1
0
mirror of https://github.com/DigitalDevices/dddvb.git synced 2023-10-10 13:37:43 +02:00
dddvb/ddbridge/ddbridge-core.c
Ralph Metzler 0f05b1988a - add lock loss irq handler
- add modulator ioctl mutex
- some more documentation about modulator properties
2017-10-17 23:49:31 +02:00

4425 lines
106 KiB
C

/*
* ddbridge-core.c: Digital Devices bridge core functions
*
* Copyright (C) 2010-2016 Digital Devices GmbH
* Marcus Metzler <mocm@metzlerbros.de>
* Ralph Metzler <rjkm@metzlerbros.de>
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 only, as published by the Free Software Foundation.
*
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, point your browser to
* http://www.gnu.org/copyleft/gpl.html
*/
#include "ddbridge.h"
#include "ddbridge-i2c.h"
#include "ddbridge-io.h"
#include "dvb_net.h"
struct workqueue_struct *ddb_wq;
DEFINE_MUTEX(redirect_lock); /* lock for redirect */
static int adapter_alloc;
module_param(adapter_alloc, int, 0444);
MODULE_PARM_DESC(adapter_alloc,
"0-one adapter per io, 1-one per tab with io, 2-one per tab, 3-one for all");
static int ci_bitrate = 70000;
module_param(ci_bitrate, int, 0444);
MODULE_PARM_DESC(ci_bitrate, " Bitrate in KHz for output to CI.");
static int ts_loop = -1;
module_param(ts_loop, int, 0444);
MODULE_PARM_DESC(ts_loop, "TS in/out test loop on port ts_loop");
static int vlan;
module_param(vlan, int, 0444);
MODULE_PARM_DESC(vlan, "VLAN and QoS IDs enabled");
static int xo2_speed = 2;
module_param(xo2_speed, int, 0444);
MODULE_PARM_DESC(xo2_speed, "default transfer speed for xo2 based duoflex, 0=55,1=75,2=90,3=104 MBit/s, default=2, use attribute to change for individual cards");
#ifdef __arm__
static int alt_dma = 1;
#else
static int alt_dma;
#endif
module_param(alt_dma, int, 0444);
MODULE_PARM_DESC(alt_dma, "use alternative DMA buffer handling");
static int no_init;
module_param(no_init, int, 0444);
MODULE_PARM_DESC(no_init, "do not initialize most devices");
static int stv0910_single;
module_param(stv0910_single, int, 0444);
MODULE_PARM_DESC(no_init, "use stv0910 cards as single demods");
#define DDB_MAX_ADAPTER 64
static struct ddb *ddbs[DDB_MAX_ADAPTER];
DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
/****************************************************************************/
/****************************************************************************/
/****************************************************************************/
static void ddb_set_dma_table(struct ddb_io *io)
{
struct ddb *dev = io->port->dev;
struct ddb_dma *dma = io->dma;
u32 i;
u64 mem;
if (!dma)
return;
for (i = 0; i < dma->num; i++) {
mem = dma->pbuf[i];
ddbwritel(dev, mem & 0xffffffff, dma->bufregs + i * 8);
ddbwritel(dev, mem >> 32, dma->bufregs + i * 8 + 4);
}
dma->bufval = ((dma->div & 0x0f) << 16) |
((dma->num & 0x1f) << 11) |
((dma->size >> 7) & 0x7ff);
}
static void ddb_set_dma_tables(struct ddb *dev)
{
u32 i;
for (i = 0; i < DDB_MAX_PORT; i++) {
if (dev->port[i].input[0])
ddb_set_dma_table(dev->port[i].input[0]);
if (dev->port[i].input[1])
ddb_set_dma_table(dev->port[i].input[1]);
if (dev->port[i].output)
ddb_set_dma_table(dev->port[i].output);
}
}
/****************************************************************************/
/****************************************************************************/
/****************************************************************************/
static void ddb_redirect_dma(struct ddb *dev,
struct ddb_dma *sdma,
struct ddb_dma *ddma)
{
u32 i, base;
u64 mem;
sdma->bufval = ddma->bufval;
base = sdma->bufregs;
for (i = 0; i < ddma->num; i++) {
mem = ddma->pbuf[i];
ddbwritel(dev, mem & 0xffffffff, base + i * 8);
ddbwritel(dev, mem >> 32, base + i * 8 + 4);
}
}
static int ddb_unredirect(struct ddb_port *port)
{
struct ddb_input *oredi, *iredi = 0;
struct ddb_output *iredo = 0;
mutex_lock(&redirect_lock);
if (port->output->dma->running) {
mutex_unlock(&redirect_lock);
return -EBUSY;
}
oredi = port->output->redi;
if (!oredi)
goto done;
if (port->input[0]) {
iredi = port->input[0]->redi;
iredo = port->input[0]->redo;
if (iredo) {
iredo->port->output->redi = oredi;
if (iredo->port->input[0]) {
iredo->port->input[0]->redi = iredi;
ddb_redirect_dma(oredi->port->dev,
oredi->dma, iredo->dma);
}
port->input[0]->redo = 0;
ddb_set_dma_table(port->input[0]);
}
oredi->redi = iredi;
port->input[0]->redi = 0;
}
oredi->redo = 0;
port->output->redi = 0;
ddb_set_dma_table(oredi);
done:
mutex_unlock(&redirect_lock);
return 0;
}
static int ddb_redirect(u32 i, u32 p)
{
struct ddb *idev = ddbs[(i >> 4) & 0x3f];
struct ddb_input *input, *input2;
struct ddb *pdev = ddbs[(p >> 4) & 0x3f];
struct ddb_port *port;
if (!pdev || !idev)
return -EINVAL;
if (!pdev->has_dma || !idev->has_dma)
return -EINVAL;
port = &pdev->port[p & 0x0f];
if (!port->output)
return -EINVAL;
if (ddb_unredirect(port))
return -EBUSY;
if (i == 8)
return 0;
input = &idev->input[i & 7];
if (!input)
return -EINVAL;
mutex_lock(&redirect_lock);
if (port->output->dma->running || input->dma->running) {
mutex_unlock(&redirect_lock);
return -EBUSY;
}
input2 = port->input[0];
if (input2) {
if (input->redi) {
input2->redi = input->redi;
input->redi = 0;
} else {
input2->redi = input;
}
}
input->redo = port->output;
port->output->redi = input;
ddb_redirect_dma(input->port->dev, input->dma, port->output->dma);
mutex_unlock(&redirect_lock);
return 0;
}
/****************************************************************************/
/****************************************************************************/
/****************************************************************************/
static void dma_free(struct pci_dev *pdev, struct ddb_dma *dma, int dir)
{
int i;
if (!dma)
return;
for (i = 0; i < dma->num; i++) {
if (dma->vbuf[i]) {
if (alt_dma) {
dma_unmap_single(&pdev->dev, dma->pbuf[i],
dma->size,
dir ? DMA_TO_DEVICE :
DMA_FROM_DEVICE);
kfree(dma->vbuf[i]);
} else {
dma_free_coherent(&pdev->dev, dma->size,
dma->vbuf[i],
dma->pbuf[i]);
}
dma->vbuf[i] = 0;
}
}
}
static int dma_alloc(struct pci_dev *pdev, struct ddb_dma *dma, int dir)
{
int i;
if (!dma)
return 0;
for (i = 0; i < dma->num; i++) {
if (alt_dma) {
#if (KERNEL_VERSION(4, 13, 0) > LINUX_VERSION_CODE)
dma->vbuf[i] = kmalloc(dma->size, __GFP_REPEAT);
#else
dma->vbuf[i] = kmalloc(dma->size, __GFP_RETRY_MAYFAIL);
#endif
if (!dma->vbuf[i])
return -ENOMEM;
dma->pbuf[i] = dma_map_single(&pdev->dev,
dma->vbuf[i],
dma->size,
dir ? DMA_TO_DEVICE :
DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev, dma->pbuf[i])) {
kfree(dma->vbuf[i]);
dma->vbuf[i] = 0;
return -ENOMEM;
}
} else {
dma->vbuf[i] = dma_alloc_coherent(&pdev->dev,
dma->size,
&dma->pbuf[i],
GFP_KERNEL);
if (!dma->vbuf[i])
return -ENOMEM;
}
}
return 0;
}
static int ddb_buffers_alloc(struct ddb *dev)
{
int i;
struct ddb_port *port;
for (i = 0; i < dev->port_num; i++) {
port = &dev->port[i];
switch (port->class) {
case DDB_PORT_TUNER:
if (port->input[0]->dma)
if (dma_alloc(dev->pdev,
port->input[0]->dma, 0) < 0)
return -1;
if (port->input[1]->dma)
if (dma_alloc(dev->pdev,
port->input[1]->dma, 0) < 0)
return -1;
break;
case DDB_PORT_CI:
case DDB_PORT_LOOP:
if (port->input[0]->dma)
if (dma_alloc(dev->pdev,
port->input[0]->dma, 0) < 0)
return -1;
case DDB_PORT_MOD:
if (port->output->dma)
if (dma_alloc(dev->pdev,
port->output->dma, 1) < 0)
return -1;
break;
default:
break;
}
}
ddb_set_dma_tables(dev);
return 0;
}
void ddb_buffers_free(struct ddb *dev)
{
int i;
struct ddb_port *port;
for (i = 0; i < dev->port_num; i++) {
port = &dev->port[i];
if (port->input[0] && port->input[0]->dma)
dma_free(dev->pdev, port->input[0]->dma, 0);
if (port->input[1] && port->input[1]->dma)
dma_free(dev->pdev, port->input[1]->dma, 0);
if (port->output && port->output->dma)
dma_free(dev->pdev, port->output->dma, 1);
}
}
/*
* Control:
*
* Bit 0 - Enable TS
* 1 - Reset
* 2 - clock enable
* 3 - clock phase
* 4 - gap enable
* 5 - send null packets on underrun
* 6 - enable clock gating
* 7 - set error bit on inserted null packets
* 8-10 - fine adjust clock delay
* 11- HS (high speed), if NCO mode=0: 0=72MHz 1=96Mhz
* 12- enable NCO mode
*
* Control 2:
*
* Bit 0-6 : gap_size, Gap = (gap_size * 2) + 4
* 16-31: HS = 0: Speed = 72 * Value / 8192 MBit/s
* HS = 1: Speed = 72 * 8 / (Value + 1) MBit/s (only bit 19-16 used)
*
*/
static void calc_con(struct ddb_output *output, u32 *con, u32 *con2, u32 flags)
{
struct ddb *dev = output->port->dev;
u32 bitrate = output->port->obr, max_bitrate = 72000;
u32 gap = 4, nco = 0;
*con = 0x1C;
if (output->port->gap != 0xffffffff) {
flags |= 1;
gap = output->port->gap;
max_bitrate = 0;
}
if (dev->link[0].info->type == DDB_OCTOPUS_CI && output->port->nr > 1) {
*con = 0x10c;
if (dev->link[0].ids.regmapid >= 0x10003 && !(flags & 1)) {
if (!(flags & 2)) {
/* NCO */
max_bitrate = 0;
gap = 0;
if (bitrate != 72000) {
if (bitrate >= 96000) {
*con |= 0x800;
} else {
*con |= 0x1000;
nco = (bitrate *
8192 + 71999) / 72000;
}
}
} else {
/* Divider and gap */
*con |= 0x1810;
if (bitrate <= 64000) {
max_bitrate = 64000;
nco = 8;
} else if (bitrate <= 72000) {
max_bitrate = 72000;
nco = 7;
} else {
max_bitrate = 96000;
nco = 5;
}
}
} else {
if (bitrate > 72000) {
*con |= 0x810; /* 96 MBit/s and gap */
max_bitrate = 96000;
}
*con |= 0x10; /* enable gap */
}
}
if (max_bitrate > 0) {
if (bitrate > max_bitrate)
bitrate = max_bitrate;
if (bitrate < 31000)
bitrate = 31000;
gap = ((max_bitrate - bitrate) * 94) / bitrate;
if (gap < 2)
*con &= ~0x10; /* Disable gap */
else
gap -= 2;
if (gap > 127)
gap = 127;
}
*con2 = (nco << 16) | gap;
}
static void ddb_output_start(struct ddb_output *output)
{
struct ddb *dev = output->port->dev;
u32 con = 0x11c, con2 = 0;
if (output->dma) {
spin_lock_irq(&output->dma->lock);
output->dma->cbuf = 0;
output->dma->coff = 0;
output->dma->stat = 0;
ddbwritel(dev, 0, DMA_BUFFER_CONTROL(output->dma));
}
if (output->port->class == DDB_PORT_MOD) {
ddbridge_mod_output_start(output);
} else {
if (output->port->input[0]->port->class == DDB_PORT_LOOP)
con = (1UL << 13) | 0x14;
else
calc_con(output, &con, &con2, 0);
ddbwritel(dev, 0, TS_CONTROL(output));
ddbwritel(dev, 2, TS_CONTROL(output));
ddbwritel(dev, 0, TS_CONTROL(output));
ddbwritel(dev, con, TS_CONTROL(output));
