mirror of
https://github.com/DigitalDevices/dddvb.git
synced 2023-10-10 13:37:43 +02:00
1876 lines
53 KiB
C
1876 lines
53 KiB
C
/*
|
|
* Driver for the ST STV0910 DVB-S/S2 demodulator.
|
|
*
|
|
* Copyright (C) 2014-2016 Ralph Metzler <rjkm@metzlerbros.de>
|
|
* Marcus Metzler <mocm@metzlerbros.de>
|
|
* developed for Digital Devices GmbH
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* version 2 only, as published by the Free Software Foundation.
|
|
*
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
* 02110-1301, USA
|
|
* Or, point your browser to http://www.gnu.org/copyleft/gpl.html
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/firmware.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/version.h>
|
|
#include <asm/div64.h>
|
|
|
|
#include "dvb_frontend.h"
|
|
#include "stv0910.h"
|
|
#include "stv0910_regs.h"
|
|
|
|
|
|
#define EXT_CLOCK 30000000
|
|
#define TUNING_DELAY 200
|
|
#define BER_SRC_S 0x20
|
|
#define BER_SRC_S2 0x20
|
|
|
|
LIST_HEAD(stvlist);
|
|
|
|
enum receive_mode { RCVMODE_NONE, RCVMODE_DVBS, RCVMODE_DVBS2, RCVMODE_AUTO };
|
|
|
|
enum dvbs2_fectype { DVBS2_64K, DVBS2_16K };
|
|
|
|
enum dvbs2_mod_cod {
|
|
DVBS2_DUMMY_PLF, DVBS2_QPSK_1_4, DVBS2_QPSK_1_3, DVBS2_QPSK_2_5,
|
|
DVBS2_QPSK_1_2, DVBS2_QPSK_3_5, DVBS2_QPSK_2_3, DVBS2_QPSK_3_4,
|
|
DVBS2_QPSK_4_5, DVBS2_QPSK_5_6, DVBS2_QPSK_8_9, DVBS2_QPSK_9_10,
|
|
DVBS2_8PSK_3_5, DVBS2_8PSK_2_3, DVBS2_8PSK_3_4, DVBS2_8PSK_5_6,
|
|
DVBS2_8PSK_8_9, DVBS2_8PSK_9_10, DVBS2_16APSK_2_3, DVBS2_16APSK_3_4,
|
|
DVBS2_16APSK_4_5, DVBS2_16APSK_5_6, DVBS2_16APSK_8_9, DVBS2_16APSK_9_10,
|
|
DVBS2_32APSK_3_4, DVBS2_32APSK_4_5, DVBS2_32APSK_5_6, DVBS2_32APSK_8_9,
|
|
DVBS2_32APSK_9_10
|
|
};
|
|
|
|
enum fe_stv0910_mod_cod {
|
|
FE_DUMMY_PLF, FE_QPSK_14, FE_QPSK_13, FE_QPSK_25,
|
|
FE_QPSK_12, FE_QPSK_35, FE_QPSK_23, FE_QPSK_34,
|
|
FE_QPSK_45, FE_QPSK_56, FE_QPSK_89, FE_QPSK_910,
|
|
FE_8PSK_35, FE_8PSK_23, FE_8PSK_34, FE_8PSK_56,
|
|
FE_8PSK_89, FE_8PSK_910, FE_16APSK_23, FE_16APSK_34,
|
|
FE_16APSK_45, FE_16APSK_56, FE_16APSK_89, FE_16APSK_910,
|
|
FE_32APSK_34, FE_32APSK_45, FE_32APSK_56, FE_32APSK_89,
|
|
FE_32APSK_910
|
|
};
|
|
|
|
enum fe_stv0910_roll_off { FE_SAT_35, FE_SAT_25, FE_SAT_20, FE_SAT_15 };
|
|
|
|
static inline u32 muldiv32(u32 a, u32 b, u32 c)
|
|
{
|
|
u64 tmp64;
|
|
|
|
tmp64 = (u64)a * (u64)b;
|
|
do_div(tmp64, c);
|
|
|
|
return (u32) tmp64;
|
|
}
|
|
|
|
struct stv_base {
|
|
struct list_head stvlist;
|
|
|
|
u8 adr;
|
|
struct i2c_adapter *i2c;
|
|
struct mutex i2c_lock;
|
|
struct mutex reg_lock;
|
|
int count;
|
|
|
|
u32 extclk;
|
|
u32 mclk;
|
|
};
|
|
|
|
struct stv {
|
|
struct stv_base *base;
|
|
struct dvb_frontend fe;
|
|
int nr;
|
|
u16 regoff;
|
|
u8 i2crpt;
|
|
u8 tscfgh;
|
|
u8 tsgeneral;
|
|
u8 tsspeed;
|
|
u8 single;
|
|
unsigned long tune_time;
|
|
|
|
s32 search_range;
|
|
u32 started;
|
|
u32 demod_lock_time;
|
|
enum receive_mode receive_mode;
|
|
u32 demod_timeout;
|
|
u32 fec_timeout;
|
|
u32 first_time_lock;
|
|
u8 DEMOD;
|
|
u32 symbol_rate;
|
|
|
|
u8 last_viterbi_rate;
|
|
enum fe_code_rate puncture_rate;
|
|
enum fe_stv0910_mod_cod mod_cod;
|
|
enum dvbs2_fectype fectype;
|
|
u32 pilots;
|
|
enum fe_stv0910_roll_off feroll_off;
|
|
|
|
int is_standard_broadcast;
|
|
int is_vcm;
|
|
|
|
u32 cur_scrambling_code;
|
|
u32 scrambling_code;
|
|
|
|
u32 last_bernumerator;
|
|
u32 last_berdenominator;
|
|
u8 berscale;
|
|
|
|
u8 VTH[6];
|
|
};
|
|
|
|
struct sinit_table {
|
|
u16 address;
|
|
u8 data;
|
|
};
|
|
|
|
struct slookup {
|
|
s16 value;
|
|
u16 reg_value;
|
|
};
|
|
|
|
static inline int i2c_write(struct i2c_adapter *adap, u8 adr,
|
|
u8 *data, int len)
|
|
{
|
|
struct i2c_msg msg = {.addr = adr, .flags = 0,
|
|
.buf = data, .len = len};
|
|
|
|
return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1;
|
|
}
|
|
|
|
static int i2c_write_reg16(struct i2c_adapter *adap, u8 adr, u16 reg, u8 val)
|
|
{
|
|
u8 msg[3] = {reg >> 8, reg & 0xff, val};
|
|
|
|
return i2c_write(adap, adr, msg, 3);
|
|
}
|
|
|
|
static int write_reg(struct stv *state, u16 reg, u8 val)
|
|
{
|
|
return i2c_write_reg16(state->base->i2c, state->base->adr, reg, val);
|
|
}
|
|
|
|
static inline int i2c_read_reg16(struct i2c_adapter *adapter, u8 adr,
|
|
u16 reg, u8 *val)
|
|
{
|
|
u8 msg[2] = {reg >> 8, reg & 0xff};
|
|
struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
|
|
.buf = msg, .len = 2},
|
|
{.addr = adr, .flags = I2C_M_RD,
|
|
.buf = val, .len = 1 } };
|
|
return (i2c_transfer(adapter, msgs, 2) == 2) ? 0 : -1;
|
|
}
|
|
|
|
static int read_reg(struct stv *state, u16 reg, u8 *val)
|
|
{
|
|
return i2c_read_reg16(state->base->i2c, state->base->adr, reg, val);
|
|
}
|
|
|
|
|
|
static inline int i2c_read_regs16(struct i2c_adapter *adapter, u8 adr,
|
|
u16 reg, u8 *val, int len)
|
|
{
|
|
u8 msg[2] = {reg >> 8, reg & 0xff};
|
|
struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
|
|
.buf = msg, .len = 2},
|
|
{.addr = adr, .flags = I2C_M_RD,
|
|
.buf = val, .len = len } };
|
|
return (i2c_transfer(adapter, msgs, 2) == 2) ? 0 : -1;
|
|
}
|
|
|
|
static int read_regs(struct stv *state, u16 reg, u8 *val, int len)
|
|
{
|
|
return i2c_read_regs16(state->base->i2c, state->base->adr,
|
|
reg, val, len);
|
|
}
|
|
|
|
static int write_shared_reg(struct stv *state, u16 reg, u8 mask, u8 val)
|
|
{
|
|
int status;
|
|
u8 tmp;
|
|
|
|
mutex_lock(&state->base->reg_lock);
|
|
status = read_reg(state, reg, &tmp);
|
|
if (!status)
|
|
status = write_reg(state, reg, (tmp & ~mask) | (val & mask));
|
|
mutex_unlock(&state->base->reg_lock);
|
|
return status;
|
|
}
|
|
|
|
struct slookup s1_sn_lookup[] = {
|
|
{ 0, 9242 }, /*C/N= 0dB*/
|
|
{ 05, 9105 }, /*C/N=0.5dB*/
|
|
{ 10, 8950 }, /*C/N=1.0dB*/
|
|
{ 15, 8780 }, /*C/N=1.5dB*/
|
|
{ 20, 8566 }, /*C/N=2.0dB*/
|
|
{ 25, 8366 }, /*C/N=2.5dB*/
|
|
{ 30, 8146 }, /*C/N=3.0dB*/
|
|
{ 35, 7908 }, /*C/N=3.5dB*/
|
|
{ 40, 7666 }, /*C/N=4.0dB*/
|
|
{ 45, 7405 }, /*C/N=4.5dB*/
|
|
{ 50, 7136 }, /*C/N=5.0dB*/
|
|
{ 55, 6861 }, /*C/N=5.5dB*/
|
|
{ 60, 6576 }, /*C/N=6.0dB*/
|
|
{ 65, 6330 }, /*C/N=6.5dB*/
|
|
{ 70, 6048 }, /*C/N=7.0dB*/
|
|
{ 75, 5768 }, /*C/N=7.5dB*/
|
|
{ 80, 5492 }, /*C/N=8.0dB*/
|
|
{ 85, 5224 }, /*C/N=8.5dB*/
|
|
{ 90, 4959 }, /*C/N=9.0dB*/
|
|
{ 95, 4709 }, /*C/N=9.5dB*/
|
|
{ 100, 4467 }, /*C/N=10.0dB*/
|
|
{ 105, 4236 }, /*C/N=10.5dB*/
|
|
{ 110, 4013 }, /*C/N=11.0dB*/
|
|
{ 115, 3800 }, /*C/N=11.5dB*/
|
|
{ 120, 3598 }, /*C/N=12.0dB*/
|
|
{ 125, 3406 }, /*C/N=12.5dB*/
|
|
{ 130, 3225 }, /*C/N=13.0dB*/
|
|
{ 135, 3052 }, /*C/N=13.5dB*/
|
|
{ 140, 2889 }, /*C/N=14.0dB*/
|
|
{ 145, 2733 }, /*C/N=14.5dB*/
|
|
{ 150, 2587 }, /*C/N=15.0dB*/
|
|
{ 160, 2318 }, /*C/N=16.0dB*/
|
|
{ 170, 2077 }, /*C/N=17.0dB*/
|
|
{ 180, 1862 }, /*C/N=18.0dB*/
|
|
{ 190, 1670 }, /*C/N=19.0dB*/
|
|
{ 200, 1499 }, /*C/N=20.0dB*/
|
|
{ 210, 1347 }, /*C/N=21.0dB*/
|
|
{ 220, 1213 }, /*C/N=22.0dB*/
|
|
{ 230, 1095 }, /*C/N=23.0dB*/
|
|
{ 240, 992 }, /*C/N=24.0dB*/
|
|
{ 250, 900 }, /*C/N=25.0dB*/
|
|
{ 260, 826 }, /*C/N=26.0dB*/
|
|
{ 270, 758 }, /*C/N=27.0dB*/
|
|
{ 280, 702 }, /*C/N=28.0dB*/
|
|
{ 290, 653 }, /*C/N=29.0dB*/
|
|
{ 300, 613 }, /*C/N=30.0dB*/
|
|
{ 310, 579 }, /*C/N=31.0dB*/
|
|
{ 320, 550 }, /*C/N=32.0dB*/
