 (struct drxk_state *state)
|
|
{
|
|
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
|
|
int status = 0;
|
|
do
|
|
{
|
|
/* QAM Equalizer Setup */
|
|
/* Equalizer */
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD0__A, 13517));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD1__A, 13517));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD2__A, 13517));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD3__A, 13517));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD4__A, 13517));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD5__A, 13517));
|
|
/* Decision Feedback Equalizer */
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN0__A, 2));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN1__A, 2));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN2__A, 2));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN3__A, 2));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN4__A, 2));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN5__A, 0));
|
|
|
|
CHK_ERROR(Write16_0(state, QAM_SY_SYNC_HWM__A, 5));
|
|
CHK_ERROR(Write16_0(state, QAM_SY_SYNC_AWM__A, 4));
|
|
CHK_ERROR(Write16_0(state, QAM_SY_SYNC_LWM__A, 3));
|
|
|
|
/* QAM Slicer Settings */
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_SL_SIG_POWER__A, DRXK_QAM_SL_SIG_POWER_QAM16));
|
|
|
|
/* QAM Loop Controller Coeficients */
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CA_FINE__A, 15));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CA_COARSE__A, 40));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_FINE__A, 12));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_MEDIUM__A, 24));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_COARSE__A, 24));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_FINE__A, 12));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_MEDIUM__A, 16));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_COARSE__A, 16));
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_FINE__A, 5));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_MEDIUM__A, 20));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_COARSE__A, 80));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_FINE__A, 5));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_MEDIUM__A, 20));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_COARSE__A, 50));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_FINE__A, 16));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_MEDIUM__A, 16));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_COARSE__A, 32));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_FINE__A, 5));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_MEDIUM__A, 10));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_COARSE__A, 10));
|
|
|
|
|
|
/* QAM State Machine (FSM) Thresholds */
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RTH__A, 140));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_FTH__A, 50));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_CTH__A, 95));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_PTH__A, 120));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_QTH__A, 230));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_MTH__A, 105));
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RATE_LIM__A, 40));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_COUNT_LIM__A, 4));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_FREQ_LIM__A, 24));
|
|
|
|
|
|
/* QAM FSM Tracking Parameters */
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_MEDIAN_AV_MULT__A, (u16) 16));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RADIUS_AV_LIMIT__A, (u16) 220));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET1__A, (u16) 25));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET2__A, (u16) 6));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET3__A, (u16) -24));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET4__A, (u16) -65));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET5__A, (u16)-127));
|
|
}while(0);
|
|
|
|
if (status<0)
|
|
{
|
|
//KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/*============================================================================*/
|
|
|
|
/**
|
|
* \brief QAM32 specific setup
|
|
* \param demod instance of demod.
|
|
* \return DRXStatus_t.
|
|
*/
|
|
static int SetQAM32 (struct drxk_state *state)
|
|
{
|
|
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
|
|
int status = 0;
|
|
do
|
|
{
|
|
/* QAM Equalizer Setup */
|
|
/* Equalizer */
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD0__A, 6707));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD1__A, 6707));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD2__A, 6707));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD3__A, 6707));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD4__A, 6707));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD5__A, 6707));
|
|
|
|
/* Decision Feedback Equalizer */
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN0__A, 3));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN1__A, 3));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN2__A, 3));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN3__A, 3));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN4__A, 3));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN5__A, 0));
|
|
|
|
CHK_ERROR(Write16_0(state, QAM_SY_SYNC_HWM__A, 6));
|
|
CHK_ERROR(Write16_0(state, QAM_SY_SYNC_AWM__A, 5));
|
|
CHK_ERROR(Write16_0(state, QAM_SY_SYNC_LWM__A, 3));
|
|
|
|
/* QAM Slicer Settings */
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_SL_SIG_POWER__A, DRXK_QAM_SL_SIG_POWER_QAM32));
|
|
|
|
|
|
/* QAM Loop Controller Coeficients */
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CA_FINE__A, 15));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CA_COARSE__A, 40));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_FINE__A, 12));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_MEDIUM__A, 24));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_COARSE__A, 24));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_FINE__A, 12));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_MEDIUM__A, 16));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_COARSE__A, 16));
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_FINE__A, 5));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_MEDIUM__A, 20));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_COARSE__A, 80));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_FINE__A, 5));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_MEDIUM__A, 20));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_COARSE__A, 50));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_FINE__A, 16));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_MEDIUM__A, 16));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_COARSE__A, 16));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_FINE__A, 5));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_MEDIUM__A, 10));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_COARSE__A, 0));
|
|
|
|
|
|
/* QAM State Machine (FSM) Thresholds */
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RTH__A, 90));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_FTH__A, 50));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_CTH__A, 80));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_PTH__A, 100));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_QTH__A, 170));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_MTH__A, 100));
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RATE_LIM__A, 40));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_COUNT_LIM__A, 4));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_FREQ_LIM__A, 10));
|
|
|
|
|
|
/* QAM FSM Tracking Parameters */
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_MEDIAN_AV_MULT__A, (u16) 12));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RADIUS_AV_LIMIT__A, (u16) 140));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET1__A, (u16) -8));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET2__A, (u16) -16));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET3__A, (u16) -26));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET4__A, (u16) -56));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET5__A, (u16) -86));
|
|
}while(0);
|
|
|
|
if (status<0)
|
|
{
|
|
//KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/*============================================================================*/
|
|
|
|
/**
|
|
* \brief QAM64 specific setup
|
|
* \param demod instance of demod.
|
|
* \return DRXStatus_t.
|
|
*/
|
|
static int SetQAM64 (struct drxk_state *state)
|
|
{
|
|
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
|
|
int status = 0;
|
|
do
|
|
{
|
|
/* QAM Equalizer Setup */
|
|
/* Equalizer */
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD0__A, 13336));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD1__A, 12618));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD2__A, 11988));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD3__A, 13809));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD4__A, 13809));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD5__A, 15609));
|
|
|
|
/* Decision Feedback Equalizer */
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN0__A, 4));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN1__A, 4));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN2__A, 4));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN3__A, 4));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN4__A, 3));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN5__A, 0));
|
|
|
|
CHK_ERROR(Write16_0(state, QAM_SY_SYNC_HWM__A, 5));
|
|
CHK_ERROR(Write16_0(state, QAM_SY_SYNC_AWM__A, 4));
|
|
CHK_ERROR(Write16_0(state, QAM_SY_SYNC_LWM__A, 3));
|
|
|
|
/* QAM Slicer Settings */
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_SL_SIG_POWER__A, DRXK_QAM_SL_SIG_POWER_QAM64));
|
|
|
|
|
|
/* QAM Loop Controller Coeficients */
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CA_FINE__A, 15));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CA_COARSE__A, 40));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_FINE__A, 12));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_MEDIUM__A, 24));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_COARSE__A, 24));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_FINE__A, 12));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_MEDIUM__A, 16));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_COARSE__A, 16));
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_FINE__A, 5));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_MEDIUM__A, 30));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_COARSE__A, 100));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_FINE__A, 5));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_MEDIUM__A, 30));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_COARSE__A, 50));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_FINE__A, 16));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_MEDIUM__A, 25));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_COARSE__A, 48));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_FINE__A, 5));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_MEDIUM__A, 10));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_COARSE__A, 10));
|
|
|
|
|
|
/* QAM State Machine (FSM) Thresholds */
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RTH__A, 100));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_FTH__A, 60));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_CTH__A, 80));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_PTH__A, 110));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_QTH__A, 200));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_MTH__A, 95));
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RATE_LIM__A, 40));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_COUNT_LIM__A, 4));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_FREQ_LIM__A, 15));
|
|
|
|
|
|
/* QAM FSM Tracking Parameters */
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_MEDIAN_AV_MULT__A, (u16) 12));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RADIUS_AV_LIMIT__A, (u16) 141));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET1__A, (u16) 7));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET2__A, (u16) 0));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET3__A, (u16) -15));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET4__A, (u16) -45));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET5__A, (u16) -80));
|
|
}while(0);
|
|
|
|
if (status<0)
|
|
{
|
|
//KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/*============================================================================*/
|
|
|
|
/**
|
|
* \brief QAM128 specific setup
|
|
* \param demod: instance of demod.