ddbwritel(dev, con2, TS_CONTROL2(output));
}
if (output->dma) {
ddbwritel(dev, output->dma->bufval,
DMA_BUFFER_SIZE(output->dma));
ddbwritel(dev, 0, DMA_BUFFER_ACK(output->dma));
ddbwritel(dev, 1, DMA_BASE_READ);
ddbwritel(dev, 7, DMA_BUFFER_CONTROL(output->dma));
}
if (output->port->class != DDB_PORT_MOD)
ddbwritel(dev, con | 1, TS_CONTROL(output));
if (output->dma) {
output->dma->running = 1;
spin_unlock_irq(&output->dma->lock);
}
}
static void ddb_output_stop(struct ddb_output *output)
{
struct ddb *dev = output->port->dev;
if (output->dma)
spin_lock_irq(&output->dma->lock);
if (output->port->class == DDB_PORT_MOD)
ddbridge_mod_output_stop(output);
else
ddbwritel(dev, 0, TS_CONTROL(output));
if (output->dma) {
ddbwritel(dev, 0, DMA_BUFFER_CONTROL(output->dma));
output->dma->running = 0;
spin_unlock_irq(&output->dma->lock);
}
}
static void ddb_input_stop(struct ddb_input *input)
{
struct ddb *dev = input->port->dev;
u32 tag = DDB_LINK_TAG(input->port->lnr);
if (input->dma)
spin_lock_irq(&input->dma->lock);
ddbwritel(dev, 0, tag | TS_CONTROL(input));
if (input->dma) {
ddbwritel(dev, 0, DMA_BUFFER_CONTROL(input->dma));
input->dma->running = 0;
spin_unlock_irq(&input->dma->lock);
}
/*printk("input_stop %u.%u.%u\n",
* dev->nr, input->port->lnr, input->nr);
*/
}
static void ddb_input_start(struct ddb_input *input)
{
struct ddb *dev = input->port->dev;
if (input->dma) {
spin_lock_irq(&input->dma->lock);
input->dma->cbuf = 0;
input->dma->coff = 0;
input->dma->stat = 0;
ddbwritel(dev, 0, DMA_BUFFER_CONTROL(input->dma));
}
ddbwritel(dev, 0, TS_CONTROL(input));
ddbwritel(dev, 2, TS_CONTROL(input));
ddbwritel(dev, 0, TS_CONTROL(input));
if (input->dma) {
ddbwritel(dev, input->dma->bufval,
DMA_BUFFER_SIZE(input->dma));
ddbwritel(dev, 0, DMA_BUFFER_ACK(input->dma));
ddbwritel(dev, 1, DMA_BASE_WRITE);
ddbwritel(dev, 3, DMA_BUFFER_CONTROL(input->dma));
}
if (dev->link[0].info->type == DDB_OCTONET)
ddbwritel(dev, 0x01, TS_CONTROL(input));
else
ddbwritel(dev, 0x09, TS_CONTROL(input));
if (input->dma) {
input->dma->running = 1;
spin_unlock_irq(&input->dma->lock);
}
}
int ddb_dvb_ns_input_start(struct ddb_input *input)
{
struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1];
if (!dvb->users)
ddb_input_start(input);
return ++dvb->users;
}
int ddb_dvb_ns_input_stop(struct ddb_input *input)
{
struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1];
if (--dvb->users)
return dvb->users;
ddb_input_stop(input);
return 0;
}
static void ddb_input_start_all(struct ddb_input *input)
{
struct ddb_input *i = input;
struct ddb_output *o;
mutex_lock(&redirect_lock);
while (i && (o = i->redo)) {
ddb_output_start(o);
i = o->port->input[0];
if (i)
ddb_input_start(i);
}
ddb_input_start(input);
mutex_unlock(&redirect_lock);
}
static void ddb_input_stop_all(struct ddb_input *input)
{
struct ddb_input *i = input;
struct ddb_output *o;
mutex_lock(&redirect_lock);
ddb_input_stop(input);
while (i && (o = i->redo)) {
ddb_output_stop(o);
i = o->port->input[0];
if (i)
ddb_input_stop(i);
}
mutex_unlock(&redirect_lock);
}
static u32 ddb_output_free(struct ddb_output *output)
{
u32 idx, off, stat = output->dma->stat;
s32 diff;
idx = (stat >> 11) & 0x1f;
off = (stat & 0x7ff) << 7;
if (output->dma->cbuf != idx) {
if ((((output->dma->cbuf + 1) % output->dma->num) == idx) &&
(output->dma->size - output->dma->coff <= 188))
return 0;
return 188;
}
diff = off - output->dma->coff;
if (diff <= 0 || diff > 188)
return 188;
return 0;
}
#if 0
static u32 ddb_dma_free(struct ddb_dma *dma)
{
u32 idx, off, stat = dma->stat;
s32 p1, p2, diff;
idx = (stat >> 11) & 0x1f;
off = (stat & 0x7ff) << 7;
p1 = idx * dma->size + off;
p2 = dma->cbuf * dma->size + dma->coff;
diff = p1 - p2;
if (diff <= 0)
diff += dma->num * dma->size;
return diff;
}
#endif
static ssize_t ddb_output_write(struct ddb_output *output,
const __user u8 *buf, size_t count)
{
struct ddb *dev = output->port->dev;
u32 idx, off, stat = output->dma->stat;
u32 left = count, len;
idx = (stat >> 11) & 0x1f;
off = (stat & 0x7ff) << 7;
while (left) {
len = output->dma->size - output->dma->coff;
if ((((output->dma->cbuf + 1) % output->dma->num) == idx) &&
(off == 0)) {
if (len <= 188)
break;
len -= 188;
}
if (output->dma->cbuf == idx) {
if (off > output->dma->coff) {
len = off - output->dma->coff;
len -= (len % 188);
if (len <= 188)
break;
len -= 188;
}
}
if (len > left)
len = left;
if (copy_from_user(output->dma->vbuf[output->dma->cbuf] +
output->dma->coff,
buf, len))
return -EIO;
if (alt_dma)
dma_sync_single_for_device(dev->dev,
output->dma->pbuf[
output->dma->cbuf],
output->dma->size,
DMA_TO_DEVICE);
left -= len;
buf += len;
output->dma->coff += len;
if (output->dma->coff == output->dma->size) {
output->dma->coff = 0;
output->dma->cbuf = ((output->dma->cbuf + 1) %
output->dma->num);
}
ddbwritel(dev,
(output->dma->cbuf << 11) |
(output->dma->coff >> 7),
DMA_BUFFER_ACK(output->dma));
}
return count - left;
}
#if 0
static u32 ddb_input_free_bytes(struct ddb_input *input)
{
struct ddb *dev = input->port->dev;
u32 idx, off, stat = input->dma->stat;
u32 ctrl = ddbreadl(dev, DMA_BUFFER_CONTROL(input->dma));
idx = (stat >> 11) & 0x1f;
off = (stat & 0x7ff) << 7;
if (ctrl & 4)
return 0;
if (input->dma->cbuf != idx)
return 1;
return 0;
}
static s32 ddb_output_used_bufs(struct ddb_output *output)
{
u32 idx, off, stat, ctrl;
s32 diff;
spin_lock_irq(&output->dma->lock);
stat = output->dma->stat;
ctrl = output->dma->ctrl;
spin_unlock_irq(&output->dma->lock);
idx = (stat >> 11) & 0x1f;
off = (stat & 0x7ff) << 7;
if (ctrl & 4)
return 0;
diff = output->dma->cbuf - idx;
if (diff == 0 && off < output->dma->coff)
return 0;
if (diff <= 0)
diff += output->dma->num;
return diff;
}
static s32 ddb_input_free_bufs(struct ddb_input *input)
{
u32 idx, off, stat, ctrl;
s32 free;
spin_lock_irq(&input->dma->lock);
ctrl = input->dma->ctrl;
stat = input->dma->stat;
spin_unlock_irq(&input->dma->lock);
if (ctrl & 4)
return 0;
idx = (stat >> 11) & 0x1f;
off = (stat & 0x7ff) << 7;
free = input->dma->cbuf - idx;
if (free == 0 && off < input->dma->coff)
return 0;
if (free <= 0)
free += input->dma->num;
return free - 1;
}
static u32 ddb_output_ok(struct ddb_output *output)
{
struct ddb_input *input = output->port->input[0];
s32 diff;
diff = ddb_input_free_bufs(input) - ddb_output_used_bufs(output);
if (diff > 0)
return 1;
return 0;
}
#endif
static u32 ddb_input_avail(struct ddb_input *input)
{
struct ddb *dev = input->port->dev;
u32 idx, off, stat = input->dma->stat;
u32 ctrl = ddbreadl(dev, DMA_BUFFER_CONTROL(input->dma));
idx = (stat >> 11) & 0x1f;
off = (stat & 0x7ff) << 7;
if (ctrl & 4) {
dev_err(dev->dev, "IA %d %d %08x\n", idx, off, ctrl);
ddbwritel(dev, stat, DMA_BUFFER_ACK(input->dma));
return 0;
}
if (input->dma->cbuf != idx)
return 188;
return 0;
}
static size_t ddb_input_read(struct ddb_input *input,
__user u8 *buf, size_t count)
{
struct ddb *dev = input->port->dev;
u32 left = count;
u32 idx, off, free, stat = input->dma->stat;
int ret;
idx = (stat >> 11) & 0x1f;
off = (stat & 0x7ff) << 7;
while (left) {
if (input->dma->cbuf == idx)
return count - left;
free = input->dma->size - input->dma->coff;
if (free > left)
free = left;
if (alt_dma)
dma_sync_single_for_cpu(dev->dev,
input->dma->pbuf[
input->dma->cbuf],
input->dma->size,
DMA_FROM_DEVICE);
ret = copy_to_user(buf, input->dma->vbuf[input->dma->cbuf] +
input->dma->coff, free);
if (ret)
return -EFAULT;
input->dma->coff += free;
if (input->dma->coff == input->dma->size) {
input->dma->coff = 0;
input->dma->cbuf = (input->dma->cbuf + 1) %
input->dma->num;
}
left -= free;
buf += free;
ddbwritel(dev,
(input->dma->cbuf << 11) | (input->dma->coff >> 7),
DMA_BUFFER_ACK(input->dma));
}
return count;
}
/****************************************************************************/
/****************************************************************************/
static ssize_t ts_write(struct file *file, const char *buf,
size_t count, loff_t *ppos)
{
struct dvb_device *dvbdev = file->private_data;
struct ddb_output *output = dvbdev->priv;
struct ddb *dev = output->port->dev;
size_t left = count;
int stat;
if (!dev->has_dma)
return -EINVAL;
while (left) {
if (ddb_output_free(output) < 188) {
if (file->f_flags & O_NONBLOCK)
break;
if (wait_event_interruptible(
output->dma->wq,
ddb_output_free(output) >= 188) < 0)
break;
}
stat = ddb_output_write(output, buf, left);
if (stat < 0)
return stat;
buf += stat;
left -= stat;
}
return (left == count) ? -EAGAIN : (count - left);
}
static ssize_t ts_read(struct file *file, __user char *buf,
size_t count, loff_t *ppos)
{
struct dvb_device *dvbdev = file->private_data;
struct ddb_output *output = dvbdev->priv;
struct ddb_input *input = output->port->input[0];
struct ddb *dev = output->port->dev;
size_t left = count;
int stat;
if (!dev->has_dma)
return -EINVAL;
if (!input)
return -EINVAL;
while (left) {
if (ddb_input_avail(input) < 188) {
if (file->f_flags & O_NONBLOCK)
break;
if (wait_event_interruptible(
input->dma->wq,
ddb_input_avail(input) >= 188) < 0)
break;
}
stat = ddb_input_read(input, buf, left);
if (stat < 0)
return stat;
left -= stat;
buf += stat;
}
return (count && (left == count)) ? -EAGAIN : (count - left);
}
static unsigned int ts_poll(struct file *file, poll_table *wait)
{
struct dvb_device *dvbdev = file->private_data;
struct ddb_output *output = dvbdev->priv;
struct ddb_input *input = output->port->input[0];
unsigned int mask = 0;
poll_wait(file, &input->dma->wq, wait);
poll_wait(file, &output->dma->wq, wait);
if (ddb_input_avail(input) >= 188)
mask |= POLLIN | POLLRDNORM;
if (ddb_output_free(output) >= 188)
mask |= POLLOUT | POLLWRNORM;
return mask;
}
static int ts_release(struct inode *inode, struct file *file)
{
struct dvb_device *dvbdev = file->private_data;
struct ddb_output *output = dvbdev->priv;
struct ddb_input *input = output->port->input[0];
if ((file->f_flags & O_ACCMODE) == O_RDONLY) {
if (!input)
return -EINVAL;
ddb_input_stop(input);
} else if ((file->f_flags & O_ACCMODE) == O_WRONLY) {
if (!output)
return -EINVAL;
ddb_output_stop(output);
}
return dvb_generic_release(inode, file);
}
static int ts_open(struct inode *inode, struct file *file)
{
int err;
struct dvb_device *dvbdev = file->private_data;
struct ddb_output *output = dvbdev->priv;