|
|
{ 330, 526 }, /*C/N=33.0dB*/
|
|
{ 350, 490 }, /*C/N=33.0dB*/
|
|
{ 400, 445 }, /*C/N=40.0dB*/
|
|
{ 450, 430 }, /*C/N=45.0dB*/
|
|
{ 500, 426 }, /*C/N=50.0dB*/
|
|
{ 510, 425 } /*C/N=51.0dB*/
|
|
};
|
|
|
|
struct slookup s2_sn_lookup[] = {
|
|
{ -30, 13950 }, /*C/N=-2.5dB*/
|
|
{ -25, 13580 }, /*C/N=-2.5dB*/
|
|
{ -20, 13150 }, /*C/N=-2.0dB*/
|
|
{ -15, 12760 }, /*C/N=-1.5dB*/
|
|
{ -10, 12345 }, /*C/N=-1.0dB*/
|
|
{ -05, 11900 }, /*C/N=-0.5dB*/
|
|
{ 0, 11520 }, /*C/N= 0dB*/
|
|
{ 05, 11080 }, /*C/N= 0.5dB*/
|
|
{ 10, 10630 }, /*C/N= 1.0dB*/
|
|
{ 15, 10210 }, /*C/N= 1.5dB*/
|
|
{ 20, 9790 }, /*C/N= 2.0dB*/
|
|
{ 25, 9390 }, /*C/N= 2.5dB*/
|
|
{ 30, 8970 }, /*C/N= 3.0dB*/
|
|
{ 35, 8575 }, /*C/N= 3.5dB*/
|
|
{ 40, 8180 }, /*C/N= 4.0dB*/
|
|
{ 45, 7800 }, /*C/N= 4.5dB*/
|
|
{ 50, 7430 }, /*C/N= 5.0dB*/
|
|
{ 55, 7080 }, /*C/N= 5.5dB*/
|
|
{ 60, 6720 }, /*C/N= 6.0dB*/
|
|
{ 65, 6320 }, /*C/N= 6.5dB*/
|
|
{ 70, 6060 }, /*C/N= 7.0dB*/
|
|
{ 75, 5760 }, /*C/N= 7.5dB*/
|
|
{ 80, 5480 }, /*C/N= 8.0dB*/
|
|
{ 85, 5200 }, /*C/N= 8.5dB*/
|
|
{ 90, 4930 }, /*C/N= 9.0dB*/
|
|
{ 95, 4680 }, /*C/N= 9.5dB*/
|
|
{ 100, 4425 }, /*C/N=10.0dB*/
|
|
{ 105, 4210 }, /*C/N=10.5dB*/
|
|
{ 110, 3980 }, /*C/N=11.0dB*/
|
|
{ 115, 3765 }, /*C/N=11.5dB*/
|
|
{ 120, 3570 }, /*C/N=12.0dB*/
|
|
{ 125, 3315 }, /*C/N=12.5dB*/
|
|
{ 130, 3140 }, /*C/N=13.0dB*/
|
|
{ 135, 2980 }, /*C/N=13.5dB*/
|
|
{ 140, 2820 }, /*C/N=14.0dB*/
|
|
{ 145, 2670 }, /*C/N=14.5dB*/
|
|
{ 150, 2535 }, /*C/N=15.0dB*/
|
|
{ 160, 2270 }, /*C/N=16.0dB*/
|
|
{ 170, 2035 }, /*C/N=17.0dB*/
|
|
{ 180, 1825 }, /*C/N=18.0dB*/
|
|
{ 190, 1650 }, /*C/N=19.0dB*/
|
|
{ 200, 1485 }, /*C/N=20.0dB*/
|
|
{ 210, 1340 }, /*C/N=21.0dB*/
|
|
{ 220, 1212 }, /*C/N=22.0dB*/
|
|
{ 230, 1100 }, /*C/N=23.0dB*/
|
|
{ 240, 1000 }, /*C/N=24.0dB*/
|
|
{ 250, 910 }, /*C/N=25.0dB*/
|
|
{ 260, 836 }, /*C/N=26.0dB*/
|
|
{ 270, 772 }, /*C/N=27.0dB*/
|
|
{ 280, 718 }, /*C/N=28.0dB*/
|
|
{ 290, 671 }, /*C/N=29.0dB*/
|
|
{ 300, 635 }, /*C/N=30.0dB*/
|
|
{ 310, 602 }, /*C/N=31.0dB*/
|
|
{ 320, 575 }, /*C/N=32.0dB*/
|
|
{ 330, 550 }, /*C/N=33.0dB*/
|
|
{ 350, 517 }, /*C/N=35.0dB*/
|
|
{ 400, 480 }, /*C/N=40.0dB*/
|
|
{ 450, 466 }, /*C/N=45.0dB*/
|
|
{ 500, 464 }, /*C/N=50.0dB*/
|
|
{ 510, 463 }, /*C/N=51.0dB*/
|
|
};
|
|
|
|
/*********************************************************************
|
|
Tracking carrier loop carrier QPSK 1/4 to 8PSK 9/10 long Frame
|
|
*********************************************************************/
|
|
static u8 s2car_loop[] = {
|
|
/* Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff
|
|
20MPon 20MPoff 30MPon 30MPoff*/
|
|
/* FE_QPSK_14 */
|
|
0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x2A, 0x1C, 0x3A, 0x3B,
|
|
/* FE_QPSK_13 */
|
|
0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x3A, 0x0C, 0x3A, 0x2B,
|
|
/* FE_QPSK_25 */
|
|
0x1C, 0x3C, 0x1B, 0x3C, 0x3A, 0x1C, 0x3A, 0x3B, 0x3A, 0x2B,
|
|
/* FE_QPSK_12 */
|
|
0x0C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B,
|
|
/* FE_QPSK_35 */
|
|
0x1C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B,
|
|
/* FE_QPSK_23 */
|
|
0x2C, 0x2C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B,
|
|
/* FE_QPSK_34 */
|
|
0x3C, 0x2C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B,
|
|
/* FE_QPSK_45 */
|
|
0x0D, 0x3C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B,
|
|
/* FE_QPSK_56 */
|
|
0x1D, 0x3C, 0x0C, 0x2C, 0x2B, 0x1C, 0x1B, 0x3B, 0x0B, 0x1B,
|
|
/* FE_QPSK_89 */
|
|
0x3D, 0x0D, 0x0C, 0x2C, 0x2B, 0x0C, 0x2B, 0x2B, 0x0B, 0x0B,
|
|
/* FE_QPSK_910 */
|
|
0x1E, 0x0D, 0x1C, 0x2C, 0x3B, 0x0C, 0x2B, 0x2B, 0x1B, 0x0B,
|
|
/* FE_8PSK_35 */
|
|
0x28, 0x09, 0x28, 0x09, 0x28, 0x09, 0x28, 0x08, 0x28, 0x27,
|
|
/* FE_8PSK_23 */
|
|
0x19, 0x29, 0x19, 0x29, 0x19, 0x29, 0x38, 0x19, 0x28, 0x09,
|
|
/* FE_8PSK_34 */
|
|
0x1A, 0x0B, 0x1A, 0x3A, 0x0A, 0x2A, 0x39, 0x2A, 0x39, 0x1A,
|
|
/* FE_8PSK_56 */
|
|
0x2B, 0x2B, 0x1B, 0x1B, 0x0B, 0x1B, 0x1A, 0x0B, 0x1A, 0x1A,
|
|
/* FE_8PSK_89 */
|
|
0x0C, 0x0C, 0x3B, 0x3B, 0x1B, 0x1B, 0x2A, 0x0B, 0x2A, 0x2A,
|
|
/* FE_8PSK_910 */
|
|
0x0C, 0x1C, 0x0C, 0x3B, 0x2B, 0x1B, 0x3A, 0x0B, 0x2A, 0x2A,
|
|
|
|
/**********************************************************************
|
|
Tracking carrier loop carrier 16APSK 2/3 to 32APSK 9/10 long Frame
|
|
**********************************************************************/
|
|
/*Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff 20MPon
|
|
20MPoff 30MPon 30MPoff*/
|
|
/* FE_16APSK_23 */
|
|
0x0A, 0x0A, 0x0A, 0x0A, 0x1A, 0x0A, 0x39, 0x0A, 0x29, 0x0A,
|
|
/* FE_16APSK_34 */
|
|
0x0A, 0x0A, 0x0A, 0x0A, 0x0B, 0x0A, 0x2A, 0x0A, 0x1A, 0x0A,
|
|
/* FE_16APSK_45 */
|
|
0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A,
|
|
/* FE_16APSK_56 */
|
|
0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A,
|
|
/* FE_16APSK_89 */
|
|
0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A,
|
|
/* FE_16APSK_910 */
|
|
0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A,
|
|
/* FE_32APSK_34 */
|
|
0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
|
|
/* FE_32APSK_45 */
|
|
0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
|
|
/* FE_32APSK_56 */
|
|
0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
|
|
/* FE_32APSK_89 */
|
|
0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
|
|
/* FE_32APSK_910 */
|
|
0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
|
|
};
|
|
|
|
static u8 get_optim_cloop(struct stv *state,
|
|
enum fe_stv0910_mod_cod mod_cod, u32 pilots)
|
|
{
|
|
int i = 0;
|
|
if (mod_cod >= FE_32APSK_910)
|
|
i = ((int)FE_32APSK_910 - (int)FE_QPSK_14) * 10;
|
|
else if (mod_cod >= FE_QPSK_14)
|
|
i = ((int)mod_cod - (int)FE_QPSK_14) * 10;
|
|
|
|
if (state->symbol_rate <= 3000000)
|
|
i += 0;
|
|
else if (state->symbol_rate <= 7000000)
|
|
i += 2;
|
|
else if (state->symbol_rate <= 15000000)
|
|
i += 4;
|
|
else if (state->symbol_rate <= 25000000)
|
|
i += 6;
|
|
else
|
|
i += 8;
|
|
|
|
if (!pilots)
|
|
i += 1;
|
|
|
|
return s2car_loop[i];
|
|
}
|
|
|
|
static int get_cur_symbol_rate(struct stv *state, u32 *p_symbol_rate)
|
|
{
|
|
int status = 0;
|
|
u8 symb_freq0;
|
|
u8 symb_freq1;
|
|
u8 symb_freq2;
|
|
u8 symb_freq3;
|
|
u8 tim_offs0;
|
|
u8 tim_offs1;
|
|
u8 tim_offs2;
|
|
u32 symbol_rate;
|
|
s32 timing_offset;
|
|
|
|
*p_symbol_rate = 0;
|
|
if (!state->started)
|
|
return status;
|
|
|
|
read_reg(state, RSTV0910_P2_SFR3 + state->regoff, &symb_freq3);
|
|
read_reg(state, RSTV0910_P2_SFR2 + state->regoff, &symb_freq2);
|
|
read_reg(state, RSTV0910_P2_SFR1 + state->regoff, &symb_freq1);
|
|
read_reg(state, RSTV0910_P2_SFR0 + state->regoff, &symb_freq0);
|
|
read_reg(state, RSTV0910_P2_TMGREG2 + state->regoff, &tim_offs2);
|
|
read_reg(state, RSTV0910_P2_TMGREG1 + state->regoff, &tim_offs1);
|
|
read_reg(state, RSTV0910_P2_TMGREG0 + state->regoff, &tim_offs0);
|
|
|
|
symbol_rate = ((u32) symb_freq3 << 24) | ((u32) symb_freq2 << 16) |
|
|
((u32) symb_freq1 << 8) | (u32) symb_freq0;
|
|
timing_offset = ((u32) tim_offs2 << 16) | ((u32) tim_offs1 << 8) |
|
|
(u32) tim_offs0;
|
|
|
|
if ((timing_offset & (1<<23)) != 0)
|
|
timing_offset |= 0xFF000000; /* Sign extent */
|
|
|
|
symbol_rate = (u32) (((u64) symbol_rate * state->base->mclk) >> 32);