|
|
* \return DRXStatus_t.
|
|
*/
|
|
static int SetQAM128(struct drxk_state *state)
|
|
{
|
|
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
|
|
int status = 0;
|
|
do
|
|
{
|
|
/* QAM Equalizer Setup */
|
|
/* Equalizer */
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD0__A, 6564));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD1__A, 6598));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD2__A, 6394));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD3__A, 6409));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD4__A, 6656));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD5__A, 7238));
|
|
|
|
/* Decision Feedback Equalizer */
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN0__A, 6));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN1__A, 6));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN2__A, 6));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN3__A, 6));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN4__A, 5));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN5__A, 0));
|
|
|
|
CHK_ERROR(Write16_0(state, QAM_SY_SYNC_HWM__A, 6));
|
|
CHK_ERROR(Write16_0(state, QAM_SY_SYNC_AWM__A, 5));
|
|
CHK_ERROR(Write16_0(state, QAM_SY_SYNC_LWM__A, 3));
|
|
|
|
|
|
/* QAM Slicer Settings */
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_SL_SIG_POWER__A,DRXK_QAM_SL_SIG_POWER_QAM128));
|
|
|
|
|
|
/* QAM Loop Controller Coeficients */
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CA_FINE__A, 15));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CA_COARSE__A, 40));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_FINE__A, 12));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_MEDIUM__A, 24));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_COARSE__A, 24));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_FINE__A, 12));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_MEDIUM__A, 16));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_COARSE__A, 16));
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_FINE__A, 5));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_MEDIUM__A, 40));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_COARSE__A, 120));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_FINE__A, 5));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_MEDIUM__A, 40));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_COARSE__A, 60));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_FINE__A, 16));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_MEDIUM__A, 25));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_COARSE__A, 64));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_FINE__A, 5));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_MEDIUM__A, 10));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_COARSE__A, 0));
|
|
|
|
|
|
/* QAM State Machine (FSM) Thresholds */
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RTH__A, 50));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_FTH__A, 60));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_CTH__A, 80));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_PTH__A, 100));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_QTH__A, 140));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_MTH__A, 100));
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RATE_LIM__A, 40));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_COUNT_LIM__A, 5));
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_FREQ_LIM__A, 12));
|
|
|
|
/* QAM FSM Tracking Parameters */
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_MEDIAN_AV_MULT__A, (u16) 8));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RADIUS_AV_LIMIT__A, (u16) 65));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET1__A, (u16) 5));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET2__A, (u16) 3));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET3__A, (u16) -1));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET4__A, (u16) -12));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET5__A, (u16) -23));
|
|
}while(0);
|
|
|
|
if (status<0)
|
|
{
|
|
//KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/*============================================================================*/
|
|
|
|
/**
|
|
* \brief QAM256 specific setup
|
|
* \param demod: instance of demod.
|
|
* \return DRXStatus_t.
|
|
*/
|
|
static int SetQAM256(struct drxk_state *state)
|
|
{
|
|
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
|
|
int status = 0;
|
|
do
|
|
{
|
|
/* QAM Equalizer Setup */
|
|
/* Equalizer */
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD0__A, 11502));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD1__A, 12084));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD2__A, 12543));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD3__A, 12931));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD4__A, 13629));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_EQ_CMA_RAD5__A, 15385));
|
|
|
|
/* Decision Feedback Equalizer */
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN0__A, 8));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN1__A, 8));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN2__A, 8));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN3__A, 8));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN4__A, 6));
|
|
CHK_ERROR(Write16_0(state, QAM_DQ_QUAL_FUN5__A, 0));
|
|
|
|
CHK_ERROR(Write16_0(state, QAM_SY_SYNC_HWM__A, 5));
|
|
CHK_ERROR(Write16_0(state, QAM_SY_SYNC_AWM__A, 4));
|
|
CHK_ERROR(Write16_0(state, QAM_SY_SYNC_LWM__A, 3));
|
|
|
|
/* QAM Slicer Settings */
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_SL_SIG_POWER__A,DRXK_QAM_SL_SIG_POWER_QAM256));
|
|
|
|
|
|
/* QAM Loop Controller Coeficients */
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CA_FINE__A, 15));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CA_COARSE__A, 40));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_FINE__A, 12));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_MEDIUM__A, 24));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EP_COARSE__A, 24));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_FINE__A, 12));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_MEDIUM__A, 16));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_EI_COARSE__A, 16));
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_FINE__A, 5));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_MEDIUM__A, 50));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CP_COARSE__A, 250));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_FINE__A, 5));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_MEDIUM__A, 50));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CI_COARSE__A, 125));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_FINE__A, 16));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_MEDIUM__A, 25));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF_COARSE__A, 48));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_FINE__A, 5));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_MEDIUM__A, 10));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_LC_CF1_COARSE__A, 10));
|
|
|
|
|
|
/* QAM State Machine (FSM) Thresholds */
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RTH__A, 50));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_FTH__A, 60));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_CTH__A, 80));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_PTH__A, 100));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_QTH__A, 150));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_MTH__A, 110));
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RATE_LIM__A, 40));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_COUNT_LIM__A, 4));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_FREQ_LIM__A, 12));
|
|
|
|
|
|
/* QAM FSM Tracking Parameters */
|
|
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_MEDIAN_AV_MULT__A, (u16) 8));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_RADIUS_AV_LIMIT__A, (u16) 74));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET1__A, (u16) 18));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET2__A, (u16) 13));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET3__A, (u16) 7));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET4__A, (u16) 0));
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET5__A, (u16) -8));
|
|
}while(0);
|
|
|
|
if (status<0)
|
|
{
|
|
//KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
|
|
}
|
|
return status;
|
|
}
|
|
|
|
|
|
/*============================================================================*/
|
|
/**
|
|
* \brief Reset QAM block.
|
|
* \param demod: instance of demod.
|
|
* \param channel: pointer to channel data.
|
|
* \return DRXStatus_t.