struct ddb_input *input = output->port->input[0];
if ((file->f_flags & O_ACCMODE) == O_RDONLY) {
if (!input)
return -EINVAL;
if (input->redo || input->redi)
return -EBUSY;
} else if ((file->f_flags & O_ACCMODE) == O_WRONLY) {
if (!output)
return -EINVAL;
} else {
return -EINVAL;
}
err = dvb_generic_open(inode, file);
if (err < 0)
return err;
if ((file->f_flags & O_ACCMODE) == O_RDONLY)
ddb_input_start(input);
else if ((file->f_flags & O_ACCMODE) == O_WRONLY)
ddb_output_start(output);
return err;
}
static int mod_release(struct inode *inode, struct file *file)
{
struct dvb_device *dvbdev = file->private_data;
struct ddb_output *output = dvbdev->priv;
if ((file->f_flags & O_ACCMODE) == O_WRONLY) {
if (!output)
return -EINVAL;
ddb_output_stop(output);
}
return dvb_generic_release(inode, file);
}
static int mod_open(struct inode *inode, struct file *file)
{
int err;
struct dvb_device *dvbdev = file->private_data;
struct ddb_output *output = dvbdev->priv;
if ((file->f_flags & O_ACCMODE) == O_WRONLY) {
if (!output)
return -EINVAL;
}
err = dvb_generic_open(inode, file);
if (err < 0)
return err;
if ((file->f_flags & O_ACCMODE) == O_WRONLY)
ddb_output_start(output);
return err;
}
static const struct file_operations ci_fops = {
.owner = THIS_MODULE,
.read = ts_read,
.write = ts_write,
.open = ts_open,
.release = ts_release,
.poll = ts_poll,
.mmap = 0,
};
static struct dvb_device dvbdev_ci = {
.priv = 0,
.readers = 1,
.writers = 1,
.users = 2,
.fops = &ci_fops,
};
/****************************************************************************/
/****************************************************************************/
static long mod_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
return dvb_usercopy(file, cmd, arg, ddbridge_mod_do_ioctl);
}
static const struct file_operations mod_fops = {
.owner = THIS_MODULE,
.read = ts_read,
.write = ts_write,
.open = mod_open,
.release = mod_release,
.poll = ts_poll,
.mmap = 0,
.unlocked_ioctl = mod_ioctl,
};
static struct dvb_device dvbdev_mod = {
.priv = 0,
.readers = 1,
.writers = 1,
.users = 2,
.fops = &mod_fops,
};
static int locked_gate_ctrl(struct dvb_frontend *fe, int enable)
{
struct ddb_input *input = fe->sec_priv;
struct ddb_port *port = input->port;
struct ddb_dvb *dvb = &port->dvb[input->nr & 1];
int status;
if (enable) {
mutex_lock(&port->i2c_gate_lock);
status = dvb->i2c_gate_ctrl(fe, 1);
} else {
status = dvb->i2c_gate_ctrl(fe, 0);
mutex_unlock(&port->i2c_gate_lock);
}
return status;
}
#ifdef CONFIG_DVB_DRXK
static int demod_attach_drxk(struct ddb_input *input)
{
struct i2c_adapter *i2c = &input->port->i2c->adap;
struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1];
dvb->fe = dvb_attach(drxk_attach,
i2c, 0x29 + (input->nr & 1),
&dvb->fe2);
if (!dvb->fe) {
dev_err(input->port->dev->dev,
"No DRXK found!\n");
return -ENODEV;
}
dvb->fe->sec_priv = input;
dvb->i2c_gate_ctrl = dvb->fe->ops.i2c_gate_ctrl;
dvb->fe->ops.i2c_gate_ctrl = locked_gate_ctrl;
return 0;
}
#endif
static int demod_attach_cxd2843(struct ddb_input *input, int par, int osc24)
{
struct i2c_adapter *i2c = &input->port->i2c->adap;
struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1];
struct cxd2843_cfg cfg;
cfg.adr = (input->nr & 1) ? 0x6d : 0x6c;
cfg.ts_clock = par ? 0 : 1;
cfg.parallel = par ? 1 : 0;
cfg.osc = osc24 ? 24000000 : 20500000;
dvb->fe = dvb_attach(cxd2843_attach, i2c, &cfg);
if (!dvb->fe) {
dev_err(input->port->dev->dev,
"No cxd2837/38/43/54 found!\n");
return -ENODEV;
}
dvb->fe->sec_priv = input;
dvb->i2c_gate_ctrl = dvb->fe->ops.i2c_gate_ctrl;
dvb->fe->ops.i2c_gate_ctrl = locked_gate_ctrl;
return 0;
}
static int demod_attach_stv0367dd(struct ddb_input *input)
{
struct i2c_adapter *i2c = &input->port->i2c->adap;
struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1];
struct stv0367_cfg cfg = { .cont_clock = 0 };
cfg.adr = 0x1f - (input->nr & 1);
if (input->port->dev->link[input->port->lnr].info->con_clock)
cfg.cont_clock = 1;
dvb->fe = dvb_attach(stv0367_attach, i2c,
&cfg,
&dvb->fe2);
if (!dvb->fe) {
dev_err(input->port->dev->dev,
"No stv0367 found!\n");
return -ENODEV;
}
dvb->fe->sec_priv = input;
dvb->i2c_gate_ctrl = dvb->fe->ops.i2c_gate_ctrl;
dvb->fe->ops.i2c_gate_ctrl = locked_gate_ctrl;
return 0;
}
static int tuner_attach_tda18271(struct ddb_input *input)
{
struct i2c_adapter *i2c = &input->port->i2c->adap;
struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1];
struct dvb_frontend *fe;
if (dvb->fe->ops.i2c_gate_ctrl)
dvb->fe->ops.i2c_gate_ctrl(dvb->fe, 1);
fe = dvb_attach(tda18271c2dd_attach, dvb->fe, i2c, 0x60);
if (dvb->fe->ops.i2c_gate_ctrl)
dvb->fe->ops.i2c_gate_ctrl(dvb->fe, 0);
if (!fe) {
dev_err(input->port->dev->dev,
"No TDA18271 found!\n");
return -ENODEV;
}
return 0;
}
static int tuner_attach_tda18212dd(struct ddb_input *input)
{
struct i2c_adapter *i2c = &input->port->i2c->adap;
struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1];
struct dvb_frontend *fe;
fe = dvb_attach(tda18212dd_attach, dvb->fe, i2c,
(input->nr & 1) ? 0x63 : 0x60);
if (!fe) {
dev_err(input->port->dev->dev,
"No TDA18212 found!\n");
return -ENODEV;
}
return 0;
}
#ifdef CONFIG_DVB_TDA18212
struct tda18212_config tda18212_0 = {
.i2c_address = 0x60,
};
struct tda18212_config tda18212_1 = {
.i2c_address = 0x63,
};
static int tuner_attach_tda18212(struct ddb_input *input)
{
struct i2c_adapter *i2c = &input->port->i2c->adap;
struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1];
struct dvb_frontend *fe;
struct tda18212_config *cfg;
cfg = (input->nr & 1) ? &tda18212_1 : &tda18212_0;
fe = dvb_attach(tda18212_attach, dvb->fe, i2c, cfg);
if (!fe) {
dev_err(input->port->dev->dev,
"No TDA18212 found!\n");
return -ENODEV;
}
return 0;
}
#endif
/****************************************************************************/
/****************************************************************************/
/****************************************************************************/
static struct stv090x_config stv0900 = {
.device = STV0900,
.demod_mode = STV090x_DUAL,
.clk_mode = STV090x_CLK_EXT,
.xtal = 27000000,
.address = 0x69,
.ts1_mode = STV090x_TSMODE_SERIAL_PUNCTURED,
.ts2_mode = STV090x_TSMODE_SERIAL_PUNCTURED,
.ts1_tei = 1,
.ts2_tei = 1,
.repeater_level = STV090x_RPTLEVEL_16,
.adc1_range = STV090x_ADC_1Vpp,
.adc2_range = STV090x_ADC_1Vpp,
.diseqc_envelope_mode = true,
};
static struct stv090x_config stv0900_aa = {
.device = STV0900,
.demod_mode = STV090x_DUAL,
.clk_mode = STV090x_CLK_EXT,
.xtal = 27000000,
.address = 0x68,
.ts1_mode = STV090x_TSMODE_SERIAL_PUNCTURED,
.ts2_mode = STV090x_TSMODE_SERIAL_PUNCTURED,
.ts1_tei = 1,
.ts2_tei = 1,
.repeater_level = STV090x_RPTLEVEL_16,
.adc1_range = STV090x_ADC_1Vpp,
.adc2_range = STV090x_ADC_1Vpp,
.diseqc_envelope_mode = true,
};
static struct stv6110x_config stv6110a = {
.addr = 0x60,
.refclk = 27000000,
.clk_div = 1,
};
static struct stv6110x_config stv6110b = {
.addr = 0x63,
.refclk = 27000000,
.clk_div = 1,
};
static int demod_attach_stv0900(struct ddb_input *input, int type)
{
struct i2c_adapter *i2c = &input->port->i2c->adap;
struct stv090x_config *feconf = type ? &stv0900_aa : &stv0900;
struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1];
dvb->fe = dvb_attach(stv090x_attach, feconf, i2c,
(input->nr & 1) ? STV090x_DEMODULATOR_1
: STV090x_DEMODULATOR_0);
if (!dvb->fe) {
dev_err(input->port->dev->dev,
"No STV0900 found!\n");
return -ENODEV;
}
if (!dvb_attach(lnbh24_attach, dvb->fe, i2c, 0,
0, (input->nr & 1) ?
(0x09 - type) : (0x0b - type))) {
dev_err(input->port->dev->dev,
"No LNBH24 found!\n");
return -ENODEV;
}
return 0;
}
static int tuner_attach_stv6110(struct ddb_input *input, int type)
{
struct i2c_adapter *i2c = &input->port->i2c->adap;
struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1];
struct stv090x_config *feconf = type ? &stv0900_aa : &stv0900;
struct stv6110x_config *tunerconf = (input->nr & 1) ?
&stv6110b : &stv6110a;
const struct stv6110x_devctl *ctl;
ctl = dvb_attach(stv6110x_attach, dvb->fe, tunerconf, i2c);
if (!ctl) {
dev_err(input->port->dev->dev,
"No STV6110X found!\n");
return -ENODEV;
}
dev_info(input->port->dev->dev,
"attach tuner input %d adr %02x\n",
input->nr, tunerconf->addr);
feconf->tuner_init = ctl->tuner_init;
feconf->tuner_sleep = ctl->tuner_sleep;
feconf->tuner_set_mode = ctl->tuner_set_mode;
feconf->tuner_set_frequency = ctl->tuner_set_frequency;
feconf->tuner_get_frequency = ctl->tuner_get_frequency;
feconf->tuner_set_bandwidth = ctl->tuner_set_bandwidth;
feconf->tuner_get_bandwidth = ctl->tuner_get_bandwidth;
feconf->tuner_set_bbgain = ctl->tuner_set_bbgain;
feconf->tuner_get_bbgain = ctl->tuner_get_bbgain;
feconf->tuner_set_refclk = ctl->tuner_set_refclk;
feconf->tuner_get_status = ctl->tuner_get_status;
return 0;
}
static struct stv0910_cfg stv0910_p = {
.adr = 0x68,
.parallel = 1,
.rptlvl = 4,
.clk = 30000000,
};
static int demod_attach_stv0910(struct ddb_input *input, int type)
{
struct i2c_adapter *i2c = &input->port->i2c->adap;
struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1];
struct stv0910_cfg cfg = stv0910_p;
if (stv0910_single)
cfg.single = 1;
if (type)
cfg.parallel = 2;
dvb->fe = dvb_attach(stv0910_attach, i2c, &cfg, (input->nr & 1));
if (!dvb->fe) {
cfg.adr = 0x6c;
dvb->fe = dvb_attach(stv0910_attach, i2c,
&cfg, (input->nr & 1));
}
if (!dvb->fe) {
dev_err(input->port->dev->dev,
"No STV0910 found!\n");
return -ENODEV;
}
if (!dvb_attach(lnbh25_attach, dvb->fe, i2c,
((input->nr & 1) ? 0x0d : 0x0c))) {
if (!dvb_attach(lnbh25_attach, dvb->fe, i2c,
((input->nr & 1) ? 0x09 : 0x08))) {
dev_err(input->port->dev->dev,
"No LNBH25 found!\n");
return -ENODEV;
}
}
return 0;
}
static int tuner_attach_stv6111(struct ddb_input *input, int type)
{
struct i2c_adapter *i2c = &input->port->i2c->adap;
struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1];
struct dvb_frontend *fe;
u8 adr = (type ? 0 : 4) + ((input->nr & 1) ? 0x63 : 0x60);
fe = dvb_attach(stv6111_attach, dvb->fe, i2c, adr);
if (!fe) {
fe = dvb_attach(stv6111_attach, dvb->fe, i2c, adr & ~4);
if (!fe) {
dev_err(input->port->dev->dev,
"No STV6111 found at 0x%02x!\n", adr);
return -ENODEV;
}
}
return 0;
}
#if 0
static int start_input(struct ddb_input *input)
{
struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1];