|
|
timing_offset = (s32) (((s64) symbol_rate * (s64) timing_offset) >> 29);
|
|
|
|
*p_symbol_rate = symbol_rate + timing_offset;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_signal_parameters(struct stv *state)
|
|
{
|
|
u8 tmp;
|
|
|
|
if (!state->started)
|
|
return -1;
|
|
|
|
if (state->receive_mode == RCVMODE_DVBS2) {
|
|
read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
|
|
state->mod_cod = (enum fe_stv0910_mod_cod) ((tmp & 0x7c) >> 2);
|
|
state->pilots = (tmp & 0x01) != 0;
|
|
state->fectype = (enum dvbs2_fectype) ((tmp & 0x02) >> 1);
|
|
|
|
#if 0
|
|
read_reg(state, RSTV0910_P2_TMGOBS + state->regoff, &rolloff);
|
|
rolloff = rolloff >> 6;
|
|
state->feroll_off = (enum fe_stv0910_roll_off) rolloff;
|
|
#endif
|
|
} else if (state->receive_mode == RCVMODE_DVBS) {
|
|
read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
|
|
state->puncture_rate = FEC_NONE;
|
|
switch (tmp & 0x1F) {
|
|
case 0x0d:
|
|
state->puncture_rate = FEC_1_2;
|
|
break;
|
|
case 0x12:
|
|
state->puncture_rate = FEC_2_3;
|
|
break;
|
|
case 0x15:
|
|
state->puncture_rate = FEC_3_4;
|
|
break;
|
|
case 0x18:
|
|
state->puncture_rate = FEC_5_6;
|
|
break;
|
|
case 0x1a:
|
|
state->puncture_rate = FEC_7_8;
|
|
break;
|
|
}
|
|
state->is_vcm = 0;
|
|
state->is_standard_broadcast = 1;
|
|
state->feroll_off = FE_SAT_35;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int tracking_optimization(struct stv *state)
|
|
{
|
|
u32 symbol_rate = 0;
|
|
u8 tmp;
|
|
|
|
get_cur_symbol_rate(state, &symbol_rate);
|
|
read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &tmp);
|
|
tmp &= ~0xC0;
|
|
|
|
switch (state->receive_mode) {
|
|
case RCVMODE_DVBS:
|
|
tmp |= 0x40;
|
|
break;
|
|
case RCVMODE_DVBS2:
|
|
tmp |= 0x80;
|
|
break;
|
|
default:
|
|
tmp |= 0xC0;
|
|
break;
|
|
}
|
|
write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, tmp);
|
|
|
|
if (state->receive_mode == RCVMODE_DVBS2) {
|
|
/*Disable Reed-Solomon */
|
|
write_shared_reg(state, RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01, 0x03);
|
|
|
|
if (state->fectype == DVBS2_64K) {
|
|
u8 aclc = get_optim_cloop(state, state->mod_cod,
|
|
state->pilots);
|
|
|
|
if (state->mod_cod <= FE_QPSK_910) {
|
|
write_reg(state, RSTV0910_P2_ACLC2S2Q +
|
|
state->regoff, aclc);
|
|
} else if (state->mod_cod <= FE_8PSK_910) {
|
|
write_reg(state, RSTV0910_P2_ACLC2S2Q +
|
|
state->regoff, 0x2a);
|
|
write_reg(state, RSTV0910_P2_ACLC2S28 +
|
|
state->regoff, aclc);
|
|
} else if (state->mod_cod <= FE_16APSK_910) {
|
|
write_reg(state, RSTV0910_P2_ACLC2S2Q +
|
|
state->regoff, 0x2a);
|
|
write_reg(state, RSTV0910_P2_ACLC2S216A +
|
|
state->regoff, aclc);
|
|
} else if (state->mod_cod <= FE_32APSK_910) {
|
|
write_reg(state, RSTV0910_P2_ACLC2S2Q +
|
|
state->regoff, 0x2a);
|
|
write_reg(state, RSTV0910_P2_ACLC2S232A +
|
|
state->regoff, aclc);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static s32 table_lookup(struct slookup *table,
|
|
int table_size, u16 reg_value)
|
|
{
|
|
s32 value;
|
|
int imin = 0;
|
|
int imax = table_size - 1;
|
|
int i;
|
|
s32 reg_diff;
|
|
|
|
/* Assumes Table[0].RegValue > Table[imax].RegValue */
|
|
if( reg_value >= table[0].reg_value )
|
|
value = table[0].value;
|
|
else if( reg_value <= table[imax].reg_value )
|
|
value = table[imax].value;
|
|
else
|
|
{
|
|
while(imax-imin > 1)
|
|
{
|
|
i = (imax + imin) / 2;
|
|
if( (table[imin].reg_value >= reg_value) && (reg_value >= table[i].reg_value) )
|
|
imax = i;
|
|
else
|
|
imin = i;
|
|
}
|
|
|
|
reg_diff = table[imax].reg_value - table[imin].reg_value;
|
|
value = table[imin].value;
|
|
if( reg_diff != 0 )
|
|
value += ((s32)(reg_value - table[imin].reg_value) *
|
|
(s32)(table[imax].value - table[imin].value))/(reg_diff);
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
static int get_signal_to_noise(struct stv *state, s32 *signal_to_noise)
|
|
{
|
|
u8 data0;
|
|
u8 data1;
|
|
u16 data;
|
|
int n_lookup;
|
|
struct slookup *lookup;
|
|
|
|
*signal_to_noise = 0;
|
|
|
|
if (!state->started)
|
|
return 0;
|
|
|
|
if (state->receive_mode == RCVMODE_DVBS2) {
|
|
read_reg(state, RSTV0910_P2_NNOSPLHT1 + state->regoff, &data1);
|
|
read_reg(state, RSTV0910_P2_NNOSPLHT0 + state->regoff, &data0);
|
|
n_lookup = ARRAY_SIZE(s2_sn_lookup);
|
|
lookup = s2_sn_lookup;
|
|
} else {
|
|
read_reg(state, RSTV0910_P2_NNOSDATAT1 + state->regoff, &data1);
|
|
read_reg(state, RSTV0910_P2_NNOSDATAT0 + state->regoff, &data0);
|
|
n_lookup = ARRAY_SIZE(s1_sn_lookup);
|
|
lookup = s1_sn_lookup;
|
|
}
|
|
data = (((u16)data1) << 8) | (u16) data0;
|
|
*signal_to_noise = table_lookup(lookup, n_lookup, data);
|
|
return 0;
|
|
}
|
|
|
|
static int get_bit_error_rate_s(struct stv *state, u32 *bernumerator,
|
|
u32 *berdenominator)
|
|
{
|
|
u8 regs[3];
|
|
|
|
int status = read_regs(state, RSTV0910_P2_ERRCNT12 + state->regoff,
|
|
regs, 3);
|
|
|
|
if (status)
|
|
return -1;
|
|
|
|
if ((regs[0] & 0x80) == 0) {
|
|
state->last_berdenominator = 1 << ((state->berscale * 2) +
|
|
10 + 3);
|
|
state->last_bernumerator = ((u32) (regs[0] & 0x7F) << 16) |
|
|
((u32) regs[1] << 8) | regs[2];
|
|
if (state->last_bernumerator < 256 && state->berscale < 6) {
|
|
state->berscale += 1;
|
|
status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
|
|
state->regoff,
|
|
0x20 | state->berscale);
|
|
} else if (state->last_bernumerator > 1024 &&
|
|
state->berscale > 2) {
|
|
state->berscale -= 1;
|
|
status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
|
|
state->regoff, 0x20 |
|
|
state->berscale);
|
|
}
|
|
}
|
|
*bernumerator = state->last_bernumerator;
|
|
*berdenominator = state->last_berdenominator;
|
|
return 0;
|
|
}
|
|
|
|
static u32 dvbs2_nbch(enum dvbs2_mod_cod mod_cod, enum dvbs2_fectype fectype)
|
|
{
|
|
static u32 nbch[][2] = {
|
|
{16200, 3240}, /* QPSK_1_4, */
|
|
{21600, 5400}, /* QPSK_1_3, */
|
|
{25920, 6480}, /* QPSK_2_5, */
|
|
{32400, 7200}, /* QPSK_1_2, */
|
|
{38880, 9720}, /* QPSK_3_5, */
|
|
{43200, 10800}, /* QPSK_2_3, */
|
|
{48600, 11880}, /* QPSK_3_4, */
|
|
{51840, 12600}, /* QPSK_4_5, */
|
|
{54000, 13320}, /* QPSK_5_6, */
|
|
{57600, 14400}, /* QPSK_8_9, */
|
|
{58320, 16000}, /* QPSK_9_10, */
|
|
{43200, 9720}, /* 8PSK_3_5, */
|
|
{48600, 10800}, /* 8PSK_2_3, */
|
|
{51840, 11880}, /* 8PSK_3_4, */
|
|
{54000, 13320}, /* 8PSK_5_6, */
|
|
{57600, 14400}, /* 8PSK_8_9, */
|
|
{58320, 16000}, /* 8PSK_9_10, */
|
|
{43200, 10800}, /* 16APSK_2_3, */
|
|
{48600, 11880}, /* 16APSK_3_4, */
|
|
{51840, 12600}, /* 16APSK_4_5, */
|
|
{54000, 13320}, /* 16APSK_5_6, */
|
|
{57600, 14400}, /* 16APSK_8_9, */
|
|
{58320, 16000}, /* 16APSK_9_10 */
|
|
{48600, 11880}, /* 32APSK_3_4, */
|
|
{51840, 12600}, /* 32APSK_4_5, */
|
|
{54000, 13320}, /* 32APSK_5_6, */
|
|
{57600, 14400}, /* 32APSK_8_9, */
|
|
{58320, 16000}, /* 32APSK_9_10 */
|
|
};
|
|
|
|
if (mod_cod >= DVBS2_QPSK_1_4 &&
|
|
mod_cod <= DVBS2_32APSK_9_10 && fectype <= DVBS2_16K)
|
|
return nbch[fectype][mod_cod];
|
|
return 64800;
|
|
}
|
|
|
|
static int get_bit_error_rate_s2(struct stv *state,
|
|
u32 *bernumerator,
|
|
u32 *berdenominator)
|
|
{
|
|
u8 regs[3];
|
|
|
|
int status = read_regs(state, RSTV0910_P2_ERRCNT12 + state->regoff,