|
|
*/
|
|
static int QAMResetQAM(struct drxk_state *state)
|
|
{
|
|
int status;
|
|
u16 cmdResult;
|
|
|
|
//printk("%s\n", __FUNCTION__);
|
|
do
|
|
{
|
|
/* Stop QAM comstate->m_exec */
|
|
CHK_ERROR(Write16_0(state, QAM_COMM_EXEC__A, QAM_COMM_EXEC_STOP));
|
|
|
|
CHK_ERROR(scu_command(state,SCU_RAM_COMMAND_STANDARD_QAM | SCU_RAM_COMMAND_CMD_DEMOD_RESET,0,NULL,1,&cmdResult));
|
|
} while (0);
|
|
|
|
/* All done, all OK */
|
|
return status;
|
|
}
|
|
|
|
/*============================================================================*/
|
|
|
|
/**
|
|
* \brief Set QAM symbolrate.
|
|
* \param demod: instance of demod.
|
|
* \param channel: pointer to channel data.
|
|
* \return DRXStatus_t.
|
|
*/
|
|
static int QAMSetSymbolrate(struct drxk_state *state)
|
|
{
|
|
u32 adcFrequency = 0;
|
|
u32 symbFreq = 0;
|
|
u32 iqmRcRate = 0;
|
|
u16 ratesel = 0;
|
|
u32 lcSymbRate = 0;
|
|
int status;
|
|
u32 srate =
|
|
#ifndef USE_API3
|
|
state->props.symbol_rate;
|
|
#else
|
|
state->param.u.qam.symbol_rate;
|
|
#endif
|
|
|
|
do
|
|
{
|
|
/* Select & calculate correct IQM rate */
|
|
adcFrequency = (state->m_sysClockFreq * 1000) / 3;
|
|
ratesel = 0;
|
|
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ " state->m_SymbolRate = %d\n",state->m_SymbolRate));
|
|
//printk("SR %d\n", state->param.u.qam.symbol_rate);
|
|
if (srate <= 1188750)
|
|
{
|
|
ratesel = 3;
|
|
}
|
|
else if (srate <= 2377500)
|
|
{
|
|
ratesel = 2;
|
|
}
|
|
else if (srate <= 4755000)
|
|
{
|
|
ratesel = 1;
|
|
}
|
|
CHK_ERROR(Write16_0(state,IQM_FD_RATESEL__A, ratesel));
|
|
|
|
/*
|
|
IqmRcRate = ((Fadc / (symbolrate * (4<<ratesel))) - 1) * (1<<23)
|
|
*/
|
|
symbFreq = srate * (1 << ratesel);
|
|
if (symbFreq == 0)
|
|
{
|
|
/* Divide by zero */
|
|
return -1;
|
|
}
|
|
iqmRcRate = (adcFrequency / symbFreq) * (1 << 21) +
|
|
(Frac28a((adcFrequency % symbFreq), symbFreq) >> 7) -
|
|
(1 << 23);
|
|
CHK_ERROR(Write32(state, IQM_RC_RATE_OFS_LO__A, iqmRcRate,0));
|
|
state->m_iqmRcRate = iqmRcRate;
|
|
/*
|
|
LcSymbFreq = round (.125 * symbolrate / adcFreq * (1<<15))
|
|
*/
|
|
symbFreq = srate;
|
|
if (adcFrequency == 0)
|
|
{
|
|
/* Divide by zero */
|
|
return -1;
|
|
}
|
|
lcSymbRate = (symbFreq / adcFrequency) * (1 << 12) +
|
|
(Frac28a((symbFreq % adcFrequency), adcFrequency) >> 16);
|
|
if (lcSymbRate > 511)
|
|
{
|
|
lcSymbRate = 511;
|
|
}
|
|
CHK_ERROR(Write16_0(state, QAM_LC_SYMBOL_FREQ__A, (u16) lcSymbRate));
|
|
} while (0);
|
|
|
|
return status;
|
|
}
|
|
|
|
/*============================================================================*/
|
|
|
|
/**
|
|
* \brief Get QAM lock status.
|
|
* \param demod: instance of demod.
|
|
* \param channel: pointer to channel data.
|
|
* \return DRXStatus_t.
|
|
*/
|
|
|
|
static int GetQAMLockStatus(struct drxk_state *state, u32 *pLockStatus)
|
|
{
|
|
int status;
|
|
u16 Result[2] = {0,0};
|
|
|
|
status = scu_command(state,SCU_RAM_COMMAND_STANDARD_QAM|SCU_RAM_COMMAND_CMD_DEMOD_GET_LOCK, 0, NULL, 2, Result);
|
|
if (status<0)
|
|
{
|
|
printk("%s status = %08x\n",__FUNCTION__,status);
|
|
}
|
|
if (Result[1] < SCU_RAM_QAM_LOCKED_LOCKED_DEMOD_LOCKED)
|
|
{
|
|
/* 0x0000 NOT LOCKED */
|
|
*pLockStatus = NOT_LOCKED;
|
|
}
|
|
else if (Result[1] < SCU_RAM_QAM_LOCKED_LOCKED_LOCKED)
|
|
{
|
|
/* 0x4000 DEMOD LOCKED */
|
|
*pLockStatus = DEMOD_LOCK;
|
|
}
|
|
else if (Result[1] < SCU_RAM_QAM_LOCKED_LOCKED_NEVER_LOCK)
|
|
{
|
|
/* 0x8000 DEMOD + FEC LOCKED (system lock) */
|
|
*pLockStatus = MPEG_LOCK;
|
|
}
|
|
else
|
|
{
|
|
/* 0xC000 NEVER LOCKED */
|
|
/* (system will never be able to lock to the signal) */
|
|
/* TODO: check this, intermediate & standard specific lock states are not
|
|
taken into account here */
|
|
*pLockStatus = NEVER_LOCK;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
#define QAM_MIRROR__M 0x03
|
|
#define QAM_MIRROR_NORMAL 0x00
|
|
#define QAM_MIRRORED 0x01
|
|
#define QAM_MIRROR_AUTO_ON 0x02
|
|
#define QAM_LOCKRANGE__M 0x10
|
|
#define QAM_LOCKRANGE_NORMAL 0x10
|
|
|
|
static int SetQAM(struct drxk_state *state,u16 IntermediateFreqkHz, s32 tunerFreqOffset)
|
|
{
|
|
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
|
|
int status = 0;
|
|
u8 parameterLen;
|
|
u16 setEnvParameters[5];
|
|
u16 setParamParameters[4]={0,0,0,0};
|
|
u16 cmdResult;
|
|
|
|
//printk("%s\n", __FUNCTION__);
|
|
|
|
do {
|
|
/*
|
|
STEP 1: reset demodulator
|
|
resets FEC DI and FEC RS
|
|
resets QAM block
|
|
resets SCU variables
|
|
*/
|
|
CHK_ERROR(Write16_0(state, FEC_DI_COMM_EXEC__A, FEC_DI_COMM_EXEC_STOP));
|
|
CHK_ERROR(Write16_0(state, FEC_RS_COMM_EXEC__A, FEC_RS_COMM_EXEC_STOP));
|
|
CHK_ERROR(QAMResetQAM(state));
|
|
|
|
/*
|
|
STEP 2: configure demodulator
|
|
-set env
|
|
-set params; resets IQM,QAM,FEC HW; initializes some SCU variables
|
|
*/
|
|
CHK_ERROR(QAMSetSymbolrate(state));
|
|
|
|
/* Env parameters */
|
|
setEnvParameters[2] = QAM_TOP_ANNEX_A; /* Annex */
|
|
if (state->m_OperationMode == OM_QAM_ITU_C)
|
|
{
|
|
setEnvParameters[2] = QAM_TOP_ANNEX_C; /* Annex */
|
|
}
|
|
setParamParameters[3] |= (QAM_MIRROR_AUTO_ON);
|
|