if (!dvb->users)
ddb_input_start_all(input);
return ++dvb->users;
}
static int stop_input(struct ddb_input *input)
{
struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1];
if (--dvb->users)
return dvb->users;
ddb_input_stop_all(input);
return 0;
}
#endif
static int start_feed(struct dvb_demux_feed *dvbdmxfeed)
{
struct dvb_demux *dvbdmx = dvbdmxfeed->demux;
struct ddb_input *input = dvbdmx->priv;
struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1];
if (!dvb->users)
ddb_input_start_all(input);
return ++dvb->users;
}
static int stop_feed(struct dvb_demux_feed *dvbdmxfeed)
{
struct dvb_demux *dvbdmx = dvbdmxfeed->demux;
struct ddb_input *input = dvbdmx->priv;
struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1];
if (--dvb->users)
return dvb->users;
ddb_input_stop_all(input);
return 0;
}
static void dvb_input_detach(struct ddb_input *input)
{
struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1];
struct dvb_demux *dvbdemux = &dvb->demux;
switch (dvb->attached) {
case 0x31:
if (dvb->fe2)
dvb_unregister_frontend(dvb->fe2);
if (dvb->fe)
dvb_unregister_frontend(dvb->fe);
/* fallthrough */
case 0x30:
dvb_frontend_detach(dvb->fe);
dvb->fe = NULL;
dvb->fe2 = NULL;
/* fallthrough */
case 0x21:
if (input->port->dev->ns_num)
dvb_netstream_release(&dvb->dvbns);
/* fallthrough */
case 0x20:
dvb_net_release(&dvb->dvbnet);
/* fallthrough */
case 0x12:
dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
&dvb->hw_frontend);
dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
&dvb->mem_frontend);
/* fallthrough */
case 0x11:
dvb_dmxdev_release(&dvb->dmxdev);
/* fallthrough */
case 0x10:
dvb_dmx_release(&dvb->demux);
/* fallthrough */
case 0x01:
break;
}
dvb->attached = 0x00;
}
static int dvb_register_adapters(struct ddb *dev)
{
int i, ret = 0;
struct ddb_port *port;
struct dvb_adapter *adap;
if (adapter_alloc == 3 || dev->link[0].info->type == DDB_MOD ||
dev->link[0].info->type == DDB_OCTONET) {
port = &dev->port[0];
adap = port->dvb[0].adap;
ret = dvb_register_adapter(adap, "DDBridge", THIS_MODULE,
port->dev->dev,
adapter_nr);
if (ret < 0)
return ret;
port->dvb[0].adap_registered = 1;
for (i = 0; i < dev->port_num; i++) {
port = &dev->port[i];
port->dvb[0].adap = adap;
port->dvb[1].adap = adap;
}
return 0;
}
for (i = 0; i < dev->port_num; i++) {
port = &dev->port[i];
switch (port->class) {
case DDB_PORT_TUNER:
adap = port->dvb[0].adap;
ret = dvb_register_adapter(adap, "DDBridge",
THIS_MODULE,
port->dev->dev,
adapter_nr);
if (ret < 0)
return ret;
port->dvb[0].adap_registered = 1;
if (adapter_alloc > 0) {
port->dvb[1].adap = port->dvb[0].adap;
break;
}
adap = port->dvb[1].adap;
ret = dvb_register_adapter(adap, "DDBridge",
THIS_MODULE,
port->dev->dev,
adapter_nr);
if (ret < 0)
return ret;
port->dvb[1].adap_registered = 1;
break;
case DDB_PORT_CI:
case DDB_PORT_LOOP:
adap = port->dvb[0].adap;
ret = dvb_register_adapter(adap, "DDBridge",
THIS_MODULE,
port->dev->dev,
adapter_nr);
if (ret < 0)
return ret;
port->dvb[0].adap_registered = 1;
break;
default:
if (adapter_alloc < 2)
break;
adap = port->dvb[0].adap;
ret = dvb_register_adapter(adap, "DDBridge",
THIS_MODULE,
port->dev->dev,
adapter_nr);
if (ret < 0)
return ret;
port->dvb[0].adap_registered = 1;
break;
}
}
return ret;
}
static void dvb_unregister_adapters(struct ddb *dev)
{
int i;
struct ddb_port *port;
struct ddb_dvb *dvb;
for (i = 0; i < dev->link[0].info->port_num; i++) {
port = &dev->port[i];
dvb = &port->dvb[0];
if (dvb->adap_registered)
dvb_unregister_adapter(dvb->adap);
dvb->adap_registered = 0;
dvb = &port->dvb[1];
if (dvb->adap_registered)
dvb_unregister_adapter(dvb->adap);
dvb->adap_registered = 0;
}
}
static int dvb_input_attach(struct ddb_input *input)
{
int ret = 0;
struct ddb_dvb *dvb = &input->port->dvb[input->nr & 1];
struct ddb_port *port = input->port;
struct dvb_adapter *adap = dvb->adap;
struct dvb_demux *dvbdemux = &dvb->demux;
int par = 0, osc24 = 0;
dvb->attached = 0x01;
dvbdemux->priv = input;
dvbdemux->dmx.capabilities = DMX_TS_FILTERING |
DMX_SECTION_FILTERING | DMX_MEMORY_BASED_FILTERING;
dvbdemux->start_feed = start_feed;
dvbdemux->stop_feed = stop_feed;
dvbdemux->filternum = 256;
dvbdemux->feednum = 256;
ret = dvb_dmx_init(dvbdemux);
if (ret < 0)
return ret;
dvb->attached = 0x10;
dvb->dmxdev.filternum = 256;
dvb->dmxdev.demux = &dvbdemux->dmx;
ret = dvb_dmxdev_init(&dvb->dmxdev, adap);
if (ret < 0)
return ret;
dvb->attached = 0x11;
dvb->mem_frontend.source = DMX_MEMORY_FE;
dvb->demux.dmx.add_frontend(&dvb->demux.dmx, &dvb->mem_frontend);
dvb->hw_frontend.source = DMX_FRONTEND_0;
dvb->demux.dmx.add_frontend(&dvb->demux.dmx, &dvb->hw_frontend);
ret = dvbdemux->dmx.connect_frontend(&dvbdemux->dmx, &dvb->hw_frontend);
if (ret < 0)
return ret;
dvb->attached = 0x12;
ret = dvb_net_init(adap, &dvb->dvbnet, dvb->dmxdev.demux);
if (ret < 0)
return ret;
dvb->attached = 0x20;
if (input->port->dev->ns_num) {
ret = netstream_init(input);
if (ret < 0)
return ret;
dvb->attached = 0x21;
}
dvb->fe = NULL;
dvb->fe2 = NULL;
switch (port->type) {
case DDB_TUNER_MXL5XX:
if (ddb_fe_attach_mxl5xx(input) < 0)
return -ENODEV;
break;
case DDB_TUNER_DVBS_ST:
if (demod_attach_stv0900(input, 0) < 0)
return -ENODEV;
if (tuner_attach_stv6110(input, 0) < 0)
return -ENODEV;
break;
case DDB_TUNER_DVBS_ST_AA:
if (demod_attach_stv0900(input, 1) < 0)
return -ENODEV;
if (tuner_attach_stv6110(input, 1) < 0)
return -ENODEV;
break;
case DDB_TUNER_DVBS_STV0910:
if (demod_attach_stv0910(input, 0) < 0)
return -ENODEV;
if (tuner_attach_stv6111(input, 0) < 0)
return -ENODEV;
break;
case DDB_TUNER_DVBS_STV0910_PR:
if (demod_attach_stv0910(input, 1) < 0)
return -ENODEV;
if (tuner_attach_stv6111(input, 1) < 0)
return -ENODEV;
break;
case DDB_TUNER_DVBS_STV0910_P:
if (demod_attach_stv0910(input, 0) < 0)
return -ENODEV;
if (tuner_attach_stv6111(input, 1) < 0)
return -ENODEV;
break;
#ifdef CONFIG_DVB_DRXK
case DDB_TUNER_DVBCT_TR:
if (demod_attach_drxk(input) < 0)
return -ENODEV;
if (tuner_attach_tda18271(input) < 0)
return -ENODEV;
break;
#endif
case DDB_TUNER_DVBCT_ST:
if (demod_attach_stv0367dd(input) < 0)
return -ENODEV;
if (tuner_attach_tda18212dd(input) < 0)
return -ENODEV;
break;
case DDB_TUNER_DVBC2T2I_SONY_P:
if (input->port->dev->link[input->port->lnr].info->ts_quirks &
TS_QUIRK_ALT_OSC)
osc24 = 0;
else
osc24 = 1;
case DDB_TUNER_DVBCT2_SONY_P:
case DDB_TUNER_DVBC2T2_SONY_P:
case DDB_TUNER_ISDBT_SONY_P:
if (input->port->dev->link[input->port->lnr].info->ts_quirks &
TS_QUIRK_SERIAL)
par = 0;
else
par = 1;
if (demod_attach_cxd2843(input, par, osc24) < 0)
return -ENODEV;
if (tuner_attach_tda18212dd(input) < 0)
return -ENODEV;
break;
case DDB_TUNER_DVBC2T2I_SONY:
osc24 = 1;
case DDB_TUNER_DVBCT2_SONY:
case DDB_TUNER_DVBC2T2_SONY:
case DDB_TUNER_ISDBT_SONY:
if (demod_attach_cxd2843(input, 0, osc24) < 0)
return -ENODEV;
if (tuner_attach_tda18212dd(input) < 0)
return -ENODEV;
break;
default:
return 0;
}
dvb->attached = 0x30;
if (dvb->fe) {
if (dvb_register_frontend(adap, dvb->fe) < 0)
return -ENODEV;
}
if (dvb->fe2) {
if (dvb_register_frontend(adap, dvb->fe2) < 0)
return -ENODEV;
dvb->fe2->tuner_priv = dvb->fe->tuner_priv;
memcpy(&dvb->fe2->ops.tuner_ops,
&dvb->fe->ops.tuner_ops,
sizeof(struct dvb_tuner_ops));
}
dvb->attached = 0x31;
return 0;
}
static int port_has_encti(struct ddb_port *port)
{
u8 val;
int ret = i2c_read_reg(&port->i2c->adap, 0x20, 0, &val);
if (!ret)
dev_info(port->dev->dev,
"[0x20]=0x%02x\n", val);
return ret ? 0 : 1;
}
static int port_has_cxd(struct ddb_port *port, u8 *type)
{
u8 val;
u8 probe[4] = { 0xe0, 0x00, 0x00, 0x00 }, data[4];
struct i2c_msg msgs[2] = {{ .addr = 0x40, .flags = 0,
.buf = probe, .len = 4 },
{ .addr = 0x40, .flags = I2C_M_RD,
.buf = data, .len = 4 } };
val = i2c_transfer(&port->i2c->adap, msgs, 2);
if (val != 2)
return 0;
if (data[0] == 0x02 && data[1] == 0x2b && data[3] == 0x43)
*type = 2;
else
*type = 1;
return 1;
}
static int port_has_xo2(struct ddb_port *port, u8 *type, u8 *id)
{
u8 probe[1] = { 0x00 }, data[4];
if (i2c_io(&port->i2c->adap, 0x10, probe, 1, data, 4))
return 0;
if (data[0] == 'D' && data[1] == 'F') {
*id = data[2];
*type = 1;
return 1;
}
if (data[0] == 'C' && data[1] == 'I') {
*id = data[2];
*type = 2;
return 1;
}
return 0;
}
static int port_has_stv0900(struct ddb_port *port)
{
u8 val;
if (i2c_read_reg16(&port->i2c->adap, 0x69, 0xf100, &val) < 0)
return 0;
return 1;
}
static int port_has_stv0900_aa(struct ddb_port *port, u8 *id)
{
if (i2c_read_reg16(&port->i2c->adap, 0x68, 0xf100, id) < 0)
return 0;
return 1;
}
static int port_has_drxks(struct ddb_port *port)
{
u8 val;
if (i2c_read(&port->i2c->adap, 0x29, &val) < 0)
return 0;
if (i2c_read(&port->i2c->adap, 0x2a, &val) < 0)
return 0;
return 1;
}
static int port_has_stv0367(struct ddb_port *port)
{
u8 val;
if (i2c_read_reg16(&port->i2c->adap, 0x1e, 0xf000, &val) < 0)
return 0;
if (val != 0x60)
return 0;
if (i2c_read_reg16(&port->i2c->adap, 0x1f, 0xf000, &val) < 0)
return 0;
if (val != 0x60)
return 0;
return 1;
}
static int init_xo2(struct ddb_port *port)
{
struct i2c_adapter *i2c = &port->i2c->adap;
struct ddb *dev = port->dev;
u8 val, data[2];
int res;
res = i2c_read_regs(i2c, 0x10, 0x04, data, 2);
if (res < 0)
return res;
if (data[0] != 0x01) {
dev_info(dev->dev, "Port %d: invalid XO2\n", port->nr);
return -1;
}
i2c_read_reg(i2c, 0x10, 0x08, &val);
if (val != 0) {
i2c_write_reg(i2c, 0x10, 0x08, 0x00);
msleep(100);
}
/* Enable tuner power, disable pll, reset demods */
i2c_write_reg(i2c, 0x10, 0x08, 0x04);
usleep_range(2000, 3000);
/* Release demod resets */
i2c_write_reg(i2c, 0x10, 0x08, 0x07);
/* speed: 0=55,1=75,2=90,3=104 MBit/s */
i2c_write_reg(i2c, 0x10, 0x09, xo2_speed);
if (dev->link[port->lnr].info->con_clock) {
dev_info(dev->dev, "Setting continuous clock for XO2\n");
i2c_write_reg(i2c, 0x10, 0x0a, 0x03);
i2c_write_reg(i2c, 0x10, 0x0b, 0x03);
} else {
i2c_write_reg(i2c, 0x10, 0x0a, 0x01);
i2c_write_reg(i2c, 0x10, 0x0b, 0x01);
}
usleep_range(2000, 3000);
/* Start XO2 PLL */
i2c_write_reg(i2c, 0x10, 0x08, 0x87);
return 0;
}
static int init_xo2_ci(struct ddb_port *port)
{
struct i2c_adapter *i2c = &port->i2c->adap;
struct ddb *dev = port->dev;
u8 val, data[2];
int res;
res = i2c_read_regs(i2c, 0x10, 0x04, data, 2);
if (res < 0)
return res;