|
|
regs, 3);
|
|
|
|
if (status)
|
|
return -1;
|
|
|
|
if ((regs[0] & 0x80) == 0) {
|
|
state->last_berdenominator =
|
|
dvbs2_nbch((enum dvbs2_mod_cod) state->mod_cod,
|
|
state->fectype) <<
|
|
(state->berscale * 2);
|
|
state->last_bernumerator = (((u32) regs[0] & 0x7F) << 16) |
|
|
((u32) regs[1] << 8) | regs[2];
|
|
if (state->last_bernumerator < 256 && state->berscale < 6) {
|
|
state->berscale += 1;
|
|
write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
|
|
0x20 | state->berscale);
|
|
} else if (state->last_bernumerator > 1024 &&
|
|
state->berscale > 2) {
|
|
state->berscale -= 1;
|
|
write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
|
|
0x20 | state->berscale);
|
|
}
|
|
}
|
|
*bernumerator = state->last_bernumerator;
|
|
*berdenominator = state->last_berdenominator;
|
|
return status;
|
|
}
|
|
|
|
static int get_bit_error_rate(struct stv *state, u32 *bernumerator,
|
|
u32 *berdenominator)
|
|
{
|
|
*bernumerator = 0;
|
|
*berdenominator = 1;
|
|
|
|
switch (state->receive_mode) {
|
|
case RCVMODE_DVBS:
|
|
return get_bit_error_rate_s(state, bernumerator, berdenominator);
|
|
break;
|
|
case RCVMODE_DVBS2:
|
|
return get_bit_error_rate_s2(state, bernumerator, berdenominator);
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int init(struct dvb_frontend *fe)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int set_mclock(struct stv *state, u32 master_clock)
|
|
{
|
|
u32 idf = 1;
|
|
u32 odf = 4;
|
|
u32 quartz = state->base->extclk / 1000000;
|
|
u32 fphi = master_clock / 1000000;
|
|
u32 ndiv = (fphi * odf * idf) / quartz;
|
|
u32 cp = 7;
|
|
u32 fvco;
|
|
|
|
if (ndiv >= 7 && ndiv <= 71)
|
|
cp = 7;
|
|
else if (ndiv >= 72 && ndiv <= 79)
|
|
cp = 8;
|
|
else if (ndiv >= 80 && ndiv <= 87)
|
|
cp = 9;
|
|
else if (ndiv >= 88 && ndiv <= 95)
|
|
cp = 10;
|
|
else if (ndiv >= 96 && ndiv <= 103)
|
|
cp = 11;
|
|
else if (ndiv >= 104 && ndiv <= 111)
|
|
cp = 12;
|
|
else if (ndiv >= 112 && ndiv <= 119)
|
|
cp = 13;
|
|
else if (ndiv >= 120 && ndiv <= 127)
|
|
cp = 14;
|
|
else if (ndiv >= 128 && ndiv <= 135)
|
|
cp = 15;
|
|
else if (ndiv >= 136 && ndiv <= 143)
|
|
cp = 16;
|
|
else if (ndiv >= 144 && ndiv <= 151)
|
|
cp = 17;
|
|
else if (ndiv >= 152 && ndiv <= 159)
|
|
cp = 18;
|
|
else if (ndiv >= 160 && ndiv <= 167)
|
|
cp = 19;
|
|
else if (ndiv >= 168 && ndiv <= 175)
|
|
cp = 20;
|
|
else if (ndiv >= 176 && ndiv <= 183)
|
|
cp = 21;
|
|
else if (ndiv >= 184 && ndiv <= 191)
|
|
cp = 22;
|
|
else if (ndiv >= 192 && ndiv <= 199)
|
|
cp = 23;
|
|
else if (ndiv >= 200 && ndiv <= 207)
|
|
cp = 24;
|
|
else if (ndiv >= 208 && ndiv <= 215)
|
|
cp = 25;
|
|
else if (ndiv >= 216 && ndiv <= 223)
|
|
cp = 26;
|
|
else if (ndiv >= 224 && ndiv <= 225)
|
|
cp = 27;
|
|
|
|
write_reg(state, RSTV0910_NCOARSE, (cp << 3) | idf);
|
|
write_reg(state, RSTV0910_NCOARSE2, odf);
|
|
write_reg(state, RSTV0910_NCOARSE1, ndiv);
|
|
|
|
fvco = (quartz * 2 * ndiv) / idf;
|
|
state->base->mclk = fvco / (2 * odf) * 1000000;
|
|
|
|
/*pr_info("ndiv = %d, MasterClock = %d\n", ndiv, state->base->mclk);*/
|
|
return 0;
|
|
}
|
|
|
|
static int stop(struct stv *state)
|
|
{
|
|
if (state->started) {
|
|
u8 tmp;
|
|
|
|
write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
|
|
state->tscfgh | 0x01);
|
|
read_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, &tmp);
|
|
tmp &= ~0x01; /*release reset DVBS2 packet delin*/
|
|
write_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, tmp);
|
|
/* Blind optim*/
|
|
write_reg(state, RSTV0910_P2_AGC2O + state->regoff, 0x5B);
|
|
/* Stop the demod */
|
|
write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5c);
|
|
state->started = 0;
|
|
}
|
|
state->receive_mode = RCVMODE_NONE;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int init_search_param(struct stv *state)
|
|
{
|
|
u8 tmp;
|
|
|
|
read_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, &tmp);
|
|
tmp |= 0x20; // Filter_en (no effect if SIS=non-MIS
|
|
write_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, tmp);
|
|
|
|
read_reg(state, RSTV0910_P2_PDELCTRL2 + state->regoff, &tmp);
|
|
tmp &= ~0x02; // frame mode = 0
|
|
write_reg(state, RSTV0910_P2_PDELCTRL2 + state->regoff, tmp);
|
|
|
|
write_reg(state, RSTV0910_P2_UPLCCST0 + state->regoff, 0xe0);
|
|
write_reg(state, RSTV0910_P2_ISIBITENA + state->regoff, 0x00);
|
|
|
|
read_reg(state, RSTV0910_P2_TSSTATEM + state->regoff, &tmp);
|
|
tmp &= ~0x01; // nosync = 0, in case next signal is standard TS
|
|
write_reg(state, RSTV0910_P2_TSSTATEM + state->regoff, tmp);
|
|
|
|
read_reg(state, RSTV0910_P2_TSCFGL + state->regoff, &tmp);
|
|
tmp &= ~0x04; // embindvb = 0
|
|
write_reg(state, RSTV0910_P2_TSCFGL + state->regoff, tmp);
|
|
|
|
read_reg(state, RSTV0910_P2_TSINSDELH + state->regoff, &tmp);
|
|
tmp &= ~0x80; // syncbyte = 0
|
|
write_reg(state, RSTV0910_P2_TSINSDELH + state->regoff, tmp);
|
|
|
|
read_reg(state, RSTV0910_P2_TSINSDELM + state->regoff, &tmp);
|
|
tmp &= ~0x08; // token = 0
|
|
write_reg(state, RSTV0910_P2_TSINSDELM + state->regoff, tmp);
|
|
|
|
read_reg(state, RSTV0910_P2_TSDLYSET2 + state->regoff, &tmp);
|
|
tmp &= ~0x30; // hysteresis threshold = 0
|
|
write_reg(state, RSTV0910_P2_TSDLYSET2 + state->regoff, tmp);
|
|
|
|
read_reg(state, RSTV0910_P2_PDELCTRL0 + state->regoff, &tmp);
|
|
tmp = (tmp & ~0x30) | 0x10; // isi obs mode = 1, observe min ISI
|
|
write_reg(state, RSTV0910_P2_PDELCTRL0 + state->regoff, tmp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int enable_puncture_rate(struct stv *state, enum fe_code_rate rate)
|
|
{
|
|
switch(rate) {
|
|
case FEC_1_2:
|
|
return write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x01);
|
|
case FEC_2_3:
|
|
return write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x02);
|
|
case FEC_3_4:
|
|
return write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x04);
|
|
case FEC_5_6:
|
|
return write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x08);
|
|
case FEC_7_8:
|
|
return write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x20);
|
|
case FEC_NONE:
|
|
default:
|
|
return write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x2f);
|
|
}
|
|
}
|
|
|
|
static int set_vth_default(struct stv *state)
|
|
{
|
|
state->VTH[0] = 0xd7;
|
|
state->VTH[1] = 0x85;
|
|
state->VTH[2] = 0x58;
|
|
state->VTH[3] = 0x3a;
|
|
state->VTH[4] = 0x34;
|
|
state->VTH[5] = 0x28;
|
|
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->VTH[0]);
|
|
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->VTH[1]);
|
|
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->VTH[2]);
|
|
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->VTH[3]);
|
|
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->VTH[4]);
|
|
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->VTH[5]);
|
|
return 0;
|
|
}
|
|
|
|
static int set_vth(struct stv *state)
|
|
{
|
|
static struct slookup vthlookup_table[] = {
|
|
{250, 8780}, /*C/N=1.5dB*/
|
|
{100, 7405}, /*C/N=4.5dB*/
|
|
{40, 6330}, /*C/N=6.5dB*/
|
|
{12, 5224}, /*C/N=8.5dB*/
|
|
{5, 4236} /*C/N=10.5dB*/
|
|
};
|
|
int i;
|
|
u8 tmp[2];
|
|
int status = read_regs(state, RSTV0910_P2_NNOSDATAT1 + state->regoff, tmp, 2);
|
|