// check for LOCKRANGE Extented
|
|
// setParamParameters[3] |= QAM_LOCKRANGE_NORMAL;
|
|
parameterLen = 4;
|
|
|
|
/* Set params */
|
|
#ifndef USE_API3
|
|
switch(state->props.modulation)
|
|
#else
|
|
switch(state->param.u.qam.modulation)
|
|
#endif
|
|
{
|
|
case QAM_256:
|
|
state->m_Constellation = DRX_CONSTELLATION_QAM256;
|
|
break;
|
|
case QAM_AUTO:
|
|
case QAM_64:
|
|
state->m_Constellation = DRX_CONSTELLATION_QAM64;
|
|
break;
|
|
case QAM_16:
|
|
state->m_Constellation = DRX_CONSTELLATION_QAM16;
|
|
break;
|
|
case QAM_32:
|
|
state->m_Constellation = DRX_CONSTELLATION_QAM32;
|
|
break;
|
|
case QAM_128:
|
|
state->m_Constellation = DRX_CONSTELLATION_QAM128;
|
|
break;
|
|
default:
|
|
status = -EINVAL;
|
|
break;
|
|
}
|
|
CHK_ERROR(status);
|
|
setParamParameters[0] = state->m_Constellation; /* constellation */
|
|
setParamParameters[1] = DRXK_QAM_I12_J17; /* interleave mode */
|
|
|
|
CHK_ERROR(scu_command(state,SCU_RAM_COMMAND_STANDARD_QAM | SCU_RAM_COMMAND_CMD_DEMOD_SET_PARAM,4,setParamParameters,1,&cmdResult));
|
|
|
|
|
|
/* STEP 3: enable the system in a mode where the ADC provides valid signal
|
|
setup constellation independent registers */
|
|
// CHK_ERROR (SetFrequency (channel, tunerFreqOffset));
|
|
CHK_ERROR (SetFrequencyShifter (state, IntermediateFreqkHz, tunerFreqOffset, true));
|
|
|
|
/* Setup BER measurement */
|
|
CHK_ERROR(SetQAMMeasurement (state,
|
|
state->m_Constellation,
|
|
#ifndef USE_API3
|
|
state->props.symbol_rate));
|
|
#else
|
|
state->param.u.qam.symbol_rate));
|
|
#endif
|
|
|
|
/* Reset default values */
|
|
CHK_ERROR(Write16_0(state, IQM_CF_SCALE_SH__A, IQM_CF_SCALE_SH__PRE));
|
|
CHK_ERROR(Write16_0(state, QAM_SY_TIMEOUT__A, QAM_SY_TIMEOUT__PRE));
|
|
|
|
/* Reset default LC values */
|
|
CHK_ERROR(Write16_0(state, QAM_LC_RATE_LIMIT__A, 3));
|
|
CHK_ERROR(Write16_0(state, QAM_LC_LPF_FACTORP__A, 4));
|
|
CHK_ERROR(Write16_0(state, QAM_LC_LPF_FACTORI__A, 4));
|
|
CHK_ERROR(Write16_0(state, QAM_LC_MODE__A, 7));
|
|
|
|
CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB0__A, 1));
|
|
CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB1__A, 1));
|
|
CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB2__A, 1));
|
|
CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB3__A, 1));
|
|
CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB4__A, 2));
|
|
CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB5__A, 2));
|
|
CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB6__A, 2));
|
|
CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB8__A, 2));
|
|
CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB9__A, 2));
|
|
CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB10__A, 2));
|
|
CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB12__A, 2));
|
|
CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB15__A, 3));
|
|
CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB16__A, 3));
|
|
CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB20__A, 4));
|
|
CHK_ERROR(Write16_0(state, QAM_LC_QUAL_TAB25__A, 4));
|
|
|
|
/* Mirroring, QAM-block starting point not inverted */
|
|
CHK_ERROR(Write16_0(state, QAM_SY_SP_INV__A, QAM_SY_SP_INV_SPECTRUM_INV_DIS));
|
|
|
|
/* Halt SCU to enable safe non-atomic accesses */
|
|
CHK_ERROR(Write16_0(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_HOLD));
|
|
|
|
/* STEP 4: constellation specific setup */
|
|
#ifndef USE_API3
|
|
switch (state->props.modulation)
|
|
#else
|
|
switch (state->param.u.qam.modulation)
|
|
#endif
|
|
{
|
|
case QAM_16:
|
|
CHK_ERROR(SetQAM16(state));
|
|
break;
|
|
case QAM_32:
|
|
CHK_ERROR(SetQAM32(state));
|
|
break;
|
|
case QAM_AUTO:
|
|
case QAM_64:
|
|
CHK_ERROR(SetQAM64(state));
|
|
break;
|
|
case QAM_128:
|
|
CHK_ERROR(SetQAM128(state));
|
|
break;
|
|
case QAM_256:
|
|
//printk("SETQAM256\n");
|
|
CHK_ERROR(SetQAM256(state));
|
|
break;
|
|
default:
|
|
return -1;
|
|
break;
|
|
} /* switch */
|
|
/* Activate SCU to enable SCU commands */
|
|
CHK_ERROR(Write16_0(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_ACTIVE));
|
|
|
|
|
|
/* Re-configure MPEG output, requires knowledge of channel bitrate */
|
|
// extAttr->currentChannel.constellation = channel->constellation;
|
|
// extAttr->currentChannel.symbolrate = channel->symbolrate;
|
|
CHK_ERROR(MPEGTSDtoSetup(state, state->m_OperationMode));
|
|
|
|
/* Start processes */
|
|
CHK_ERROR(MPEGTSStart(state));
|
|
CHK_ERROR(Write16_0(state, FEC_COMM_EXEC__A, FEC_COMM_EXEC_ACTIVE));
|
|
CHK_ERROR(Write16_0(state, QAM_COMM_EXEC__A, QAM_COMM_EXEC_ACTIVE));
|
|
CHK_ERROR(Write16_0(state, IQM_COMM_EXEC__A, IQM_COMM_EXEC_B_ACTIVE));
|
|
|
|
/* STEP 5: start QAM demodulator (starts FEC, QAM and IQM HW) */
|
|
CHK_ERROR(scu_command(state,SCU_RAM_COMMAND_STANDARD_QAM |
|
|
SCU_RAM_COMMAND_CMD_DEMOD_START,0,
|
|
NULL,1,&cmdResult));
|
|
|
|
/* update global DRXK data container */
|
|
//? extAttr->qamInterleaveMode = DRXK_QAM_I12_J17;
|
|
|
|
/* All done, all OK */
|
|
} while(0);
|
|
|
|
if (status<0) {
|
|