if (data[0] > 1) {
dev_info(dev->dev, "Port %d: invalid XO2 CI %02x\n",
port->nr, data[0]);
return -1;
}
dev_info(dev->dev, "Port %d: DuoFlex CI %u.%u\n",
port->nr, data[0], data[1]);
i2c_read_reg(i2c, 0x10, 0x08, &val);
if (val != 0) {
i2c_write_reg(i2c, 0x10, 0x08, 0x00);
msleep(100);
}
/* Enable both CI */
i2c_write_reg(i2c, 0x10, 0x08, 3);
usleep_range(2000, 3000);
/* speed: 0=55,1=75,2=90,3=104 MBit/s */
i2c_write_reg(i2c, 0x10, 0x09, 1);
i2c_write_reg(i2c, 0x10, 0x08, 0x83);
usleep_range(2000, 3000);
if (dev->link[port->lnr].info->con_clock) {
dev_info(dev->dev, "Setting continuous clock for DuoFLex CI\n");
i2c_write_reg(i2c, 0x10, 0x0a, 0x03);
i2c_write_reg(i2c, 0x10, 0x0b, 0x03);
} else {
i2c_write_reg(i2c, 0x10, 0x0a, 0x01);
i2c_write_reg(i2c, 0x10, 0x0b, 0x01);
}
return 0;
}
static int port_has_cxd28xx(struct ddb_port *port, u8 *id)
{
struct i2c_adapter *i2c = &port->i2c->adap;
int status;
status = i2c_write_reg(&port->i2c->adap, 0x6e, 0, 0);
if (status)
return 0;
status = i2c_read_reg(i2c, 0x6e, 0xfd, id);
if (status)
return 0;
return 1;
}
static char *xo2names[] = {
"DUAL DVB-S2", "DUAL DVB-C/T/T2",
"DUAL DVB-ISDBT", "DUAL DVB-C/C2/T/T2",
"DUAL ATSC", "DUAL DVB-C/C2/T/T2,ISDB-T",
"", ""
};
static char *xo2types[] = {
"DVBS_ST", "DVBCT2_SONY",
"ISDBT_SONY", "DVBC2T2_SONY",
"ATSC_ST", "DVBC2T2I_SONY"
};
static void ddb_port_probe(struct ddb_port *port)
{
struct ddb *dev = port->dev;
u32 l = port->lnr;
u8 id, type;
port->name = "NO MODULE";
port->type_name = "NONE";
port->class = DDB_PORT_NONE;
/* Handle missing ports and ports without I2C */
if (port->nr == ts_loop) {
port->name = "TS LOOP";
port->class = DDB_PORT_LOOP;
return;
}
if (port->nr == 1 && dev->link[l].info->type == DDB_OCTOPUS_CI &&
dev->link[l].info->i2c_mask == 1) {
port->name = "NO TAB";
port->class = DDB_PORT_NONE;
return;
}
if (dev->link[l].info->type == DDB_MOD) {
port->name = "MOD";
port->class = DDB_PORT_MOD;
return;
}
#if 0
if (dev->link[l].info->type == DDB_OCTOPRO_HDIN) {
if (port->nr == 0) {
dev->link[l].info->type = DDB_OCTOPUS;
port->name = "HDIN";
port->class = DDB_PORT_LOOP;
}
return;
}
#endif
if (dev->link[l].info->type == DDB_OCTOPUS_MAX) {
port->name = "DUAL DVB-S2 MAX";
port->type_name = "MXL5XX";
port->class = DDB_PORT_TUNER;
port->type = DDB_TUNER_MXL5XX;
if (port->i2c)
ddbwritel(dev, I2C_SPEED_400,
port->i2c->regs + I2C_TIMING);
return;
}
if (port->nr > 1 && dev->link[l].info->type == DDB_OCTOPUS_CI) {
port->name = "CI internal";
port->type_name = "INTERNAL";
port->class = DDB_PORT_CI;
port->type = DDB_CI_INTERNAL;
}
if (!port->i2c)
return;
/* Probe ports with I2C */
if (port_has_cxd(port, &id)) {
if (id == 1) {
port->name = "CI";
port->type_name = "CXD2099";
port->class = DDB_PORT_CI;
port->type = DDB_CI_EXTERNAL_SONY;
ddbwritel(dev, I2C_SPEED_400,
port->i2c->regs + I2C_TIMING);
} else {
dev_info(dev->dev, "Port %d: Uninitialized DuoFlex\n",
port->nr);
return;
}
} else if (port_has_xo2(port, &type, &id)) {
ddbwritel(dev, I2C_SPEED_400, port->i2c->regs + I2C_TIMING);
dev_info(dev->dev, "XO2 ID %02x\n", id);
if (type == 2) {
port->name = "DuoFlex CI";
port->class = DDB_PORT_CI;
port->type = DDB_CI_EXTERNAL_XO2;
port->type_name = "CI_XO2";
init_xo2_ci(port);
return;
}
id >>= 2;
if (id > 5) {
port->name = "unknown XO2 DuoFlex";
port->type_name = "UNKNOWN";
} else {
port->name = xo2names[id];
port->class = DDB_PORT_TUNER;
port->type = DDB_TUNER_XO2 + id;
port->type_name = xo2types[id];
init_xo2(port);
}
} else if (port_has_cxd28xx(port, &id)) {
switch (id) {
case 0xa4:
port->name = "DUAL DVB-C2T2 CXD2843";
port->type = DDB_TUNER_DVBC2T2_SONY_P;
port->type_name = "DVBC2T2_SONY";
break;
case 0xb1:
port->name = "DUAL DVB-CT2 CXD2837";
port->type = DDB_TUNER_DVBCT2_SONY_P;
port->type_name = "DVBCT2_SONY";
break;
case 0xb0:
port->name = "DUAL ISDB-T CXD2838";
port->type = DDB_TUNER_ISDBT_SONY_P;
port->type_name = "ISDBT_SONY";
break;
case 0xc1:
port->name = "DUAL DVB-C2T2 ISDB-T CXD2854";
port->type = DDB_TUNER_DVBC2T2I_SONY_P;
port->type_name = "DVBC2T2I_ISDBT_SONY";
break;
default:
return;
}
port->class = DDB_PORT_TUNER;
ddbwritel(dev, I2C_SPEED_400, port->i2c->regs + I2C_TIMING);
} else if (port_has_stv0900(port)) {
port->name = "DUAL DVB-S2";
port->class = DDB_PORT_TUNER;
port->type = DDB_TUNER_DVBS_ST;
port->type_name = "DVBS_ST";
ddbwritel(dev, I2C_SPEED_100, port->i2c->regs + I2C_TIMING);
} else if (port_has_stv0900_aa(port, &id)) {
port->name = "DUAL DVB-S2";
port->class = DDB_PORT_TUNER;
if (id == 0x51) {
if (port->nr == 0 &&
dev->link[l].info->ts_quirks & TS_QUIRK_REVERSED)
port->type = DDB_TUNER_DVBS_STV0910_PR;
else
port->type = DDB_TUNER_DVBS_STV0910_P;
port->type_name = "DVBS_ST_0910";
} else {
port->type = DDB_TUNER_DVBS_ST_AA;
port->type_name = "DVBS_ST_AA";
}
ddbwritel(dev, I2C_SPEED_100, port->i2c->regs + I2C_TIMING);
} else if (port_has_drxks(port)) {
port->name = "DUAL DVB-C/T";
port->class = DDB_PORT_TUNER;
port->type = DDB_TUNER_DVBCT_TR;
port->type_name = "DVBCT_TR";
ddbwritel(dev, I2C_SPEED_400, port->i2c->regs + I2C_TIMING);
} else if (port_has_stv0367(port)) {
port->name = "DUAL DVB-C/T";
port->class = DDB_PORT_TUNER;
port->type = DDB_TUNER_DVBCT_ST;
port->type_name = "DVBCT_ST";
ddbwritel(dev, I2C_SPEED_100, port->i2c->regs + I2C_TIMING);
} else if (port_has_encti(port)) {
port->name = "ENCTI";
port->class = DDB_PORT_LOOP;
}
}
/****************************************************************************/
/****************************************************************************/
/****************************************************************************/
static int ddb_port_attach(struct ddb_port *port)
{
int ret = 0;
switch (port->class) {
case DDB_PORT_TUNER:
ret = dvb_input_attach(port->input[0]);
if (ret < 0)
break;
ret = dvb_input_attach(port->input[1]);
if (ret < 0)
break;
port->input[0]->redi = port->input[0];
port->input[1]->redi = port->input[1];
break;
case DDB_PORT_CI:
ret = ddb_ci_attach(port, ci_bitrate);
if (ret < 0)
break;
case DDB_PORT_LOOP:
ret = dvb_register_device(port->dvb[0].adap,
&port->dvb[0].dev,
&dvbdev_ci, (void *)port->output,
DVB_DEVICE_CI, 1);
break;
case DDB_PORT_MOD:
ret = dvb_register_device(port->dvb[0].adap,
&port->dvb[0].dev,
&dvbdev_mod, (void *)port->output,
DVB_DEVICE_MOD, 1);
break;
default:
break;
}
if (ret < 0)
dev_err(port->dev->dev,
"port_attach on port %d failed\n", port->nr);
return ret;
}
static int ddb_ports_attach(struct ddb *dev)
{
int i, ret = 0;
struct ddb_port *port;
dev->ns_num = dev->link[0].info->ns_num;
for (i = 0; i < dev->ns_num; i++)
dev->ns[i].nr = i;
dev_info(dev->dev, "%d netstream channels\n", dev->ns_num);
if (dev->port_num) {
ret = dvb_register_adapters(dev);
if (ret < 0) {
dev_err(dev->dev, "Registering adapters failed. Check DVB_MAX_ADAPTERS in config.\n");
return ret;
}
}
for (i = 0; i < dev->port_num; i++) {
port = &dev->port[i];
ret = ddb_port_attach(port);
if (ret < 0)
break;
}
return ret;
}
void ddb_ports_detach(struct ddb *dev)
{
int i;
struct ddb_port *port;
for (i = 0; i < dev->port_num; i++) {
port = &dev->port[i];
switch (port->class) {
case DDB_PORT_TUNER:
dvb_input_detach(port->input[0]);
dvb_input_detach(port->input[1]);
break;
case DDB_PORT_CI:
case DDB_PORT_LOOP:
if (port->dvb[0].dev)
dvb_unregister_device(port->dvb[0].dev);
if (port->en) {
dvb_ca_en50221_release(port->en);
kfree(port->en);
port->en = NULL;
}
break;
case DDB_PORT_MOD:
if (port->dvb[0].dev)
dvb_unregister_device(port->dvb[0].dev);
break;
}
}
dvb_unregister_adapters(dev);
}
/* Copy input DMA pointers to output DMA and ACK. */
static void input_write_output(struct ddb_input *input,
struct ddb_output *output)
{
ddbwritel(output->port->dev,
input->dma->stat, DMA_BUFFER_ACK(output->dma));
output->dma->cbuf = (input->dma->stat >> 11) & 0x1f;
output->dma->coff = (input->dma->stat & 0x7ff) << 7;
}
static void output_ack_input(struct ddb_output *output,
struct ddb_input *input)
{
ddbwritel(input->port->dev,
output->dma->stat, DMA_BUFFER_ACK(input->dma));
}
static void input_write_dvb(struct ddb_input *input,
struct ddb_input *input2)
{
struct ddb_dvb *dvb = &input2->port->dvb[input2->nr & 1];
struct ddb_dma *dma, *dma2;
struct ddb *dev = input->port->dev;
int ack = 1;
dma = input->dma;
dma2 = input->dma;
/* if there also is an output connected, do not ACK.
* input_write_output will ACK.
*/
if (input->redo) {
dma2 = input->redo->dma;
ack = 0;
}
while (dma->cbuf != ((dma->stat >> 11) & 0x1f) || (4 & dma->ctrl)) {
if (4 & dma->ctrl) {
/*dev_err(dev->dev, "Overflow dma %d\n", dma->nr);*/
ack = 1;
}
if (alt_dma)
dma_sync_single_for_cpu(dev->dev, dma2->pbuf[dma->cbuf],
dma2->size, DMA_FROM_DEVICE);
#if 0
dev_info(dev->dev, "%02x %02x %02x %02x\n",
dma2->vbuf[dma->cbuf][0], dma2->vbuf[dma->cbuf][1],
dma2->vbuf[dma->cbuf][2], dma2->vbuf[dma->cbuf][3]);
#endif
dvb_dmx_swfilter_packets(&dvb->demux,
dma2->vbuf[dma->cbuf],
dma2->size / 188);
dma->cbuf = (dma->cbuf + 1) % dma2->num;
if (ack)
ddbwritel(dev, (dma->cbuf << 11),
DMA_BUFFER_ACK(dma));
dma->stat = ddbreadl(dev, DMA_BUFFER_CURRENT(dma));
dma->ctrl = ddbreadl(dev, DMA_BUFFER_CONTROL(dma));
}
}
#ifdef DDB_USE_WORK
static void input_work(struct work_struct *work)
{
struct ddb_dma *dma = container_of(work, struct ddb_dma, work);
struct ddb_input *input = (struct ddb_input *)dma->io;
#else
static void input_tasklet(unsigned long data)
{
struct ddb_input *input = (struct ddb_input *)data;
struct ddb_dma *dma = input->dma;
#endif
struct ddb *dev = input->port->dev;
unsigned long flags;
spin_lock_irqsave(&dma->lock, flags);
if (!dma->running) {
spin_unlock_irqrestore(&dma->lock, flags);
return;
}
dma->stat = ddbreadl(dev, DMA_BUFFER_CURRENT(dma));
dma->ctrl = ddbreadl(dev, DMA_BUFFER_CONTROL(dma));
#if 0
if (4 & dma->ctrl)
dev_err(dev->dev, "Overflow dma %d\n", dma->nr);
#endif
if (input->redi)
input_write_dvb(input, input->redi);
if (input->redo)
input_write_output(input, input->redo);
wake_up(&dma->wq);
spin_unlock_irqrestore(&dma->lock, flags);
}
static void input_handler(unsigned long data)
{
struct ddb_input *input = (struct ddb_input *)data;
struct ddb_dma *dma = input->dma;
/* If there is no input connected, input_tasklet() will
* just copy pointers and ACK. So, there is no need to go
* through the tasklet scheduler.