u16 reg_value = (tmp[0] << 8) | tmp[1];
|
|
s32 vth = table_lookup(vthlookup_table, ARRAY_SIZE(vthlookup_table), reg_value);
|
|
|
|
for (i = 0; i < 6; i += 1)
|
|
if (state->VTH[i] > vth)
|
|
state->VTH[i] = vth;
|
|
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->VTH[0]);
|
|
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->VTH[1]);
|
|
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->VTH[2]);
|
|
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->VTH[3]);
|
|
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->VTH[4]);
|
|
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->VTH[5]);
|
|
return status;
|
|
}
|
|
|
|
static int start(struct stv *state, struct dtv_frontend_properties *p)
|
|
{
|
|
s32 freq;
|
|
u8 reg_dmdcfgmd;
|
|
u16 symb;
|
|
u32 scrambling_code = 1;
|
|
|
|
if (p->symbol_rate < 100000 || p->symbol_rate > 70000000)
|
|
return -EINVAL;
|
|
|
|
state->receive_mode = RCVMODE_NONE;
|
|
state->demod_lock_time = 0;
|
|
|
|
/* Demod Stop*/
|
|
if (state->started)
|
|
write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5C);
|
|
|
|
init_search_param(state);
|
|
|
|
if (p->stream_id != NO_STREAM_ID_FILTER) {
|
|
/* Backwards compatibility to "crazy" API.
|
|
PRBS X root cannot be 0, so this should always work.
|
|
*/
|
|
if (p->stream_id & 0xffffff00)
|
|
scrambling_code = p->stream_id >> 8;
|
|
write_reg(state, RSTV0910_P2_ISIENTRY + state->regoff, p->stream_id & 0xff);
|
|
write_reg(state, RSTV0910_P2_ISIBITENA + state->regoff, 0xff);
|
|
//pr_info("ID=%08x\n", p->stream_id & 0xff);
|
|
}
|
|
|
|
/* props->pls is always gold code ! */
|
|
if (p->pls != NO_SCRAMBLING_CODE)
|
|
scrambling_code = p->pls | 0x40000;
|
|
|
|
if (scrambling_code != state->cur_scrambling_code) {
|
|
write_reg(state, RSTV0910_P2_PLROOT0 + state->regoff,
|
|
scrambling_code & 0xff);
|
|
write_reg(state, RSTV0910_P2_PLROOT1 + state->regoff,
|
|
(scrambling_code >> 8) & 0xff);
|
|
write_reg(state, RSTV0910_P2_PLROOT2 + state->regoff,
|
|
(scrambling_code >> 16) & 0x07);
|
|
state->cur_scrambling_code = scrambling_code;
|
|
//pr_info("PLS=%08x\n", ScramblingCode);
|
|
}
|
|
|
|
if (p->symbol_rate <= 1000000) { /*SR <=1Msps*/
|
|
state->demod_timeout = 3000;
|
|
state->fec_timeout = 2000;
|
|
} else if (p->symbol_rate <= 2000000) { /*1Msps < SR <=2Msps*/
|
|
state->demod_timeout = 2500;
|
|
state->fec_timeout = 1300;
|
|
} else if (p->symbol_rate <= 5000000) { /*2Msps< SR <=5Msps*/
|
|
state->demod_timeout = 1000;
|
|
state->fec_timeout = 650;
|
|
} else if (p->symbol_rate <= 10000000) { /*5Msps< SR <=10Msps*/
|
|
state->demod_timeout = 700;
|
|
state->fec_timeout = 350;
|
|
} else if (p->symbol_rate < 20000000) { /*10Msps< SR <=20Msps*/
|
|
state->demod_timeout = 400;
|
|
state->fec_timeout = 200;
|
|
} else { /*SR >=20Msps*/
|
|
state->demod_timeout = 300;
|
|
state->fec_timeout = 200;
|
|
}
|
|
|
|
/* Set the Init Symbol rate*/
|
|
symb = muldiv32(p->symbol_rate, 65536, state->base->mclk);
|
|
write_reg(state, RSTV0910_P2_SFRINIT1 + state->regoff,
|
|
((symb >> 8) & 0x7F));
|
|
write_reg(state, RSTV0910_P2_SFRINIT0 + state->regoff, (symb & 0xFF));
|
|
|
|
/*pr_info("symb = %u\n", symb);*/
|
|
|
|
state->DEMOD |= 0x80;
|
|
write_reg(state, RSTV0910_P2_DEMOD + state->regoff, state->DEMOD);
|
|
|
|
/* FE_STV0910_SetSearchStandard */
|
|
read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, ®_dmdcfgmd);
|
|
write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff,
|
|
reg_dmdcfgmd |= 0xC0);
|
|
write_shared_reg(state, RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01, 0x00);
|
|
|
|
/* Disable DSS */
|
|
write_reg(state, RSTV0910_P2_FECM + state->regoff, 0x00);
|
|
write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x2F);
|
|
|
|
enable_puncture_rate(state, FEC_NONE);
|
|
|
|
/* 8PSK 3/5, 8PSK 2/3 Poff tracking optimization WA*/
|
|
write_reg(state, RSTV0910_P2_ACLC2S2Q + state->regoff, 0x0B);
|
|
write_reg(state, RSTV0910_P2_ACLC2S28 + state->regoff, 0x0A);
|
|
write_reg(state, RSTV0910_P2_BCLC2S2Q + state->regoff, 0x84);
|
|
write_reg(state, RSTV0910_P2_BCLC2S28 + state->regoff, 0x84);
|
|
write_reg(state, RSTV0910_P2_CARHDR + state->regoff, 0x1C);
|
|
write_reg(state, RSTV0910_P2_CARFREQ + state->regoff, 0x79);
|
|
|
|
write_reg(state, RSTV0910_P2_ACLC2S216A + state->regoff, 0x29);
|
|
write_reg(state, RSTV0910_P2_ACLC2S232A + state->regoff, 0x09);
|
|
write_reg(state, RSTV0910_P2_BCLC2S216A + state->regoff, 0x84);
|
|
write_reg(state, RSTV0910_P2_BCLC2S232A + state->regoff, 0x84);
|
|
|
|
/* Reset CAR3, bug DVBS2->DVBS1 lock*/
|
|
/* Note: The bit is only pulsed -> no lock on shared register needed */
|
|
write_reg(state, RSTV0910_TSTRES0, state->nr ? 0x04 : 0x08);
|
|
write_reg(state, RSTV0910_TSTRES0, 0);
|
|
|
|
set_vth_default(state);
|
|
|
|
/* Reset demod */
|
|
write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
|
|
|
|
write_reg(state, RSTV0910_P2_CARCFG + state->regoff, 0x46);
|
|
|
|
if (p->symbol_rate <= 5000000)
|
|
freq = (state->search_range / 2000) + 80;
|
|
else
|
|
freq = (state->search_range / 2000) + 1600;
|
|
freq = (freq << 16) / (state->base->mclk / 1000);
|
|
|
|
write_reg(state, RSTV0910_P2_CFRUP1 + state->regoff,
|
|
(freq >> 8) & 0xff);
|
|
write_reg(state, RSTV0910_P2_CFRUP0 + state->regoff, (freq & 0xff));
|
|
/*CFR Low Setting*/
|
|
freq = -freq;
|
|
write_reg(state, RSTV0910_P2_CFRLOW1 + state->regoff,
|
|
(freq >> 8) & 0xff);
|
|
write_reg(state, RSTV0910_P2_CFRLOW0 + state->regoff, (freq & 0xff));
|
|
|
|
/* init the demod frequency offset to 0 */
|
|
write_reg(state, RSTV0910_P2_CFRINIT1 + state->regoff, 0);
|
|
write_reg(state, RSTV0910_P2_CFRINIT0 + state->regoff, 0);
|
|
|
|
write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
|
|
/* Trigger acq */
|
|
write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x15);
|
|
|
|
state->demod_lock_time += TUNING_DELAY;
|
|
state->started = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_diseqc(struct stv *state)
|
|
{
|
|
u16 offs = state->nr ? 0x40 : 0; /* Address offset */
|
|
u8 freq = ((state->base->mclk + 11000 * 32) / (22000 * 32));
|
|
|
|
/* Disable receiver */
|
|
write_reg(state, RSTV0910_P1_DISRXCFG + offs, 0x00);
|
|
write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0xBA); /* Reset = 1 */
|
|
write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A); /* Reset = 0 */
|
|
write_reg(state, RSTV0910_P1_DISTXF22 + offs, freq);
|
|
return 0;
|
|
}
|
|
|
|
static int probe(struct stv *state)
|
|
{
|
|
u8 id;
|
|
|
|
state->receive_mode = RCVMODE_NONE;
|
|
state->started = 0;
|
|
|
|
if (read_reg(state, RSTV0910_MID, &id) < 0)
|
|
return -1;
|
|
|
|
if (id != 0x51)
|
|
return -EINVAL;
|
|
/* pr_info("stv0910: found STV0910 id=0x%02x\n", id); */
|
|
|
|
/* Configure the I2C repeater to off */
|
|
write_reg(state, RSTV0910_P1_I2CRPT, 0x24);
|
|
/* Configure the I2C repeater to off */
|
|
write_reg(state, RSTV0910_P2_I2CRPT, 0x24);
|
|
/* Set the I2C to oversampling ratio */
|
|
write_reg(state, RSTV0910_I2CCFG, 0x88); /* state->i2ccfg */
|
|
|
|
write_reg(state, RSTV0910_OUTCFG, 0x00); /* OUTCFG */
|
|
write_reg(state, RSTV0910_PADCFG, 0x05); /* RFAGC Pads Dev = 05 */
|
|
write_reg(state, RSTV0910_SYNTCTRL, 0x02); /* SYNTCTRL */