printk("%s %d\n", __FUNCTION__, status);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static int SetQAMStandard(struct drxk_state *state, enum OperationMode oMode)
|
|
{
|
|
#ifdef DRXK_QAM_TAPS
|
|
#define DRXK_QAMA_TAPS_SELECT
|
|
#include "drxk_filters.h"
|
|
#undef DRXK_QAMA_TAPS_SELECT
|
|
#else
|
|
int status;
|
|
#endif
|
|
|
|
//printk("%s\n", __FUNCTION__);
|
|
do
|
|
{
|
|
/* added antenna switch */
|
|
SwitchAntennaToQAM(state);
|
|
|
|
/* Ensure correct power-up mode */
|
|
CHK_ERROR(PowerUpQAM(state));
|
|
/* Reset QAM block */
|
|
CHK_ERROR(QAMResetQAM(state));
|
|
|
|
/* Setup IQM */
|
|
|
|
CHK_ERROR(Write16_0(state, IQM_COMM_EXEC__A, IQM_COMM_EXEC_B_STOP));
|
|
CHK_ERROR(Write16_0(state, IQM_AF_AMUX__A, IQM_AF_AMUX_SIGNAL2ADC));
|
|
|
|
/* Upload IQM Channel Filter settings by
|
|
boot loader from ROM table */
|
|
switch (oMode)
|
|
{
|
|
case OM_QAM_ITU_A:
|
|
CHK_ERROR(BLChainCmd(state,
|
|
DRXK_BL_ROM_OFFSET_TAPS_ITU_A,
|
|
DRXK_BLCC_NR_ELEMENTS_TAPS,
|
|
DRXK_BLC_TIMEOUT));
|
|
break;
|
|
case OM_QAM_ITU_C:
|
|
CHK_ERROR(BLDirectCmd(state, IQM_CF_TAP_RE0__A,
|
|
DRXK_BL_ROM_OFFSET_TAPS_ITU_C,
|
|
DRXK_BLDC_NR_ELEMENTS_TAPS,
|
|
DRXK_BLC_TIMEOUT));
|
|
CHK_ERROR(BLDirectCmd(state, IQM_CF_TAP_IM0__A,
|
|
DRXK_BL_ROM_OFFSET_TAPS_ITU_C,
|
|
DRXK_BLDC_NR_ELEMENTS_TAPS,
|
|
DRXK_BLC_TIMEOUT));
|
|
break;
|
|
default:
|
|
status=-EINVAL;
|
|
}
|
|
CHK_ERROR (status);
|
|
|
|
CHK_ERROR(Write16_0(state, IQM_CF_OUT_ENA__A,
|
|
(1 << IQM_CF_OUT_ENA_QAM__B)));
|
|
CHK_ERROR(Write16_0(state, IQM_CF_SYMMETRIC__A, 0));
|
|
CHK_ERROR(Write16_0(state, IQM_CF_MIDTAP__A,
|
|
((1 << IQM_CF_MIDTAP_RE__B) |
|
|
(1 << IQM_CF_MIDTAP_IM__B))));
|
|
|
|
CHK_ERROR(Write16_0(state, IQM_RC_STRETCH__A, 21));
|
|
CHK_ERROR(Write16_0(state, IQM_AF_CLP_LEN__A, 0));
|
|
CHK_ERROR(Write16_0(state, IQM_AF_CLP_TH__A, 448));
|
|
CHK_ERROR(Write16_0(state, IQM_AF_SNS_LEN__A, 0));
|
|
CHK_ERROR(Write16_0(state, IQM_CF_POW_MEAS_LEN__A, 0));
|
|
|
|
CHK_ERROR(Write16_0(state, IQM_FS_ADJ_SEL__A, 1));
|
|
CHK_ERROR(Write16_0(state, IQM_RC_ADJ_SEL__A, 1));
|
|
CHK_ERROR(Write16_0(state, IQM_CF_ADJ_SEL__A, 1));
|
|
CHK_ERROR(Write16_0(state, IQM_AF_UPD_SEL__A, 0));
|
|
|
|
/* IQM Impulse Noise Processing Unit */
|
|
CHK_ERROR(Write16_0(state, IQM_CF_CLP_VAL__A, 500));
|
|
CHK_ERROR(Write16_0(state, IQM_CF_DATATH__A, 1000));
|
|
CHK_ERROR(Write16_0(state, IQM_CF_BYPASSDET__A, 1));
|
|
CHK_ERROR(Write16_0(state, IQM_CF_DET_LCT__A, 0));
|
|
CHK_ERROR(Write16_0(state, IQM_CF_WND_LEN__A, 1));
|
|
CHK_ERROR(Write16_0(state, IQM_CF_PKDTH__A, 1));
|
|
CHK_ERROR(Write16_0(state, IQM_AF_INC_BYPASS__A, 1));
|
|
|
|
/* turn on IQMAF. Must be done before setAgc**() */
|
|
CHK_ERROR(SetIqmAf(state, true));
|
|
CHK_ERROR(Write16_0(state, IQM_AF_START_LOCK__A, 0x01));
|
|
|
|
/* IQM will not be reset from here, sync ADC and update/init AGC */
|
|
CHK_ERROR(ADCSynchronization (state));
|
|
|
|
/* Set the FSM step period */
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_QAM_FSM_STEP_PERIOD__A, 2000));
|
|
|
|
/* Halt SCU to enable safe non-atomic accesses */
|
|
CHK_ERROR(Write16_0(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_HOLD));
|
|
|
|
/* No more resets of the IQM, current standard correctly set =>
|
|
now AGCs can be configured. */
|
|
|
|
CHK_ERROR(InitAGC(state,true));
|
|
CHK_ERROR(SetPreSaw(state, &(state->m_qamPreSawCfg)));
|
|
|
|
/* Configure AGC's */
|
|
CHK_ERROR(SetAgcRf(state, &(state->m_qamRfAgcCfg), true));
|
|
CHK_ERROR(SetAgcIf (state, &(state->m_qamIfAgcCfg), true));
|
|
|
|
/* Activate SCU to enable SCU commands */
|
|
CHK_ERROR(Write16_0(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_ACTIVE));
|
|
} while (0);
|
|
return status;
|
|
}
|
|
|
|
static int WriteGPIO(struct drxk_state *state)
|
|
{
|
|
int status;
|
|
u16 value = 0;
|
|
|
|
do {
|
|
/* stop lock indicator process */
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_GPIO__A,
|
|
SCU_RAM_GPIO_HW_LOCK_IND_DISABLE));
|
|
|
|
/* Write magic word to enable pdr reg write */
|
|
CHK_ERROR(Write16_0(state, SIO_TOP_COMM_KEY__A,
|
|
SIO_TOP_COMM_KEY_KEY));
|
|
|
|
if (state->m_hasSAWSW) {
|
|
/* write to io pad configuration register - output mode */
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_SMA_TX_CFG__A,
|
|
state->m_GPIOCfg));
|
|
|
|
/* use corresponding bit in io data output registar */
|
|
CHK_ERROR(Read16_0(state, SIO_PDR_UIO_OUT_LO__A, &value));
|
|
if (state->m_GPIO == 0) {
|
|
value &= 0x7FFF; /* write zero to 15th bit - 1st UIO */
|
|
} else {
|
|
value |= 0x8000; /* write one to 15th bit - 1st UIO */
|
|
}
|
|
/* write back to io data output register */
|
|
CHK_ERROR(Write16_0(state, SIO_PDR_UIO_OUT_LO__A, value));
|
|
|
|
}
|
|
/* Write magic word to disable pdr reg write */
|
|
CHK_ERROR(Write16_0(state, SIO_TOP_COMM_KEY__A, 0x0000));
|
|
} while (0);
|
|
return status;
|
|
}
|
|
|
|
static int SwitchAntennaToQAM(struct drxk_state *state)
|
|
{
|
|
int status = -1;
|
|
|
|
if (state->m_AntennaSwitchDVBTDVBC != 0) {
|
|
if (state->m_GPIO != state->m_AntennaDVBC) {
|
|
state->m_GPIO = state->m_AntennaDVBC;
|
|
status = WriteGPIO(state);
|
|
}