*/
#ifdef DDB_USE_WORK
if (input->redi)
queue_work(ddb_wq, &dma->work);
else
input_work(&dma->work);
#else
if (input->redi)
tasklet_schedule(&dma->tasklet);
else
input_tasklet(data);
#endif
}
static void output_handler(unsigned long data)
{
struct ddb_output *output = (struct ddb_output *)data;
struct ddb_dma *dma = output->dma;
struct ddb *dev = output->port->dev;
spin_lock(&dma->lock);
if (!dma->running) {
spin_unlock(&dma->lock);
return;
}
dma->stat = ddbreadl(dev, DMA_BUFFER_CURRENT(dma));
dma->ctrl = ddbreadl(dev, DMA_BUFFER_CONTROL(dma));
if (output->redi)
output_ack_input(output, output->redi);
wake_up(&dma->wq);
spin_unlock(&dma->lock);
}
/****************************************************************************/
/****************************************************************************/
static const struct ddb_regmap *io_regmap(struct ddb_io *io, int link)
{
const struct ddb_info *info;
if (link)
info = io->port->dev->link[io->port->lnr].info;
else
info = io->port->dev->link[0].info;
if (!info)
return NULL;
return info->regmap;
}
static void ddb_dma_init(struct ddb_io *io, int nr, int out)
{
struct ddb_dma *dma;
const struct ddb_regmap *rm = io_regmap(io, 0);
dma = out ? &io->port->dev->odma[nr] : &io->port->dev->idma[nr];
io->dma = dma;
dma->io = io;
spin_lock_init(&dma->lock);
init_waitqueue_head(&dma->wq);
if (out) {
dma->regs = rm->odma->base + rm->odma->size * nr;
dma->bufregs = rm->odma_buf->base + rm->odma_buf->size * nr;
if (io->port->dev->link[0].info->type == DDB_MOD &&
io->port->dev->link[0].info->version == 3) {
dma->num = OUTPUT_DMA_BUFS_SDR;
dma->size = OUTPUT_DMA_SIZE_SDR;
dma->div = OUTPUT_DMA_IRQ_DIV_SDR;
} else {
dma->num = OUTPUT_DMA_BUFS;
dma->size = OUTPUT_DMA_SIZE;
dma->div = OUTPUT_DMA_IRQ_DIV;
}
} else {
#ifdef DDB_USE_WORK
INIT_WORK(&dma->work, input_work);
#else
tasklet_init(&dma->tasklet, input_tasklet, (unsigned long)io);
#endif
dma->regs = rm->idma->base + rm->idma->size * nr;
dma->bufregs = rm->idma_buf->base + rm->idma_buf->size * nr;
dma->num = INPUT_DMA_BUFS;
dma->size = INPUT_DMA_SIZE;
dma->div = INPUT_DMA_IRQ_DIV;
}
ddbwritel(io->port->dev, 0, DMA_BUFFER_ACK(dma));
dev_info(io->port->dev->dev, "init link %u, io %u, dma %u, dmaregs %08x bufregs %08x\n",
io->port->lnr, io->nr, nr, dma->regs, dma->bufregs);
}
static void ddb_input_init(struct ddb_port *port, int nr, int pnr, int anr)
{
struct ddb *dev = port->dev;
struct ddb_input *input = &dev->input[anr];
const struct ddb_regmap *rm;
port->input[pnr] = input;
input->nr = nr;
input->port = port;
rm = io_regmap(input, 1);
input->regs = DDB_LINK_TAG(port->lnr) |
(rm->input->base + rm->input->size * nr);
dev_info(dev->dev, "init link %u, input %u, regs %08x\n",
port->lnr, nr, input->regs);
if (dev->has_dma) {
const struct ddb_regmap *rm0 = io_regmap(input, 0);
u32 base = rm0->irq_base_idma;
u32 dma_nr = nr;
if (port->lnr)
dma_nr += 32 + (port->lnr - 1) * 8;
dev_info(dev->dev, "init link %u, input %u, handler %u\n",
port->lnr, nr, dma_nr + base);
dev->handler[0][dma_nr + base] = input_handler;
dev->handler_data[0][dma_nr + base] = (unsigned long)input;
ddb_dma_init(input, dma_nr, 0);
}
}
static void ddb_output_init(struct ddb_port *port, int nr)
{
struct ddb *dev = port->dev;
struct ddb_output *output = &dev->output[nr];
const struct ddb_regmap *rm;
port->output = output;
output->nr = nr;
output->port = port;
rm = io_regmap(output, 1);
output->regs = DDB_LINK_TAG(port->lnr) |
(rm->output->base + rm->output->size * nr);
dev_info(dev->dev, "init link %u, output %u, regs %08x\n",
port->lnr, nr, output->regs);
if (dev->has_dma) {
const struct ddb_regmap *rm0 = io_regmap(output, 0);
u32 base = rm0->irq_base_odma;
dev->handler[0][nr + base] = output_handler;
dev->handler_data[0][nr + base] = (unsigned long)output;
ddb_dma_init(output, nr, 1);
}
}
static int ddb_port_match_i2c(struct ddb_port *port)
{
struct ddb *dev = port->dev;
u32 i;
for (i = 0; i < dev->i2c_num; i++) {
if (dev->i2c[i].link == port->lnr &&
dev->i2c[i].nr == port->nr) {
port->i2c = &dev->i2c[i];
return 1;
}
}
return 0;
}
static int ddb_port_match_link_i2c(struct ddb_port *port)
{
struct ddb *dev = port->dev;
u32 i;
for (i = 0; i < dev->i2c_num; i++) {
if (dev->i2c[i].link == port->lnr) {
port->i2c = &dev->i2c[i];
return 1;
}
}
return 0;
}
static void ddb_ports_init(struct ddb *dev)
{
u32 i, l, p;
struct ddb_port *port;
const struct ddb_info *info;
const struct ddb_regmap *rm;
for (p = l = 0; l < DDB_MAX_LINK; l++) {
info = dev->link[l].info;
if (!info)
continue;
rm = info->regmap;
if (!rm)
continue;
for (i = 0; i < info->port_num; i++, p++) {
port = &dev->port[p];
port->dev = dev;
port->nr = i;
port->lnr = l;
port->pnr = p;
port->gap = 0xffffffff;
port->obr = ci_bitrate;
mutex_init(&port->i2c_gate_lock);
if (!ddb_port_match_i2c(port))
if (info->type == DDB_OCTOPUS_MAX)
ddb_port_match_link_i2c(port);
ddb_port_probe(port);
port->dvb[0].adap = &dev->adap[2 * p];
port->dvb[1].adap = &dev->adap[2 * p + 1];
if ((port->class == DDB_PORT_NONE) && i &&
dev->port[p - 1].type == DDB_CI_EXTERNAL_XO2) {
port->class = DDB_PORT_CI;
port->type = DDB_CI_EXTERNAL_XO2_B;
port->name = "DuoFlex CI_B";
port->i2c = dev->port[p - 1].i2c;
}
dev_info(dev->dev, "Port %u: Link %u, Link Port %u (TAB %u): %s\n",
port->pnr, port->lnr, port->nr,
port->nr + 1, port->name);
if (port->class == DDB_PORT_CI &&
port->type == DDB_CI_EXTERNAL_XO2) {
ddb_input_init(port, 2 * i, 0, 2 * i);
ddb_output_init(port, i);
continue;
}
if (port->class == DDB_PORT_CI &&
port->type == DDB_CI_EXTERNAL_XO2_B) {
ddb_input_init(port, 2 * i - 1, 0, 2 * i - 1);
ddb_output_init(port, i);
continue;
}
if (port->class == DDB_PORT_NONE)
continue;
switch (dev->link[l].info->type) {
case DDB_OCTOPUS_CI:
if (i >= 2) {
ddb_input_init(port, 2 + i, 0, 2 + i);
ddb_input_init(port, 4 + i, 1, 4 + i);
ddb_output_init(port, i);
break;
} /* fallthrough */
case DDB_OCTONET:
case DDB_OCTOPUS:
case DDB_OCTOPRO:
ddb_input_init(port, 2 * i, 0, 2 * i);
ddb_input_init(port, 2 * i + 1, 1, 2 * i + 1);
ddb_output_init(port, i);
break;
case DDB_OCTOPUS_MAX:
case DDB_OCTOPUS_MAX_CT:
ddb_input_init(port, 2 * i, 0, 2 * p);
ddb_input_init(port, 2 * i + 1, 1, 2 * p + 1);
break;
case DDB_MOD:
ddb_output_init(port, i);
dev->handler[0][i + rm->irq_base_rate] =
ddbridge_mod_rate_handler;
dev->handler_data[0][i + rm->irq_base_rate] =
(unsigned long)&dev->output[i];
break;
default:
break;
}
}
}
dev->port_num = p;
}
void ddb_ports_release(struct ddb *dev)
{
int i;
struct ddb_port *port;
for (i = 0; i < dev->port_num; i++) {
port = &dev->port[i];
#ifdef DDB_USE_WORK
if (port->input[0] && port->input[0]->dma)
cancel_work_sync(&port->input[0]->dma->work);
if (port->input[1] && port->input[1]->dma)
cancel_work_sync(&port->input[1]->dma->work);
if (port->output && port->output->dma)
cancel_work_sync(&port->output->dma->work);
#else
if (port->input[0] && port->input[0]->dma)
tasklet_kill(&port->input[0]->dma->tasklet);
if (port->input[1] && port->input[1]->dma)
tasklet_kill(&port->input[1]->dma->tasklet);
if (port->output && port->output->dma)
tasklet_kill(&port->output->dma->tasklet);
#endif
}
}
/****************************************************************************/
/****************************************************************************/
/****************************************************************************/
#define IRQ_HANDLE(_n) \
do { if ((s & (1UL << ((_n) & 0x1f))) && dev->handler[0][_n]) \
dev->handler[0][_n](dev->handler_data[0][_n]); } \
while (0)
#define IRQ_HANDLE_BYTE(_shift) { \
if (s & (0x000000ff << ((_shift) & 0x1f))) { \
IRQ_HANDLE(0 + (_shift)); \
IRQ_HANDLE(1 + (_shift)); \
IRQ_HANDLE(2 + (_shift)); \
IRQ_HANDLE(3 + (_shift)); \
IRQ_HANDLE(4 + (_shift)); \
IRQ_HANDLE(5 + (_shift)); \
IRQ_HANDLE(6 + (_shift)); \
IRQ_HANDLE(7 + (_shift)); \
} \
}
static void irq_handle_msg(struct ddb *dev, u32 s)
{
dev->i2c_irq++;
IRQ_HANDLE(0);
IRQ_HANDLE(1);
IRQ_HANDLE(2);
IRQ_HANDLE(3);
}
static void irq_handle_io(struct ddb *dev, u32 s)
{
dev->ts_irq++;
if ((s & 0x000000f0)) {
IRQ_HANDLE(4);
IRQ_HANDLE(5);
IRQ_HANDLE(6);
IRQ_HANDLE(7);
}
if ((s & 0x0000ff00)) {
IRQ_HANDLE(8);
IRQ_HANDLE(9);
IRQ_HANDLE(10);
IRQ_HANDLE(11);
IRQ_HANDLE(12);
IRQ_HANDLE(13);
IRQ_HANDLE(14);
IRQ_HANDLE(15);
}
if ((s & 0x00ff0000)) {
IRQ_HANDLE(16);
IRQ_HANDLE(17);
IRQ_HANDLE(18);
IRQ_HANDLE(19);
IRQ_HANDLE(20);
IRQ_HANDLE(21);
IRQ_HANDLE(22);
IRQ_HANDLE(23);
}
if ((s & 0xff000000)) {
IRQ_HANDLE(24);
IRQ_HANDLE(25);
IRQ_HANDLE(26);
IRQ_HANDLE(27);
IRQ_HANDLE(28);
IRQ_HANDLE(29);
IRQ_HANDLE(30);
IRQ_HANDLE(31);
}
}
irqreturn_t ddb_irq_handler0(int irq, void *dev_id)
{
struct ddb *dev = (struct ddb *)dev_id;
u32 s = ddbreadl(dev, INTERRUPT_STATUS);
do {
if (s & 0x80000000)
return IRQ_NONE;
if (!(s & 0xfffff00))
return IRQ_NONE;
ddbwritel(dev, s & 0xfffff00, INTERRUPT_ACK);
irq_handle_io(dev, s);
} while ((s = ddbreadl(dev, INTERRUPT_STATUS)));
return IRQ_HANDLED;
}
irqreturn_t ddb_irq_handler1(int irq, void *dev_id)
{
struct ddb *dev = (struct ddb *)dev_id;
u32 s = ddbreadl(dev, INTERRUPT_STATUS);
do {
if (s & 0x80000000)
return IRQ_NONE;
if (!(s & 0x0000f))
return IRQ_NONE;
ddbwritel(dev, s & 0x0000f, INTERRUPT_ACK);
irq_handle_msg(dev, s);
} while ((s = ddbreadl(dev, INTERRUPT_STATUS)));
return IRQ_HANDLED;
}
irqreturn_t ddb_irq_handler(int irq, void *dev_id)
{
struct ddb *dev = (struct ddb *)dev_id;
u32 s = ddbreadl(dev, INTERRUPT_STATUS);
int ret = IRQ_HANDLED;
if (!s)
return IRQ_NONE;
do {
if (s & 0x80000000)
return IRQ_NONE;
ddbwritel(dev, s, INTERRUPT_ACK);
if (s & 0x0000000f)
irq_handle_msg(dev, s);
if (s & 0x0fffff00) {
irq_handle_io(dev, s);
#ifdef DDB_TEST_THREADED
ret = IRQ_WAKE_THREAD;
#endif
}
} while ((s = ddbreadl(dev, INTERRUPT_STATUS)));
return ret;
}
static irqreturn_t irq_handle_v2_n(struct ddb *dev, u32 n)
{
u32 reg = INTERRUPT_V2_STATUS + 4 * n;
u32 s = ddbreadl(dev, reg);
u32 off = n * 32;
if (!s)
return IRQ_NONE;
ddbwritel(dev, s, reg);
if ((s & 0x000000ff)) {
IRQ_HANDLE(0 + off);
IRQ_HANDLE(1 + off);
IRQ_HANDLE(2 + off);
IRQ_HANDLE(3 + off);
IRQ_HANDLE(4 + off);
IRQ_HANDLE(5 + off);
IRQ_HANDLE(6 + off);
IRQ_HANDLE(7 + off);
}
if ((s & 0x0000ff00)) {
IRQ_HANDLE(8 + off);
IRQ_HANDLE(9 + off);
IRQ_HANDLE(10 + off);
IRQ_HANDLE(11 + off);
IRQ_HANDLE(12 + off);
IRQ_HANDLE(13 + off);
IRQ_HANDLE(14 + off);
IRQ_HANDLE(15 + off);
}
if ((s & 0x00ff0000)) {
IRQ_HANDLE(16 + off);
IRQ_HANDLE(17 + off);
IRQ_HANDLE(18 + off);
IRQ_HANDLE(19 + off);
IRQ_HANDLE(20 + off);
IRQ_HANDLE(21 + off);
IRQ_HANDLE(22 + off);
IRQ_HANDLE(23 + off);
}
if ((s & 0xff000000)) {
IRQ_HANDLE(24 + off);
IRQ_HANDLE(25 + off);
IRQ_HANDLE(26 + off);
IRQ_HANDLE(27 + off);
IRQ_HANDLE(28 + off);
IRQ_HANDLE(29 + off);
IRQ_HANDLE(30 + off);
IRQ_HANDLE(31 + off);
}
return IRQ_HANDLED;
}
irqreturn_t ddb_irq_handler_v2(int irq, void *dev_id)
{
struct ddb *dev = (struct ddb *)dev_id;
u32 s = 0xffff & ddbreadl(dev, INTERRUPT_V2_STATUS);
int ret = IRQ_HANDLED;
if (!s)
return IRQ_NONE;
do {
if (s & 0x80)
return IRQ_NONE;
ddbwritel(dev, s, INTERRUPT_V2_STATUS);
if (s & 0x00000001)
irq_handle_v2_n(dev, 1);
if (s & 0x00000002)