|
|
write_reg(state, RSTV0910_TSGENERAL, state->tsgeneral); /* TSGENERAL */
|
|
write_reg(state, RSTV0910_CFGEXT, 0x02); /* CFGEXT */
|
|
if (state->single)
|
|
write_reg(state, RSTV0910_GENCFG, 0x14); /* GENCFG */
|
|
else
|
|
write_reg(state, RSTV0910_GENCFG, 0x15); /* GENCFG */
|
|
|
|
write_reg(state, RSTV0910_P1_TNRCFG2, 0x02); /* IQSWAP = 0 */
|
|
write_reg(state, RSTV0910_P2_TNRCFG2, 0x82); /* IQSWAP = 1 */
|
|
|
|
write_reg(state, RSTV0910_P1_CAR3CFG, 0x02);
|
|
write_reg(state, RSTV0910_P2_CAR3CFG, 0x02);
|
|
write_reg(state, RSTV0910_P1_DMDCFG4, 0x04);
|
|
write_reg(state, RSTV0910_P2_DMDCFG4, 0x04);
|
|
|
|
write_reg(state, RSTV0910_TSTRES0, 0x80); /* LDPC Reset */
|
|
write_reg(state, RSTV0910_TSTRES0, 0x00);
|
|
|
|
write_reg(state, RSTV0910_P1_TSPIDFLT1, 0x00);
|
|
write_reg(state, RSTV0910_P2_TSPIDFLT1, 0x00);
|
|
|
|
write_reg(state, RSTV0910_P1_TMGCFG2, 0x80);
|
|
write_reg(state, RSTV0910_P2_TMGCFG2, 0x80);
|
|
|
|
set_mclock(state, 135000000);
|
|
|
|
/* TS output */
|
|
write_reg(state, RSTV0910_P1_TSCFGH , state->tscfgh | 0x01);
|
|
write_reg(state, RSTV0910_P1_TSCFGH , state->tscfgh);
|
|
write_reg(state, RSTV0910_P1_TSCFGM , 0xC0); /* Manual speed */
|
|
write_reg(state, RSTV0910_P1_TSCFGL , 0x20);
|
|
|
|
/* Speed = 67.5 MHz */
|
|
write_reg(state, RSTV0910_P1_TSSPEED , state->tsspeed);
|
|
|
|
write_reg(state, RSTV0910_P2_TSCFGH , state->tscfgh | 0x01);
|
|
write_reg(state, RSTV0910_P2_TSCFGH , state->tscfgh);
|
|
write_reg(state, RSTV0910_P2_TSCFGM , 0xC0); /* Manual speed */
|
|
write_reg(state, RSTV0910_P2_TSCFGL , 0x20);
|
|
|
|
/* Speed = 67.5 MHz */
|
|
write_reg(state, RSTV0910_P2_TSSPEED , state->tsspeed);
|
|
|
|
/* Reset stream merger */
|
|
write_reg(state, RSTV0910_P1_TSCFGH , state->tscfgh | 0x01);
|
|
write_reg(state, RSTV0910_P2_TSCFGH , state->tscfgh | 0x01);
|
|
write_reg(state, RSTV0910_P1_TSCFGH , state->tscfgh);
|
|
write_reg(state, RSTV0910_P2_TSCFGH , state->tscfgh);
|
|
|
|
write_reg(state, RSTV0910_P1_I2CRPT, state->i2crpt);
|
|
write_reg(state, RSTV0910_P2_I2CRPT, state->i2crpt);
|
|
|
|
init_diseqc(state);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int gate_ctrl(struct dvb_frontend *fe, int enable)
|
|
{
|
|
struct stv *state = fe->demodulator_priv;
|
|
u8 i2crpt = state->i2crpt & ~0x86;
|
|
|
|
if (enable)
|
|
mutex_lock(&state->base->i2c_lock);
|
|
|
|
if (enable)
|
|
i2crpt |= 0x80;
|
|
else
|
|
i2crpt |= 0x02;
|
|
|
|
if (write_reg(state, state->nr ? RSTV0910_P2_I2CRPT :
|
|
RSTV0910_P1_I2CRPT, i2crpt) < 0)
|
|
return -EIO;
|
|
|
|
state->i2crpt = i2crpt;
|
|
|
|
if (!enable)
|
|
mutex_unlock(&state->base->i2c_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void release(struct dvb_frontend *fe)
|
|
{
|
|
struct stv *state = fe->demodulator_priv;
|
|
|
|
state->base->count--;
|
|
if (state->base->count == 0) {
|
|
list_del(&state->base->stvlist);
|
|
kfree(state->base);
|
|
}
|
|
kfree(state);
|
|
}
|
|
|
|
static int set_parameters(struct dvb_frontend *fe)
|
|
{
|
|
int stat = 0;
|
|
struct stv *state = fe->demodulator_priv;
|
|
u32 IF;
|
|
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
|
|
|
|
stop(state);
|
|
if (fe->ops.tuner_ops.set_params)
|
|
fe->ops.tuner_ops.set_params(fe);
|
|
if (fe->ops.tuner_ops.get_if_frequency)
|
|
fe->ops.tuner_ops.get_if_frequency(fe, &IF);
|
|
state->symbol_rate = p->symbol_rate;
|
|
stat = start(state, p);
|
|
return stat;
|
|
}
|
|
|
|
static int get_frequency_offset(struct stv *state, s32 *off)
|
|
{
|
|
u8 cfr0, cfr1, cfr2;
|
|
s32 derot;
|
|
|
|
read_reg(state, RSTV0910_P2_CFR2 + state->regoff, &cfr2);
|
|
read_reg(state, RSTV0910_P2_CFR1 + state->regoff, &cfr1);
|
|
read_reg(state, RSTV0910_P2_CFR0 + state->regoff, &cfr0);
|
|
|
|
derot = ((u32) cfr2 << 16) | ((u32)cfr1 << 8) | cfr0;
|
|
if (derot & (1<<23))
|
|
derot |= 0xFF000000;
|
|
*off = (s32) (((s64) derot * (s64) state->base->mclk) >> 24);
|
|
//pr_info("foff = %d\n", *off);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int get_frontend(struct dvb_frontend *fe)
|
|
{
|
|
struct stv *state = fe->demodulator_priv;
|
|
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
|
|
u8 tmp;
|
|
|
|
|
|
if (state->receive_mode == RCVMODE_DVBS2) {
|
|
u32 mc;
|
|
enum fe_modulation modcod2mod[0x20] = {
|
|
QPSK, QPSK, QPSK, QPSK,
|
|
QPSK, QPSK, QPSK, QPSK,
|
|
QPSK, QPSK, QPSK, QPSK,
|
|
PSK_8, PSK_8, PSK_8, PSK_8,
|
|
PSK_8, PSK_8, APSK_16, APSK_16,
|
|
APSK_16, APSK_16, APSK_16, APSK_16,
|
|
APSK_32, APSK_32, APSK_32, APSK_32,
|
|
APSK_32,
|
|
};
|
|
enum fe_code_rate modcod2fec[0x20] = {
|
|
FEC_NONE, FEC_1_4, FEC_1_3, FEC_2_5,
|
|
FEC_1_2, FEC_3_5, FEC_2_3, FEC_3_4,
|
|
FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
|
|
FEC_3_5, FEC_2_3, FEC_3_4, FEC_5_6,
|
|
FEC_8_9, FEC_9_10, FEC_2_3, FEC_3_4,
|
|
FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
|
|
FEC_3_4, FEC_4_5, FEC_5_6, FEC_8_9,
|
|
FEC_9_10
|
|
};
|
|
read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
|
|
mc = ((tmp & 0x7c) >> 2);
|
|
p->pilot = (tmp & 0x01) ? PILOT_ON : PILOT_OFF;
|
|
p->modulation = modcod2mod[mc];
|
|
p->fec_inner = modcod2fec[mc];
|
|
} else if (state->receive_mode == RCVMODE_DVBS) {
|
|
read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
|
|
switch( tmp & 0x1F ) {
|
|
case 0x0d:
|
|
p->fec_inner = FEC_1_2;
|
|
break;
|
|
case 0x12:
|
|
p->fec_inner = FEC_2_3;
|
|
break;
|
|
case 0x15:
|
|
p->fec_inner = FEC_3_4;
|
|
break;
|
|
case 0x18:
|
|
p->fec_inner = FEC_5_6;
|
|
break;
|
|
case 0x1a:
|
|
p->fec_inner = FEC_7_8;
|
|
break;
|
|
default:
|
|
p->fec_inner = FEC_NONE;
|
|
break;
|
|
}
|
|
p->rolloff = ROLLOFF_35;
|
|
} else {
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int manage_matype_info(struct stv *state)
|
|
{
|
|
if (!state->started)
|
|
return -1;
|
|
if (state->receive_mode == RCVMODE_DVBS2 ) {
|
|
u8 bbheader[2];
|
|
|
|
read_regs(state, RSTV0910_P2_MATSTR1 + state->regoff,
|
|
bbheader, 2);
|
|
state->feroll_off =
|
|
(enum fe_stv0910_roll_off) (bbheader[0] & 0x03);
|
|
state->is_vcm = (bbheader[0] & 0x10) == 0;
|
|
state->is_standard_broadcast = (bbheader[0] & 0xFC) == 0xF0;
|
|
} else if (state->receive_mode == RCVMODE_DVBS) {
|
|
state->is_vcm = 0;
|
|
state->is_standard_broadcast = 1;
|
|
state->feroll_off = FE_SAT_35;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int read_snr(struct dvb_frontend *fe, u16 *snr);
|
|
static int read_signal_strength(struct dvb_frontend *fe, u16 *strength);
|
|
static int read_ber(struct dvb_frontend *fe, u32 *ber);
|
|
|
|
static int read_status(struct dvb_frontend *fe, fe_status_t *status)
|
|
{
|
|
struct stv *state = fe->demodulator_priv;
|
|
u8 dmd_state = 0;
|
|
u8 dstatus = 0;
|
|
enum receive_mode cur_receive_mode = RCVMODE_NONE;
|
|
u32 feclock = 0;
|
|
u16 val;
|
|
u32 ber;
|
|
s32 foff;
|
|
|
|
*status = 0;
|
|
get_frequency_offset(state, &foff);
|
|
|
|
read_signal_strength(fe, &val);
|
|
|
|
read_snr(fe, &val);
|
|
|
|
read_ber(fe, &ber);
|
|
|
|
read_reg(state, RSTV0910_P2_DMDSTATE + state->regoff, &dmd_state);
|
|
if (dmd_state & 0x40) {
|
|
read_reg(state, RSTV0910_P2_DSTATUS + state->regoff,
|
|
&dstatus);
|
|
if (dstatus & 0x08)
|
|
cur_receive_mode = (dmd_state & 0x20) ?