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static int SwitchAntennaToDVBT(struct drxk_state *state)
|
|
{
|
|
int status = -1;
|
|
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
|
|
if (state->m_AntennaSwitchDVBTDVBC != 0) {
|
|
if (state->m_GPIO != state->m_AntennaDVBT) {
|
|
state->m_GPIO = state->m_AntennaDVBT;
|
|
status = WriteGPIO(state);
|
|
}
|
|
}
|
|
return status;
|
|
}
|
|
|
|
|
|
static int PowerDownDevice(struct drxk_state *state)
|
|
{
|
|
/* Power down to requested mode */
|
|
/* Backup some register settings */
|
|
/* Set pins with possible pull-ups connected to them in input mode */
|
|
/* Analog power down */
|
|
/* ADC power down */
|
|
/* Power down device */
|
|
int status;
|
|
do {
|
|
if (state->m_bPDownOpenBridge) {
|
|
// Open I2C bridge before power down of DRXK
|
|
CHK_ERROR(ConfigureI2CBridge(state, true));
|
|
}
|
|
// driver 0.9.0
|
|
CHK_ERROR(DVBTEnableOFDMTokenRing(state, false));
|
|
|
|
CHK_ERROR(Write16_0(state, SIO_CC_PWD_MODE__A, SIO_CC_PWD_MODE_LEVEL_CLOCK));
|
|
CHK_ERROR(Write16_0(state, SIO_CC_UPDATE__A , SIO_CC_UPDATE_KEY));
|
|
state->m_HICfgCtrl |= SIO_HI_RA_RAM_PAR_5_CFG_SLEEP_ZZZ;
|
|
CHK_ERROR(HI_CfgCommand(state));
|
|
}
|
|
while(0);
|
|
|
|
if (status<0) {
|
|
//KdPrintEx((MSG_ERROR " - " __FUNCTION__ " status - %08x\n",status));
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int load_microcode(struct drxk_state *state, char *mc_name)
|
|
{
|
|
const struct firmware *fw = NULL;
|
|
int err=0;
|
|
|
|
err = request_firmware(&fw, mc_name, state->i2c->dev.parent);
|
|
if (err < 0) {
|
|
printk(KERN_ERR
|
|
": Could not load firmware file %s.\n", mc_name);
|
|
printk(KERN_INFO
|
|
": Copy %s to your hotplug directory!\n", mc_name);
|
|
return err;
|
|
}
|
|
err=DownloadMicrocode(state, fw->data, fw->size);
|
|
release_firmware(fw);
|
|
return err;
|
|
}
|
|
|
|
static int init_drxk(struct drxk_state *state)
|
|
{
|
|
int status;
|
|
DRXPowerMode_t powerMode = DRXK_POWER_DOWN_OFDM;
|
|
u16 driverVersion;
|
|
|
|
//printk("init_drxk\n");
|
|
if ((state->m_DrxkState == DRXK_UNINITIALIZED)) {
|
|
do {
|
|
CHK_ERROR(PowerUpDevice(state));
|
|
CHK_ERROR (DRXX_Open(state));
|
|
/* Soft reset of OFDM-, sys- and osc-clockdomain */
|
|
CHK_ERROR(Write16_0(state, SIO_CC_SOFT_RST__A,
|
|
SIO_CC_SOFT_RST_OFDM__M |
|
|
SIO_CC_SOFT_RST_SYS__M |
|
|
SIO_CC_SOFT_RST_OSC__M));
|
|
CHK_ERROR(Write16_0(state, SIO_CC_UPDATE__A, SIO_CC_UPDATE_KEY));
|
|
/* TODO is this needed, if yes how much delay in worst case scenario */
|
|
msleep(1);
|
|
state->m_DRXK_A3_PATCH_CODE = true;
|
|
CHK_ERROR(GetDeviceCapabilities(state));
|
|
|
|
/* Bridge delay, uses oscilator clock */
|
|
/* Delay = (delay (nano seconds) * oscclk (kHz))/ 1000 */
|
|
/* SDA brdige delay */
|
|
state->m_HICfgBridgeDelay = (u16)((state->m_oscClockFreq/1000)* HI_I2C_BRIDGE_DELAY)/1000;
|
|
/* Clipping */
|
|
if (state->m_HICfgBridgeDelay > SIO_HI_RA_RAM_PAR_3_CFG_DBL_SDA__M)
|
|
{
|
|
state->m_HICfgBridgeDelay = SIO_HI_RA_RAM_PAR_3_CFG_DBL_SDA__M;
|
|
}
|
|
/* SCL bridge delay, same as SDA for now */
|
|
state->m_HICfgBridgeDelay += state->m_HICfgBridgeDelay << SIO_HI_RA_RAM_PAR_3_CFG_DBL_SCL__B;
|
|
|
|
CHK_ERROR(InitHI(state));
|
|
/* disable various processes */
|
|
#if NOA1ROM
|
|
if (!(state->m_DRXK_A1_ROM_CODE) && !(state->m_DRXK_A2_ROM_CODE) )
|
|
#endif
|
|
{
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_GPIO__A, SCU_RAM_GPIO_HW_LOCK_IND_DISABLE));
|
|
}
|
|
|
|
/* disable MPEG port */
|
|
CHK_ERROR(MPEGTSDisable(state));
|
|
|
|
/* Stop AUD and SCU */
|
|
CHK_ERROR(Write16_0(state, AUD_COMM_EXEC__A, AUD_COMM_EXEC_STOP));
|
|
CHK_ERROR(Write16_0(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_STOP));
|
|
|
|
/* enable token-ring bus through OFDM block for possible ucode upload */
|
|
CHK_ERROR(Write16_0(state, SIO_OFDM_SH_OFDM_RING_ENABLE__A, SIO_OFDM_SH_OFDM_RING_ENABLE_ON));
|
|
|
|
/* include boot loader section */
|
|
CHK_ERROR(Write16_0(state, SIO_BL_COMM_EXEC__A, SIO_BL_COMM_EXEC_ACTIVE));
|
|
CHK_ERROR(BLChainCmd(state, 0, 6, 100));
|
|
|
|
#if 0
|
|
if (state->m_DRXK_A3_PATCH_CODE)
|
|
CHK_ERROR(DownloadMicrocode(state,
|
|
DRXK_A3_microcode,
|
|
DRXK_A3_microcode_length));
|
|
#else
|
|
load_microcode(state, "drxk_a3.mc");
|
|
#endif
|
|
#if NOA1ROM
|
|
if (state->m_DRXK_A2_PATCH_CODE)
|
|
CHK_ERROR(DownloadMicrocode(state,
|
|
DRXK_A2_microcode,
|
|
DRXK_A2_microcode_length));
|
|
#endif
|
|
/* disable token-ring bus through OFDM block for possible ucode upload */
|
|
CHK_ERROR(Write16_0(state, SIO_OFDM_SH_OFDM_RING_ENABLE__A, SIO_OFDM_SH_OFDM_RING_ENABLE_OFF));
|
|
|
|
/* Run SCU for a little while to initialize microcode version numbers */
|
|
CHK_ERROR(Write16_0(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_ACTIVE));
|
|
CHK_ERROR (DRXX_Open(state));
|
|
// added for test
|
|
msleep(30);
|
|
|
|
powerMode = DRXK_POWER_DOWN_OFDM;
|
|
CHK_ERROR(CtrlPowerMode(state, &powerMode));
|
|
|
|
/* Stamp driver version number in SCU data RAM in BCD code
|
|
Done to enable field application engineers to retreive drxdriver version
|
|
via I2C from SCU RAM.