irq_handle_v2_n(dev, 2);
if (s & 0x00000004)
irq_handle_v2_n(dev, 3);
IRQ_HANDLE(8);
IRQ_HANDLE(9);
IRQ_HANDLE(10);
IRQ_HANDLE(11);
} while ((s = 0xffff & ddbreadl(dev, INTERRUPT_V2_STATUS)));
return ret;
}
#ifdef DDB_TEST_THREADED
static irqreturn_t irq_thread(int irq, void *dev_id)
{
/* struct ddb *dev = (struct ddb *) dev_id; */
return IRQ_HANDLED;
}
#endif
/****************************************************************************/
/****************************************************************************/
/****************************************************************************/
static ssize_t nsd_read(struct file *file, char *buf,
size_t count, loff_t *ppos)
{
return 0;
}
static unsigned int nsd_poll(struct file *file, poll_table *wait)
{
return 0;
}
static int nsd_release(struct inode *inode, struct file *file)
{
return dvb_generic_release(inode, file);
}
static int nsd_open(struct inode *inode, struct file *file)
{
return dvb_generic_open(inode, file);
}
static struct ddb_input *plugtoinput(struct ddb *dev, u8 plug)
{
int i, j;
for (i = j = 0; i < dev->port_num; i++) {
if (dev->port[i].class == DDB_PORT_TUNER) {
if (j == plug)
return dev->port[i].input[0];
if (j + 1 == plug)
return dev->port[i].input[1];
j += 2;
}
}
return 0;
}
static int nsd_do_ioctl(struct file *file, unsigned int cmd, void *parg)
{
struct dvb_device *dvbdev = file->private_data;
struct ddb *dev = dvbdev->priv;
/* unsigned long arg = (unsigned long)parg; */
int ret = 0;
switch (cmd) {
case NSD_START_GET_TS:
{
struct dvb_nsd_ts *ts = parg;
struct ddb_input *input = plugtoinput(dev, ts->input);
u32 ctrl;
u32 to;
if (!input)
return -EINVAL;
ctrl = (input->port->lnr << 16) | ((input->nr & 7) << 8) |
((ts->filter_mask & 3) << 2);
if (ddbreadl(dev, TS_CAPTURE_CONTROL) & 1) {
dev_info(dev->dev, "ts capture busy\n");
return -EBUSY;
}
ddb_dvb_ns_input_start(input);
ddbwritel(dev, ctrl, TS_CAPTURE_CONTROL);
ddbwritel(dev, ts->pid, TS_CAPTURE_PID);
ddbwritel(dev, (ts->section_id << 16) |
(ts->table << 8) | ts->section,
TS_CAPTURE_TABLESECTION);
/* 1024 ms default timeout if timeout set to 0 */
if (ts->timeout)
to = ts->timeout;
else
to = 1024;
/* 21 packets default if num set to 0 */
if (ts->num)
to |= ((u32)ts->num << 16);
else
to |= (21 << 16);
ddbwritel(dev, to, TS_CAPTURE_TIMEOUT);
if (ts->mode)
ctrl |= 2;
ddbwritel(dev, ctrl | 1, TS_CAPTURE_CONTROL);
break;
}
case NSD_POLL_GET_TS:
{
struct dvb_nsd_ts *ts = parg;
u32 ctrl = ddbreadl(dev, TS_CAPTURE_CONTROL);
if (ctrl & 1)
return -EBUSY;
if (ctrl & (1 << 14))
return -EAGAIN;
ddbcpyfrom(dev, dev->tsbuf, TS_CAPTURE_MEMORY,
TS_CAPTURE_LEN);
ts->len = ddbreadl(dev, TS_CAPTURE_RECEIVED) & 0x1fff;
if (copy_to_user(ts->ts, dev->tsbuf, ts->len))
return -EIO;
break;
}
case NSD_CANCEL_GET_TS:
{
u32 ctrl = 0;
ddbwritel(dev, ctrl, TS_CAPTURE_CONTROL);
ctrl = ddbreadl(dev, TS_CAPTURE_CONTROL);
break;
}
case NSD_STOP_GET_TS:
{
struct dvb_nsd_ts *ts = parg;
struct ddb_input *input = plugtoinput(dev, ts->input);
u32 ctrl = ddbreadl(dev, TS_CAPTURE_CONTROL);
if (!input)
return -EINVAL;
if (ctrl & 1) {
dev_info(dev->dev,
"cannot stop ts capture, while it was neither finished nor canceled\n");
return -EBUSY;
}
ddb_dvb_ns_input_stop(input);
break;
}
default:
ret = -EINVAL;
break;
}
return ret;
}
static long nsd_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
return dvb_usercopy(file, cmd, arg, nsd_do_ioctl);
}
static const struct file_operations nsd_fops = {
.owner = THIS_MODULE,
.read = nsd_read,
.open = nsd_open,
.release = nsd_release,
.poll = nsd_poll,
.unlocked_ioctl = nsd_ioctl,
};
static struct dvb_device dvbdev_nsd = {
.priv = 0,
.readers = 1,
.writers = 1,
.users = 1,
.fops = &nsd_fops,
};
static int ddb_nsd_attach(struct ddb *dev)
{
int ret;
if (!dev->link[0].info->ns_num)
return 0;
ret = dvb_register_device(&dev->adap[0],
&dev->nsd_dev,
&dvbdev_nsd, (void *)dev,
DVB_DEVICE_NSD, 0);
return ret;
}
void ddb_nsd_detach(struct ddb *dev)
{
if (!dev->link[0].info->ns_num)
return;
if (dev->nsd_dev->users > 2) {
wait_event(dev->nsd_dev->wait_queue,
dev->nsd_dev->users == 2);
}
dvb_unregister_device(dev->nsd_dev);
}
/****************************************************************************/
/****************************************************************************/
/****************************************************************************/
static int reg_wait(struct ddb *dev, u32 reg, u32 bit)
{
u32 count = 0;
while (ddbreadl(dev, reg) & bit) {
ndelay(10);
if (++count == 100)
return -1;
}
return 0;
}
static int flashio(struct ddb *dev, u32 lnr,
u8 *wbuf, u32 wlen, u8 *rbuf, u32 rlen)
{
u32 data, shift;
u32 tag = DDB_LINK_TAG(lnr);
struct ddb_link *link = &dev->link[lnr];
mutex_lock(&link->flash_mutex);
if (wlen > 4)
ddbwritel(dev, 1, tag | SPI_CONTROL);
while (wlen > 4) {
/* FIXME: check for big-endian */
data = swab32(*(u32 *)wbuf);
wbuf += 4;
wlen -= 4;
ddbwritel(dev, data, tag | SPI_DATA);
if (reg_wait(dev, tag | SPI_CONTROL, 4))
goto fail;
}
if (rlen)
ddbwritel(dev, 0x0001 | ((wlen << (8 + 3)) & 0x1f00),
tag | SPI_CONTROL);
else
ddbwritel(dev, 0x0003 | ((wlen << (8 + 3)) & 0x1f00),
tag | SPI_CONTROL);
data = 0;
shift = ((4 - wlen) * 8);
while (wlen) {
data <<= 8;
data |= *wbuf;
wlen--;
wbuf++;
}
if (shift)
data <<= shift;
ddbwritel(dev, data, tag | SPI_DATA);
if (reg_wait(dev, tag | SPI_CONTROL, 4))
goto fail;
if (!rlen) {
ddbwritel(dev, 0, tag | SPI_CONTROL);
goto exit;
}
if (rlen > 4)
ddbwritel(dev, 1, tag | SPI_CONTROL);
while (rlen > 4) {
ddbwritel(dev, 0xffffffff, tag | SPI_DATA);
if (reg_wait(dev, tag | SPI_CONTROL, 4))
goto fail;
data = ddbreadl(dev, tag | SPI_DATA);
*(u32 *)rbuf = swab32(data);
rbuf += 4;
rlen -= 4;
}
ddbwritel(dev, 0x0003 | ((rlen << (8 + 3)) & 0x1F00),
tag | SPI_CONTROL);
ddbwritel(dev, 0xffffffff, tag | SPI_DATA);
if (reg_wait(dev, tag | SPI_CONTROL, 4))
goto fail;
data = ddbreadl(dev, tag | SPI_DATA);
ddbwritel(dev, 0, tag | SPI_CONTROL);
if (rlen < 4)
data <<= ((4 - rlen) * 8);
while (rlen > 0) {
*rbuf = ((data >> 24) & 0xff);
data <<= 8;
rbuf++;
rlen--;
}
exit:
mutex_unlock(&link->flash_mutex);
return 0;
fail:
mutex_unlock(&link->flash_mutex);
return -1;
}
int ddbridge_flashread(struct ddb *dev, u32 link, u8 *buf, u32 addr, u32 len)
{
u8 cmd[4] = {0x03, (addr >> 16) & 0xff,
(addr >> 8) & 0xff, addr & 0xff};
return flashio(dev, link, cmd, 4, buf, len);
}
static int mdio_write(struct ddb *dev, u8 adr, u8 reg, u16 val)
{
ddbwritel(dev, adr, MDIO_ADR);
ddbwritel(dev, reg, MDIO_REG);
ddbwritel(dev, val, MDIO_VAL);
ddbwritel(dev, 0x03, MDIO_CTRL);
while (ddbreadl(dev, MDIO_CTRL) & 0x02)
ndelay(500);
return 0;
}
static u16 mdio_read(struct ddb *dev, u8 adr, u8 reg)
{
ddbwritel(dev, adr, MDIO_ADR);
ddbwritel(dev, reg, MDIO_REG);
ddbwritel(dev, 0x07, MDIO_CTRL);
while (ddbreadl(dev, MDIO_CTRL) & 0x02)
ndelay(500);
return ddbreadl(dev, MDIO_VAL);
}
#define DDB_MAGIC 'd'
struct ddb_flashio {
__u8 *write_buf;
__u32 write_len;
__u8 *read_buf;
__u32 read_len;
__u32 link;
};
struct ddb_gpio {
__u32 mask;
__u32 data;
};
struct ddb_id {
__u16 vendor;
__u16 device;
__u16 subvendor;
__u16 subdevice;
__u32 hw;
__u32 regmap;
};
struct ddb_reg {
__u32 reg;
__u32 val;
};
struct ddb_mem {
__u32 off;
__u8 *buf;
__u32 len;
};
struct ddb_mdio {
__u8 adr;
__u8 reg;
__u16 val;
};
struct ddb_i2c_msg {
__u8 bus;
__u8 adr;
__u8 *hdr;
__u32 hlen;
__u8 *msg;
__u32 mlen;
};
#define IOCTL_DDB_FLASHIO _IOWR(DDB_MAGIC, 0x00, struct ddb_flashio)
#define IOCTL_DDB_GPIO_IN _IOWR(DDB_MAGIC, 0x01, struct ddb_gpio)
#define IOCTL_DDB_GPIO_OUT _IOWR(DDB_MAGIC, 0x02, struct ddb_gpio)
#define IOCTL_DDB_ID _IOR(DDB_MAGIC, 0x03, struct ddb_id)
#define IOCTL_DDB_READ_REG _IOWR(DDB_MAGIC, 0x04, struct ddb_reg)
#define IOCTL_DDB_WRITE_REG _IOW(DDB_MAGIC, 0x05, struct ddb_reg)
#define IOCTL_DDB_READ_MEM _IOWR(DDB_MAGIC, 0x06, struct ddb_mem)
#define IOCTL_DDB_WRITE_MEM _IOR(DDB_MAGIC, 0x07, struct ddb_mem)
#define IOCTL_DDB_READ_MDIO _IOWR(DDB_MAGIC, 0x08, struct ddb_mdio)
#define IOCTL_DDB_WRITE_MDIO _IOR(DDB_MAGIC, 0x09, struct ddb_mdio)
#define IOCTL_DDB_READ_I2C _IOWR(DDB_MAGIC, 0x0a, struct ddb_i2c_msg)
#define IOCTL_DDB_WRITE_I2C _IOR(DDB_MAGIC, 0x0b, struct ddb_i2c_msg)
#define DDB_NAME "ddbridge"
static u32 ddb_num;
static int ddb_major;
static DEFINE_MUTEX(ddb_mutex);
static int ddb_release(struct inode *inode, struct file *file)
{
struct ddb *dev = file->private_data;
dev->ddb_dev_users--;
return 0;
}
static int ddb_open(struct inode *inode, struct file *file)
{
struct ddb *dev = ddbs[iminor(inode)];
if (dev->ddb_dev_users)
return -EBUSY;
dev->ddb_dev_users++;
file->private_data = dev;
return 0;
}
static long ddb_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct ddb *dev = file->private_data;
void *parg = (void *)arg;
int res;
switch (cmd) {
case IOCTL_DDB_FLASHIO:
{
struct ddb_flashio fio;
u8 *rbuf, *wbuf;
if (copy_from_user(&fio, parg, sizeof(fio)))
return -EFAULT;
if (fio.write_len > 1028 || fio.read_len > 1028)
return -EINVAL;
if (fio.write_len + fio.read_len > 1028)
return -EINVAL;
if (fio.link > 3)
return -EINVAL;
wbuf = &dev->iobuf[0];
rbuf = wbuf + fio.write_len;
if (copy_from_user(wbuf, fio.write_buf, fio.write_len))
return -EFAULT;
res = flashio(dev, fio.link, wbuf,
fio.write_len, rbuf, fio.read_len);
if (res)
return res;
if (copy_to_user(fio.read_buf, rbuf, fio.read_len))
return -EFAULT;
break;
}
case IOCTL_DDB_GPIO_OUT:
{
struct ddb_gpio gpio;
if (copy_from_user(&gpio, parg, sizeof(gpio)))
return -EFAULT;
ddbwritel(dev, gpio.mask, GPIO_DIRECTION);
ddbwritel(dev, gpio.data, GPIO_OUTPUT);
break;
}
case IOCTL_DDB_ID:
{
struct ddb_id ddbid;
ddbid.vendor = dev->link[0].ids.vendor;
ddbid.device = dev->link[0].ids.device;
ddbid.subvendor = dev->link[0].ids.subvendor;
ddbid.subdevice = dev->link[0].ids.subdevice;
ddbid.hw = ddbreadl(dev, 0);
ddbid.regmap = ddbreadl(dev, 4);
if (copy_to_user(parg, &ddbid, sizeof(ddbid)))
return -EFAULT;
break;
}
case IOCTL_DDB_READ_REG:
{
struct ddb_reg reg;
if (copy_from_user(&reg, parg, sizeof(reg)))
return -EFAULT;
if ((reg.reg & 0xfffffff) >= dev->regs_len)
return -EINVAL;
reg.val = ddbreadl(dev, reg.reg);
if (copy_to_user(parg, &reg, sizeof(reg)))
return -EFAULT;
break;
}
case IOCTL_DDB_WRITE_REG:
{
struct ddb_reg reg;
if (copy_from_user(&reg, parg, sizeof(reg)))
return -EFAULT;
if ((reg.reg & 0xfffffff) >= dev->regs_len)
return -EINVAL;
ddbwritel(dev, reg.val, reg.reg);
break;
}
case IOCTL_DDB_READ_MDIO:
{
struct ddb_mdio mdio;
if (!dev->link[0].info->mdio_num)
return -EIO;
if (copy_from_user(&mdio, parg, sizeof(mdio)))
return -EFAULT;
mdio.val = mdio_read(dev, mdio.adr, mdio.reg);
if (copy_to_user(parg, &mdio, sizeof(mdio)))
return -EFAULT;
break;
}
case IOCTL_DDB_WRITE_MDIO:
{
struct ddb_mdio mdio;
if (!dev->link[0].info->mdio_num)
return -EIO;
if (copy_from_user(&mdio, parg, sizeof(mdio)))
return -EFAULT;
mdio_write(dev, mdio.adr, mdio.reg, mdio.val);
break;
}
case IOCTL_DDB_READ_MEM:
{
struct ddb_mem mem;
u8 *buf = &dev->iobuf[0];
if (copy_from_user(&mem, parg, sizeof(mem)))
return -EFAULT;
if ((((mem.len + mem.off) & 0xfffffff) > dev->regs_len) ||
mem.len > 1024)
return -EINVAL;