|
|
RCVMODE_DVBS : RCVMODE_DVBS2;
|
|
}
|
|
if (cur_receive_mode == RCVMODE_NONE) {
|
|
set_vth(state);
|
|
//if( Time >= m_DemodTimeout ) *pLockStatus = NEVER_LOCK;
|
|
return 0;
|
|
}
|
|
*status |= 0x0f;
|
|
if (state->receive_mode == RCVMODE_NONE) {
|
|
state->receive_mode = cur_receive_mode;
|
|
state->demod_lock_time = jiffies;
|
|
state->first_time_lock = 1;
|
|
|
|
get_signal_parameters(state);
|
|
tracking_optimization(state);
|
|
|
|
#if 0
|
|
if( cur_receive_mode == RCVMODE_DVBS2 && m_b_pilots
|
|
&& ( m_mod_cod == FE_8PSK_23 || m_mod_cod == FE_8PSK_35) )
|
|
{
|
|
LONG C_N;
|
|
CHK_ERROR(get_signal_to_noise(&C_N));
|
|
if( C_N < 80 )
|
|
{
|
|
CHK_ERROR(write_reg(RSTV0910_P2_CARHDR + m_demod_offset , 0x04));
|
|
CHK_ERROR(write_reg(RSTV0910_P2_BCLC2S28 + m_demod_offset , 0x31));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
|
|
state->tscfgh);
|
|
usleep_range(3000, 4000);
|
|
write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
|
|
state->tscfgh | 0x01);
|
|
write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
|
|
state->tscfgh);
|
|
}
|
|
if (dmd_state & 0x40) {
|
|
if (state->receive_mode == RCVMODE_DVBS2) {
|
|
u8 pdelstatus;
|
|
read_reg(state,
|
|
RSTV0910_P2_PDELSTATUS1 + state->regoff,
|
|
&pdelstatus);
|
|
feclock = (pdelstatus & 0x02) != 0;
|
|
} else {
|
|
u8 vstatus;
|
|
read_reg(state,
|
|
RSTV0910_P2_VSTATUSVIT + state->regoff,
|
|
&vstatus);
|
|
feclock = (vstatus & 0x08) != 0;
|
|
}
|
|
}
|
|
|
|
if (!feclock)
|
|
//if( Time >= m_DemodLockTime + m_FecTimeout ) *pLockStatus = NEVER_LOCK;
|
|
return 0;
|
|
|
|
*status |= 0x10;
|
|
|
|
if (state->first_time_lock) {
|
|
u8 tmp;
|
|
|
|
state->first_time_lock = 0;
|
|
|
|
manage_matype_info(state);
|
|
|
|
#if 0
|
|
ULONG bitrate;
|
|
CSTV0910::get_bitrate(&bitrate);
|
|
BYTE new_tsspeed = (bitrate > 67000000) ? 0x30 : 0x40;
|
|
if (new_tsspeed != m_tsspeed)
|
|
{
|
|
kd_print_ex((MSG_INFO "_%d " __FUNCTION__ " TSSPEED = %02X\n", m_instance, new_tsspeed));
|
|
CHK_ERROR(write_reg(RSTV0910_P2_TSSPEED + m_demod_offset, new_tsspeed));
|
|
m_tsspeed = new_tsspeed;
|
|
}
|
|
|
|
#endif
|
|
if (state->receive_mode == RCVMODE_DVBS2) {
|
|
/* FSTV0910_P2_MANUALSX_ROLLOFF,
|
|
FSTV0910_P2_MANUALS2_ROLLOFF = 0 */
|
|
state->DEMOD &= ~0x84;
|
|
write_reg(state, RSTV0910_P2_DEMOD + state->regoff,
|
|
state->DEMOD);
|
|
read_reg(state, RSTV0910_P2_PDELCTRL2 + state->regoff,
|
|
&tmp);
|
|
/*reset DVBS2 packet delinator error counter */
|
|
tmp |= 0x40;
|
|
write_reg(state, RSTV0910_P2_PDELCTRL2 +
|
|
state->regoff,
|
|
tmp);
|
|
/*reset DVBS2 packet delinator error counter */
|
|
tmp &= ~0x40;
|
|
write_reg(state, RSTV0910_P2_PDELCTRL2 +
|
|
state->regoff,
|
|
tmp);
|
|
|
|
state->berscale = 2;
|
|
state->last_bernumerator = 0;
|
|
state->last_berdenominator = 1;
|
|
/* force to PRE BCH Rate */
|
|
write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
|
|
BER_SRC_S2 | state->berscale);
|
|
} else {
|
|
state->berscale = 2;
|
|
state->last_bernumerator = 0;
|
|
state->last_berdenominator = 1;
|
|
/* force to PRE RS Rate */
|
|
write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
|
|
BER_SRC_S | state->berscale);
|
|
}
|
|
/*Reset the Total packet counter */
|
|
write_reg(state, RSTV0910_P2_FBERCPT4 + state->regoff, 0x00);
|
|
/*Reset the packet Error counter2 (and Set it to
|
|
infinit error count mode )*/
|
|
write_reg(state, RSTV0910_P2_ERRCTRL2 + state->regoff, 0xc1);
|
|
|
|
set_vth_default(state);
|
|
if (state->receive_mode == RCVMODE_DVBS)
|
|
enable_puncture_rate(state, state->puncture_rate);
|
|
}
|
|
|
|
#if 0
|
|
if( m_is_vcm )
|
|
{
|
|
// Use highest signaled ModCod for quality
|
|
BYTE tmp;
|
|
CHK_ERROR(read_reg(RSTV0910_P2_DMDMODCOD +
|
|
m_demod_offset,&tmp));
|
|
fe_stv0910_mod_cod mod_cod =
|
|
fe_stv0910_mod_cod((tmp & 0x7c) >> 2);
|
|
|
|
if( mod_cod > m_mod_cod )
|
|
m_mod_cod = mod_cod;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int tune(struct dvb_frontend *fe, bool re_tune,
|
|
unsigned int mode_flags,
|
|
unsigned int *delay, fe_status_t *status)
|
|
{
|
|
struct stv *state = fe->demodulator_priv;
|
|
int r;
|
|
|
|
if (re_tune) {
|
|
r = set_parameters(fe);
|
|
if (r)
|
|
return r;
|
|
state->tune_time = jiffies;
|
|
}
|
|
if (*status & FE_HAS_LOCK)
|
|
return 0;
|
|
*delay = HZ;
|
|
|
|
r = read_status(fe, status);
|
|
if (r)
|
|
return r;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int get_algo(struct dvb_frontend *fe)
|
|
{
|
|
return DVBFE_ALGO_HW;
|
|
}
|
|
|
|
static int set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone)
|
|
{
|
|
struct stv *state = fe->demodulator_priv;
|
|
u16 offs = state->nr ? 0x40 : 0;
|
|
|
|
switch (tone) {
|
|
case SEC_TONE_ON:
|
|
return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x38);
|
|
case SEC_TONE_OFF:
|
|
return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3a);
|
|
default:
|
|
break;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int wait_dis(struct stv *state, u8 flag, u8 val)
|
|
{
|
|
int i;
|
|
u8 stat;
|
|
u16 offs = state->nr ? 0x40 : 0;
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
read_reg(state, RSTV0910_P1_DISTXSTATUS + offs, &stat);
|
|
if ((stat & flag) == val)
|
|
return 0;
|
|
msleep(10);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int send_master_cmd(struct dvb_frontend *fe,
|
|
struct dvb_diseqc_master_cmd *cmd)
|
|
{
|
|
struct stv *state = fe->demodulator_priv;
|
|
u16 offs = state->nr ? 0x40 : 0;
|
|
int i;
|
|
|
|
/*pr_info("master_cmd %02x %02x %02x %02x\n",
|
|
cmd->msg[0], cmd->msg[1], cmd->msg[2], cmd->msg[3]);*/
|
|
write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3E);
|
|
for (i = 0; i < cmd->msg_len; i++) {
|
|
wait_dis(state, 0x40, 0x00);
|
|
write_reg(state, RSTV0910_P1_DISTXFIFO + offs, cmd->msg[i]);
|
|
}
|
|
write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A);
|
|
wait_dis(state, 0x20, 0x20);
|
|
return 0;
|
|
}
|
|
|
|
static int recv_slave_reply(struct dvb_frontend *fe,
|
|
struct dvb_diseqc_slave_reply *reply)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int send_burst(struct dvb_frontend *fe, fe_sec_mini_cmd_t burst)
|
|
{
|
|
#if 0
|
|
struct stv *state = fe->demodulator_priv;
|
|
u16 offs = state->nr ? 0x40 : 0;
|
|
u8 value;
|
|
|
|
if (burst == SEC_MINI_A) {
|
|
write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3F);
|
|
value = 0x00;
|
|
} else {
|
|
write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3E);
|
|
value = 0xFF;
|
|
}
|
|
wait_dis(state, 0x40, 0x00);
|
|
write_reg(state, RSTV0910_P1_DISTXFIFO + offs, value);
|
|
write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A);
|
|
wait_dis(state, 0x20, 0x20);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int sleep(struct dvb_frontend *fe)
|
|
{
|
|