|
|
Not using SCU command interface for SCU register access since no
|
|
microcode may be present.
|
|
*/
|
|
driverVersion = (((DRXK_VERSION_MAJOR/100) % 10) << 12) +
|
|
(((DRXK_VERSION_MAJOR/10) % 10) << 8) +
|
|
((DRXK_VERSION_MAJOR%10) << 4) +
|
|
(DRXK_VERSION_MINOR%10);
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_DRIVER_VER_HI__A, driverVersion ));
|
|
driverVersion = (((DRXK_VERSION_PATCH/1000) % 10) << 12) +
|
|
(((DRXK_VERSION_PATCH/100) % 10) << 8) +
|
|
(((DRXK_VERSION_PATCH/10) % 10) << 4) +
|
|
(DRXK_VERSION_PATCH%10);
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_DRIVER_VER_LO__A, driverVersion ));
|
|
|
|
printk("DRXK driver version:%d.%d.%d\n",
|
|
DRXK_VERSION_MAJOR,DRXK_VERSION_MINOR,DRXK_VERSION_PATCH);
|
|
|
|
/* Dirty fix of default values for ROM/PATCH microcode
|
|
Dirty because this fix makes it impossible to setup suitable values
|
|
before calling DRX_Open. This solution requires changes to RF AGC speed
|
|
to be done via the CTRL function after calling DRX_Open */
|
|
|
|
// m_dvbtRfAgcCfg.speed=3;
|
|
|
|
/* Reset driver debug flags to 0 */
|
|
CHK_ERROR(Write16_0(state, SCU_RAM_DRIVER_DEBUG__A, 0));
|
|
/* driver 0.9.0 */
|
|
/* Setup FEC OC:
|
|
NOTE: No more full FEC resets allowed afterwards!! */
|
|
CHK_ERROR(Write16_0(state, FEC_COMM_EXEC__A, FEC_COMM_EXEC_STOP));
|
|
// MPEGTS functions are still the same
|
|
CHK_ERROR(MPEGTSDtoInit(state));
|
|
CHK_ERROR(MPEGTSStop(state));
|
|
CHK_ERROR(MPEGTSConfigurePolarity(state));
|
|
CHK_ERROR(MPEGTSConfigurePins(state, state->m_enableMPEGOutput));
|
|
// added: configure GPIO
|
|
CHK_ERROR(WriteGPIO(state));
|
|
|
|
state->m_DrxkState = DRXK_STOPPED;
|
|
|
|
if (state->m_bPowerDown) {
|
|
CHK_ERROR(PowerDownDevice(state));
|
|
state->m_DrxkState = DRXK_POWERED_DOWN;
|
|
}
|
|
else
|
|
state->m_DrxkState = DRXK_STOPPED;
|
|
} while(0);
|
|
//printk("%s=%d\n", __FUNCTION__, status);
|
|
}
|
|
else
|
|
{
|
|
//KdPrintEx((MSG_TRACE " - " __FUNCTION__ " - Init already done\n"));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void drxk_c_release(struct dvb_frontend* fe)
|
|
{
|
|
struct drxk_state *state=fe->demodulator_priv;
|
|
printk("%s\n", __FUNCTION__);
|
|
kfree(state);
|
|
}
|
|
|
|
static int drxk_c_init (struct dvb_frontend *fe)
|
|
{
|
|
struct drxk_state *state=fe->demodulator_priv;
|
|
|
|
if (mutex_trylock(&state->ctlock)==0)
|
|
return -EBUSY;
|
|
SetOperationMode(state, OM_QAM_ITU_A);
|
|
return 0;
|
|
}
|
|
|
|
static int drxk_c_sleep(struct dvb_frontend* fe)
|
|
{
|
|
struct drxk_state *state=fe->demodulator_priv;
|
|
|
|
ShutDown(state);
|
|
mutex_unlock(&state->ctlock);
|
|
return 0;
|
|
}
|
|
|
|
static int drxk_gate_ctrl(struct dvb_frontend* fe, int enable)
|
|
{
|
|
struct drxk_state *state = fe->demodulator_priv;
|
|
|
|
//printk("drxk_gate %d\n", enable);
|
|
return ConfigureI2CBridge(state, enable ? true : false);
|
|
}
|
|
|
|
#ifndef USE_API3
|
|
static int drxk_set_parameters (struct dvb_frontend *fe)
|
|
#else
|
|
static int drxk_set_parameters (struct dvb_frontend *fe,
|
|
struct dvb_frontend_parameters *p)
|
|
#endif
|
|
{
|
|
struct drxk_state *state = fe->demodulator_priv;
|
|
u32 IF;
|
|
|
|
//printk("%s\n", __FUNCTION__);
|
|
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 1);
|
|
if (fe->ops.tuner_ops.set_params)
|
|
#ifndef USE_API3
|
|
fe->ops.tuner_ops.set_params(fe);
|
|
#else
|
|
fe->ops.tuner_ops.set_params(fe, p);
|
|
#endif
|
|
if (fe->ops.i2c_gate_ctrl)
|
|
fe->ops.i2c_gate_ctrl(fe, 0);
|
|
#ifndef USE_API3
|
|
#else
|
|
state->param=*p;
|
|
#endif
|
|
fe->ops.tuner_ops.get_if_frequency(fe, &IF); /* WTF is a frequency frequency? */
|
|
Start(state, 0, IF);
|
|
|
|
//printk("%s IF=%d done\n", __FUNCTION__, IF);
|
|
return 0;
|
|
}
|
|
|
|
static int drxk_c_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *p)
|
|
{
|
|
//struct drxk_state *state = fe->demodulator_priv;
|
|
//printk("%s\n", __FUNCTION__);
|
|
return 0;
|
|
}
|
|
|
|
static int drxk_read_status(struct dvb_frontend *fe, enum fe_status *status)
|
|
{
|
|
struct drxk_state *state = fe->demodulator_priv;
|
|
u32 stat;
|
|
|
|
*status=0;
|
|
GetLockStatus(state, &stat, 0);
|
|
if (stat==MPEG_LOCK)
|
|
*status|=0x1f;
|
|
if (stat==FEC_LOCK)
|
|
*status|=0x0f;
|
|
if (stat==DEMOD_LOCK)
|
|
*status|=0x07;
|
|
return 0;
|
|
}
|
|
|
|
static int drxk_read_ber(struct dvb_frontend *fe, u32 *ber)
|
|
{
|
|
//struct drxk_state *state = fe->demodulator_priv;
|
|
*ber=0;
|
|
return 0;
|
|
}
|
|
|
|
static int drxk_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
|
|
{
|
|
struct drxk_state *state = fe->demodulator_priv;