struct stv *state = fe->demodulator_priv;
|
|
|
|
stop(state);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int read_snr(struct dvb_frontend *fe, u16 *snr)
|
|
{
|
|
struct stv *state = fe->demodulator_priv;
|
|
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
|
|
s32 SNR;
|
|
|
|
*snr = 0;
|
|
if (get_signal_to_noise(state, &SNR))
|
|
return -EIO;
|
|
*snr = SNR;
|
|
p->cnr.len = 1;
|
|
p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
|
|
p->cnr.stat[0].uvalue = 100 * (s64) SNR;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int read_ber(struct dvb_frontend *fe, u32 *ber)
|
|
{
|
|
struct stv *state = fe->demodulator_priv;
|
|
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
|
|
u32 n, d;
|
|
|
|
get_bit_error_rate(state, &n, &d);
|
|
if (d)
|
|
*ber = n / d;
|
|
else
|
|
*ber = 0;
|
|
|
|
p->pre_bit_error.len = 1;
|
|
p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
|
|
p->pre_bit_error.stat[0].uvalue = n;
|
|
p->pre_bit_count.len = 1;
|
|
p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
|
|
p->pre_bit_count.stat[0].uvalue = d;
|
|
return 0;
|
|
}
|
|
|
|
static s32 log10x100(u32 x)
|
|
{
|
|
static u32 lookup_table[100] = {
|
|
101157945, 103514217, 105925373, 108392691, 110917482,
|
|
113501082, 116144861, 118850223, 121618600, 124451461,
|
|
127350308, 130316678, 133352143, 136458314, 139636836,
|
|
142889396, 146217717, 149623566, 153108746, 156675107,
|
|
160324539, 164058977, 167880402, 171790839, 175792361,
|
|
179887092, 184077200, 188364909, 192752491, 197242274,
|
|
201836636, 206538016, 211348904, 216271852, 221309471,
|
|
226464431, 231739465, 237137371, 242661010, 248313311,
|
|
254097271, 260015956, 266072506, 272270131, 278612117,
|
|
285101827, 291742701, 298538262, 305492111, 312607937,
|
|
319889511, 327340695, 334965439, 342767787, 350751874,
|
|
358921935, 367282300, 375837404, 384591782, 393550075,
|
|
402717034, 412097519, 421696503, 431519077, 441570447,
|
|
451855944, 462381021, 473151259, 484172368, 495450191,
|
|
506990708, 518800039, 530884444, 543250331, 555904257,
|
|
568852931, 582103218, 595662144, 609536897, 623734835,
|
|
638263486, 653130553, 668343918, 683911647, 699841996,
|
|
716143410, 732824533, 749894209, 767361489, 785235635,
|
|
803526122, 822242650, 841395142, 860993752, 881048873,
|
|
901571138, 922571427, 944060876, 966050879, 988553095,
|
|
};
|
|
s32 y;
|
|
int i;
|
|
|
|
if (x == 0)
|
|
return 0;
|
|
y = 800;
|
|
if (x >= 1000000000) {
|
|
x /= 10;
|
|
y += 100;
|
|
}
|
|
|
|
while (x < 100000000) {
|
|
x *= 10;
|
|
y -= 100;
|
|
}
|
|
i = 0;
|
|
while (i < 100 && x > lookup_table[i])
|
|
i += 1;
|
|
y += i;
|
|
return y;
|
|
}
|
|
|
|
static int read_signal_strength(struct dvb_frontend *fe, u16 *strength)
|
|
{
|
|
struct stv *state = fe->demodulator_priv;
|
|
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
|
|
u8 reg[2];
|
|
s32 bbgain;
|
|
s32 power = 0;
|
|
int i;
|
|
|
|
read_regs(state, RSTV0910_P2_AGCIQIN1 + state->regoff, reg, 2);
|
|
*strength = (((u32) reg[0]) << 8) | reg[1];
|
|
|
|
for (i = 0; i < 5; i += 1) {
|
|
read_regs(state, RSTV0910_P2_POWERI + state->regoff, reg, 2);
|
|
power += (u32) reg[0] * (u32) reg[0] +
|
|
(u32) reg[1] * (u32) reg[1];
|
|
msleep(3);
|
|
}
|
|
power /= 5;
|
|
bbgain = (465 - log10x100(power)) * 10;
|
|
|
|
if (fe->ops.tuner_ops.get_rf_strength)
|
|
fe->ops.tuner_ops.get_rf_strength(fe, strength);
|
|
else
|
|
*strength = 0;
|
|
|
|
if (bbgain < (s32) *strength)
|
|
*strength -= bbgain;
|
|
else
|
|
*strength = 0;
|
|
|
|
p->strength.len = 1;
|
|
p->strength.stat[0].scale = FE_SCALE_DECIBEL;
|
|
p->strength.stat[0].uvalue = 10 * (s64) (s16) *strength - 108750;
|
|
|
|
/* *strength is in hundredth dBuv, uvalue is in thousandth dBm */
|
|
return 0;
|
|
}
|
|
|
|
static int read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
|
|
{
|
|
/* struct stv *state = fe->demodulator_priv; */
|
|
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct dvb_frontend_ops stv0910_ops = {
|
|
.delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
|
|
.info = {
|
|
.name = "STV0910",
|
|
.frequency_min = 950000,
|
|
.frequency_max = 2150000,
|
|
.frequency_stepsize = 0,
|
|
.frequency_tolerance = 0,
|
|
.symbol_rate_min = 1000000,
|
|
.symbol_rate_max = 70000000,
|
|
.caps = FE_CAN_INVERSION_AUTO |
|
|
FE_CAN_FEC_AUTO |
|
|
FE_CAN_QPSK |
|
|
FE_CAN_2G_MODULATION
|
|
},
|
|
.init = init,
|
|
.sleep = sleep,
|
|
.release = release,
|
|
.i2c_gate_ctrl = gate_ctrl,
|
|
.get_frontend_algo = get_algo,
|
|
.get_frontend = get_frontend,
|
|
.tune = tune,
|
|
.read_status = read_status,
|
|
.set_tone = set_tone,
|
|
|
|
.diseqc_send_master_cmd = send_master_cmd,
|
|
.diseqc_send_burst = send_burst,
|
|
.diseqc_recv_slave_reply = recv_slave_reply,
|
|
|
|
.read_snr = read_snr,
|
|
.read_ber = read_ber,
|
|
.read_signal_strength = read_signal_strength,
|
|
.read_ucblocks = read_ucblocks,
|
|
};
|
|
|
|
static struct stv_base *match_base(struct i2c_adapter *i2c, u8 adr)
|
|
{
|
|
struct stv_base *p;
|
|
|
|
list_for_each_entry(p, &stvlist, stvlist)
|
|
if (p->i2c == i2c && p->adr == adr)
|
|
return p;
|
|
return NULL;
|
|
}
|
|
|
|
struct dvb_frontend *stv0910_attach(struct i2c_adapter *i2c,
|
|
struct stv0910_cfg *cfg,
|
|
int nr)
|
|
{
|
|
struct stv *state;
|
|
struct stv_base *base;
|
|
|
|
state = kzalloc(sizeof(struct stv), GFP_KERNEL);
|
|
if (!state)
|
|
return NULL;
|
|
|
|
state->tscfgh = 0x20 | (cfg->parallel ? 0 : 0x40);
|
|
state->tsgeneral = (cfg->parallel == 2) ? 0x02 : 0x00;
|
|
state->i2crpt = 0x0A | ((cfg->rptlvl & 0x07) << 4);
|
|
state->tsspeed = 0x28;
|
|
state->nr = nr;
|
|
state->regoff = state->nr ? 0 : 0x200;
|
|
state->search_range = 16000000;
|
|
state->DEMOD = 0x10; /* Inversion : Auto with reset to 0 */
|
|
state->receive_mode = RCVMODE_NONE;
|
|
state->cur_scrambling_code = NO_SCRAMBLING_CODE;
|
|
state->single = cfg->single ? 1 : 0;
|
|
|
|
base = match_base(i2c, cfg->adr);
|
|
if (base) {
|
|
base->count++;
|
|
state->base = base;
|
|
} else {
|
|
base = kzalloc(sizeof(struct stv_base), GFP_KERNEL);
|
|
if (!base)
|
|
goto fail;
|
|
base->i2c = i2c;
|
|
base->adr = cfg->adr;
|
|
base->count = 1;
|
|
base->extclk = cfg->clk ? cfg->clk : 30000000;
|
|
|
|
mutex_init(&base->i2c_lock);
|
|
mutex_init(&base->reg_lock);
|
|
state->base = base;
|
|
if (probe(state) < 0) {
|
|
kfree(base);
|
|
goto fail;
|
|
}
|
|
list_add(&base->stvlist, &stvlist);
|
|
}
|
|
state->fe.ops = stv0910_ops;
|
|
state->fe.demodulator_priv = state;
|
|
state->nr = nr;
|
|
|
|
return &state->fe;
|
|
|
|
fail:
|
|
kfree(state);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(stv0910_attach);
|
|
|
|
MODULE_DESCRIPTION("STV0910 driver");
|
|
MODULE_AUTHOR("Ralph und Marcus Metzler, Manfred Voelkel");
|
|
MODULE_LICENSE("GPL");
|