|
|
u32 val;
|
|
|
|
ReadIFAgc(state, &val);
|
|
*strength = val & 0xffff;;
|
|
return 0;
|
|
}
|
|
|
|
static int drxk_read_snr(struct dvb_frontend *fe, u16 *snr)
|
|
{
|
|
struct drxk_state *state = fe->demodulator_priv;
|
|
s32 snr2;
|
|
|
|
GetSignalToNoise(state, &snr2);
|
|
*snr = snr2&0xffff;
|
|
return 0;
|
|
}
|
|
|
|
static int drxk_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
|
|
{
|
|
struct drxk_state *state = fe->demodulator_priv;
|
|
u16 err;
|
|
|
|
DVBTQAMGetAccPktErr(state, &err);
|
|
*ucblocks = (u32) err;
|
|
return 0;
|
|
}
|
|
|
|
static int drxk_c_get_tune_settings(struct dvb_frontend *fe,
|
|
struct dvb_frontend_tune_settings *sets)
|
|
{
|
|
sets->min_delay_ms=3000;
|
|
sets->max_drift=0;
|
|
sets->step_size=0;
|
|
return 0;
|
|
}
|
|
|
|
static void drxk_t_release(struct dvb_frontend* fe)
|
|
{
|
|
//struct drxk_state *state=fe->demodulator_priv;
|
|
//printk("%s\n", __FUNCTION__);
|
|
//kfree(state);
|
|
}
|
|
|
|
static int drxk_t_init (struct dvb_frontend *fe)
|
|
{
|
|
struct drxk_state *state=fe->demodulator_priv;
|
|
if (mutex_trylock(&state->ctlock)==0)
|
|
return -EBUSY;
|
|
//printk("%s\n", __FUNCTION__);
|
|
SetOperationMode(state, OM_DVBT);
|
|
//printk("%s done\n", __FUNCTION__);
|
|
return 0;
|
|
}
|
|
|
|
static int drxk_t_sleep(struct dvb_frontend* fe)
|
|
{
|
|
struct drxk_state *state=fe->demodulator_priv;
|
|
mutex_unlock(&state->ctlock);
|
|
return 0;
|
|
}
|
|
|
|
static int drxk_t_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *p)
|
|
{
|
|
//struct drxk_state *state = fe->demodulator_priv;
|
|
//printk("%s\n", __FUNCTION__);
|
|
return 0;
|
|
}
|
|
|
|
static struct dvb_frontend_ops drxk_c_ops = {
|
|
.delsys = { SYS_DVBC_ANNEX_A, SYS_DVBC_ANNEX_B, SYS_DVBC_ANNEX_C },
|
|
.info = {
|
|
.name = "DRXK DVB-C",
|
|
.frequency_stepsize_hz = 62500,
|
|
.frequency_min_hz = 47000000,
|
|
.frequency_max_hz = 862000000,
|
|
.symbol_rate_min = 870000,
|
|
.symbol_rate_max = 11700000,
|
|
.caps = FE_CAN_QAM_16 | FE_CAN_QAM_32 | FE_CAN_QAM_64 |
|
|
FE_CAN_QAM_128 | FE_CAN_QAM_256 | FE_CAN_FEC_AUTO
|
|
},
|
|
.release = drxk_c_release,
|
|
.init = drxk_c_init,
|
|
.sleep = drxk_c_sleep,
|
|
.i2c_gate_ctrl = drxk_gate_ctrl,
|
|
|
|
.set_frontend = drxk_set_parameters,
|
|
.get_frontend = drxk_c_get_frontend,
|
|
.get_tune_settings = drxk_c_get_tune_settings,
|
|
|
|
.read_status = drxk_read_status,
|
|
.read_ber = drxk_read_ber,
|
|
.read_signal_strength = drxk_read_signal_strength,
|
|
.read_snr = drxk_read_snr,
|
|
.read_ucblocks = drxk_read_ucblocks,
|
|
};
|
|
|
|
static struct dvb_frontend_ops drxk_t_ops = {
|
|
.delsys = { SYS_DVBT },
|
|
.info = {
|
|
.name = "DRXK DVB-T",
|
|
.frequency_min_hz = 47125000,
|
|
.frequency_max_hz = 865000000,
|
|
.frequency_stepsize_hz = 166667,
|
|
.frequency_tolerance_hz = 0,
|
|
.caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
|
|
FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
|
|
FE_CAN_FEC_AUTO |
|
|
FE_CAN_QAM_16 | FE_CAN_QAM_64 |
|
|
FE_CAN_QAM_AUTO |
|
|
FE_CAN_TRANSMISSION_MODE_AUTO |
|
|
FE_CAN_GUARD_INTERVAL_AUTO |
|
|
FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER |
|
|
FE_CAN_MUTE_TS
|
|
},
|
|
.release = drxk_t_release,
|
|
.init = drxk_t_init,
|
|
.sleep = drxk_t_sleep,
|
|
.i2c_gate_ctrl = drxk_gate_ctrl,
|
|
|
|
.set_frontend = drxk_set_parameters,
|
|
.get_frontend = drxk_t_get_frontend,
|
|
|
|
.read_status = drxk_read_status,
|
|
.read_ber = drxk_read_ber,
|
|
.read_signal_strength = drxk_read_signal_strength,
|
|
.read_snr = drxk_read_snr,
|
|
.read_ucblocks = drxk_read_ucblocks,
|
|
};
|
|
|
|
struct dvb_frontend *drxk_attach(struct i2c_adapter *i2c, u8 adr,
|
|
struct dvb_frontend **fe_t)
|
|
{
|
|
struct drxk_state *state = NULL;
|
|
|
|
state=kzalloc(sizeof(struct drxk_state), GFP_KERNEL);
|
|
if (!state)
|
|
return NULL;
|
|
|
|
state->i2c=i2c;
|
|
state->demod_address=adr;
|
|
|
|
mutex_init(&state->mutex);
|
|
mutex_init(&state->ctlock);
|
|
|
|
memcpy(&state->c_frontend.ops, &drxk_c_ops, sizeof(struct dvb_frontend_ops));
|
|
memcpy(&state->t_frontend.ops, &drxk_t_ops, sizeof(struct dvb_frontend_ops));
|
|
state->c_frontend.demodulator_priv=state;
|
|
state->t_frontend.demodulator_priv=state;
|
|
|
|
init_state(state);
|
|
if (init_drxk(state)<0)
|
|
goto error;
|
|
*fe_t = &state->t_frontend;
|
|
return &state->c_frontend;
|
|
|
|
error:
|
|
printk("drxk: not found\n");
|
|
kfree(state);
|
|
return NULL;
|
|
}
|
|
|
|
MODULE_DESCRIPTION("DRX-K driver");
|
|
MODULE_AUTHOR("Ralph Metzler");
|
|
MODULE_LICENSE("GPL v2");
|
|
|
|
EXPORT_SYMBOL(drxk_attach);
|