ddbcpyfrom(dev, buf, mem.off, mem.len);
if (copy_to_user(mem.buf, buf, mem.len))
return -EFAULT;
break;
}
case IOCTL_DDB_WRITE_MEM:
{
struct ddb_mem mem;
u8 *buf = &dev->iobuf[0];
if (copy_from_user(&mem, parg, sizeof(mem)))
return -EFAULT;
if ((((mem.len + mem.off) & 0xfffffff) > dev->regs_len) ||
mem.len > 1024)
return -EINVAL;
if (copy_from_user(buf, mem.buf, mem.len))
return -EFAULT;
ddbcpyto(dev, mem.off, buf, mem.len);
break;
}
case IOCTL_DDB_READ_I2C:
{
struct ddb_i2c_msg i2c;
struct i2c_adapter *adap;
u8 *mbuf, *hbuf = &dev->iobuf[0];
if (copy_from_user(&i2c, parg, sizeof(i2c)))
return -EFAULT;
if (i2c.bus > dev->link[0].info->regmap->i2c->num)
return -EINVAL;
if (i2c.mlen + i2c.hlen > 512)
return -EINVAL;
adap = &dev->i2c[i2c.bus].adap;
mbuf = hbuf + i2c.hlen;
if (copy_from_user(hbuf, i2c.hdr, i2c.hlen))
return -EFAULT;
if (i2c_io(adap, i2c.adr, hbuf, i2c.hlen, mbuf, i2c.mlen) < 0)
return -EIO;
if (copy_to_user(i2c.msg, mbuf, i2c.mlen))
return -EFAULT;
break;
}
case IOCTL_DDB_WRITE_I2C:
{
struct ddb_i2c_msg i2c;
struct i2c_adapter *adap;
u8 *buf = &dev->iobuf[0];
if (copy_from_user(&i2c, parg, sizeof(i2c)))
return -EFAULT;
if (i2c.bus > dev->link[0].info->regmap->i2c->num)
return -EINVAL;
if (i2c.mlen + i2c.hlen > 250)
return -EINVAL;
adap = &dev->i2c[i2c.bus].adap;
if (copy_from_user(buf, i2c.hdr, i2c.hlen))
return -EFAULT;
if (copy_from_user(buf + i2c.hlen, i2c.msg, i2c.mlen))
return -EFAULT;
if (i2c_write(adap, i2c.adr, buf, i2c.hlen + i2c.mlen) < 0)
return -EIO;
break;
}
default:
return -ENOTTY;
}
return 0;
}
static const struct file_operations ddb_fops = {
.unlocked_ioctl = ddb_ioctl,
.open = ddb_open,
.release = ddb_release,
};
#if (KERNEL_VERSION(3, 4, 0) > LINUX_VERSION_CODE)
static char *ddb_devnode(struct device *device, mode_t *mode)
#else
static char *ddb_devnode(struct device *device, umode_t *mode)
#endif
{
struct ddb *dev = dev_get_drvdata(device);
return kasprintf(GFP_KERNEL, "ddbridge/card%d", dev->nr);
}
#define __ATTR_MRO(_name, _show) { \
.attr = { .name = __stringify(_name), .mode = 0444 }, \
.show = _show, \
}
#define __ATTR_MWO(_name, _store) { \
.attr = { .name = __stringify(_name), .mode = 0222 }, \
.store = _store, \
}
static ssize_t ports_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct ddb *dev = dev_get_drvdata(device);
return sprintf(buf, "%d\n", dev->port_num);
}
static ssize_t ts_irq_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct ddb *dev = dev_get_drvdata(device);
return sprintf(buf, "%d\n", dev->ts_irq);
}
static ssize_t i2c_irq_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct ddb *dev = dev_get_drvdata(device);
return sprintf(buf, "%d\n", dev->i2c_irq);
}
static char *class_name[] = {
"NONE", "CI", "TUNER", "LOOP", "MOD"
};
static ssize_t fan_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct ddb *dev = dev_get_drvdata(device);
u32 val;
val = ddbreadl(dev, GPIO_OUTPUT) & 1;
return sprintf(buf, "%d\n", val);
}
static ssize_t fan_store(struct device *device, struct device_attribute *d,
const char *buf, size_t count)
{
struct ddb *dev = dev_get_drvdata(device);
u32 val;
if (sscanf(buf, "%u\n", &val) != 1)
return -EINVAL;
ddbwritel(dev, 1, GPIO_DIRECTION);
ddbwritel(dev, val & 1, GPIO_OUTPUT);
return count;
}
static ssize_t fanspeed_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct ddb *dev = dev_get_drvdata(device);
int num = attr->attr.name[8] - 0x30;
struct ddb_link *link = &dev->link[num];
u32 spd;
spd = ddblreadl(link, TEMPMON_FANCONTROL) & 0xff;
return sprintf(buf, "%u\n", spd * 100);
}
static ssize_t temp_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct ddb *dev = dev_get_drvdata(device);
struct ddb_link *link = &dev->link[0];
struct i2c_adapter *adap;
s32 temp, temp2, temp3;
int i;
u8 tmp[2];
if (link->info->type == DDB_MOD) {
if (link->info->version >= 2) {
temp = 0xffff & ddbreadl(dev, TEMPMON2_BOARD);
temp = (temp * 1000) >> 8;
temp2 = 0xffff & ddbreadl(dev, TEMPMON2_FPGACORE);
temp2 = (temp2 * 1000) >> 8;
temp3 = 0xffff & ddbreadl(dev, TEMPMON2_QAMCORE);
temp3 = (temp3 * 1000) >> 8;
return sprintf(buf, "%d %d %d\n", temp, temp2, temp3);
}
ddbwritel(dev, 1, TEMPMON_CONTROL);
for (i = 0; i < 10; i++) {
if (0 == (1 & ddbreadl(dev, TEMPMON_CONTROL)))
break;
usleep_range(1000, 2000);
}
temp = ddbreadl(dev, TEMPMON_SENSOR1);
temp2 = ddbreadl(dev, TEMPMON_SENSOR2);
temp = (temp * 1000) >> 8;
temp2 = (temp2 * 1000) >> 8;
if (ddbreadl(dev, TEMPMON_CONTROL) & 0x8000) {
temp3 = ddbreadl(dev, TEMPMON_CORE);
temp3 = (temp3 * 1000) >> 8;
return sprintf(buf, "%d %d %d\n", temp, temp2, temp3);
}
return sprintf(buf, "%d %d\n", temp, temp2);
}
if (!link->info->temp_num)
return sprintf(buf, "no sensor\n");
adap = &dev->i2c[link->info->temp_bus].adap;
if (i2c_read_regs(adap, 0x48, 0, tmp, 2) < 0)
return sprintf(buf, "read_error\n");
temp = (tmp[0] << 3) | (tmp[1] >> 5);
temp *= 125;
if (link->info->temp_num == 2) {
if (i2c_read_regs(adap, 0x49, 0, tmp, 2) < 0)
return sprintf(buf, "read_error\n");
temp2 = (tmp[0] << 3) | (tmp[1] >> 5);
temp2 *= 125;
return sprintf(buf, "%d %d\n", temp, temp2);
}
return sprintf(buf, "%d\n", temp);
}
static ssize_t ctemp_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct ddb *dev = dev_get_drvdata(device);
struct i2c_adapter *adap;
int temp;
u8 tmp[2];
int num = attr->attr.name[4] - 0x30;
adap = &dev->i2c[num].adap;
if (!adap)
return 0;
if (i2c_read_regs(adap, 0x49, 0, tmp, 2) < 0)
if (i2c_read_regs(adap, 0x4d, 0, tmp, 2) < 0)
return sprintf(buf, "no sensor\n");
temp = tmp[0] * 1000;
return sprintf(buf, "%d\n", temp);
}
#if 0
static ssize_t qam_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct ddb *dev = dev_get_drvdata(device);
struct i2c_adapter *adap;
u8 tmp[4];
s16 i, q;
adap = &dev->i2c[1].adap;
if (i2c_read_regs16(adap, 0x1f, 0xf480, tmp, 4) < 0)
return sprintf(buf, "read_error\n");
i = (s16)(((u16)tmp[1]) << 14) | (((u16)tmp[0]) << 6);
q = (s16)(((u16)tmp[3]) << 14) | (((u16)tmp[2]) << 6);
return sprintf(buf, "%d %d\n", i, q);
}
#endif
static ssize_t mod_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct ddb *dev = dev_get_drvdata(device);
int num = attr->attr.name[3] - 0x30;
return sprintf(buf, "%s:%s\n",
class_name[dev->port[num].class],
dev->port[num].type_name);
}
static ssize_t led_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct ddb *dev = dev_get_drvdata(device);
int num = attr->attr.name[3] - 0x30;
return sprintf(buf, "%d\n", dev->leds & (1 << num) ? 1 : 0);
}
static void ddb_set_led(struct ddb *dev, int num, int val)
{
if (!dev->link[0].info->led_num)
return;
switch (dev->port[num].class) {
case DDB_PORT_TUNER:
switch (dev->port[num].type) {
case DDB_TUNER_DVBS_ST:
i2c_write_reg16(&dev->i2c[num].adap,
0x69, 0xf14c, val ? 2 : 0);
break;
case DDB_TUNER_DVBCT_ST:
i2c_write_reg16(&dev->i2c[num].adap,
0x1f, 0xf00e, 0);
i2c_write_reg16(&dev->i2c[num].adap,
0x1f, 0xf00f, val ? 1 : 0);
break;
case DDB_TUNER_XO2 ... DDB_TUNER_DVBC2T2I_SONY:
{
u8 v;
i2c_read_reg(&dev->i2c[num].adap, 0x10, 0x08, &v);
v = (v & ~0x10) | (val ? 0x10 : 0);
i2c_write_reg(&dev->i2c[num].adap, 0x10, 0x08, v);
break;
}
default:
break;
}
break;
}
}
static ssize_t led_store(struct device *device,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ddb *dev = dev_get_drvdata(device);
int num = attr->attr.name[3] - 0x30;
u32 val;
if (sscanf(buf, "%u\n", &val) != 1)
return -EINVAL;
if (val)
dev->leds |= (1 << num);
else
dev->leds &= ~(1 << num);
ddb_set_led(dev, num, val);
return count;
}
static ssize_t snr_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct ddb *dev = dev_get_drvdata(device);
char snr[32];
int num = attr->attr.name[3] - 0x30;
if (dev->port[num].type >= DDB_TUNER_XO2) {
if (i2c_read_regs(&dev->i2c[num].adap, 0x10, 0x10, snr, 16) < 0)
return sprintf(buf, "NO SNR\n");
snr[16] = 0;
} else {
/* serial number at 0x100-0x11f */
if (i2c_read_regs16(&dev->i2c[num].adap,
0x57, 0x100, snr, 32) < 0)
if (i2c_read_regs16(&dev->i2c[num].adap,
0x50, 0x100, snr, 32) < 0)
return sprintf(buf, "NO SNR\n");
snr[31] = 0; /* in case it is not terminated on EEPROM */
}
return sprintf(buf, "%s\n", snr);
}
static ssize_t snr_store(struct device *device, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ddb *dev = dev_get_drvdata(device);
int num = attr->attr.name[3] - 0x30;
u8 snr[34] = { 0x01, 0x00 };
return 0; /* NOE: remove completely? */
if (count > 31)
return -EINVAL;
if (dev->port[num].type >= DDB_TUNER_XO2)
return -EINVAL;
memcpy(snr + 2, buf, count);
i2c_write(&dev->i2c[num].adap, 0x57, snr, 34);
i2c_write(&dev->i2c[num].adap, 0x50, snr, 34);
return count;
}
static ssize_t bsnr_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct ddb *dev = dev_get_drvdata(device);
char snr[16];
ddbridge_flashread(dev, 0, snr, 0x10, 15);
snr[15] = 0; /* in case it is not terminated on EEPROM */
return sprintf(buf, "%s\n", snr);
}
static ssize_t bpsnr_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct ddb *dev = dev_get_drvdata(device);
unsigned char snr[32];
if (!dev->i2c_num)
return 0;
if (i2c_read_regs16(&dev->i2c[0].adap,
0x50, 0x0000, snr, 32) < 0 ||
snr[0] == 0xff)
return sprintf(buf, "NO SNR\n");
snr[31] = 0; /* in case it is not terminated on EEPROM */
return sprintf(buf, "%s\n", snr);
}
static ssize_t redirect_show(struct device *device,
struct device_attribute *attr, char *buf)
{
return 0;
}
static ssize_t redirect_store(struct device *device,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned int i, p;
int res;
if (sscanf(buf, "%x %x\n", &i, &p) != 2)
return -EINVAL;
res = ddb_redirect(i, p);
if (res < 0)
return res;
dev_info(device, "redirect: %02x, %02x\n", i, p);
return count;
}
#if 0
/* A L P I AAAAAALLPPPPPPII */
/* AAAAAAAA LLLLLLLL PPPPPPII */
static ssize_t redirect2_show(struct device *device,
struct device_attribute *attr, char *buf)
{
return 0;
}
static ssize_t redirect2_store(struct device *device,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned int i, p;
int res;
if (sscanf(buf, "%x %x\n", &i, &p) != 2)
return -EINVAL;
res = ddb_redirect(i, p);
if (res < 0)
return res;
dev_info(device, "redirect: %02x, %02x\n", i, p);
return count;
}
#endif
static ssize_t gap_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct ddb *dev = dev_get_drvdata(device);
int num = attr->attr.name[3] - 0x30;
return sprintf(buf, "%d\n", dev->port[num].gap);
}
static ssize_t gap_store(struct device *device, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ddb *dev = dev_get_drvdata(device);
int num = attr->attr.name[3] - 0x30;
unsigned int val;
if (sscanf(buf, "%u\n", &val) != 1)
return -EINVAL;
if (val > 128)
return -EINVAL;
if (val == 128)
val = 0xffffffff;
dev->port[num].gap = val;
return count;
}
static ssize_t obr_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct ddb *dev = dev_get_drvdata(device);
int num = attr->attr.name[3] - 0x30;
return sprintf(buf, "%d\n", dev->port[num].obr);
}
static ssize_t obr_store(struct device *device, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ddb *dev = dev_get_drvdata(device);
int num = attr->attr.name[3] - 0x30;
unsigned int val;
if (sscanf(buf, "%u\n", &val) != 1)
return -EINVAL;
if (val > 96000)
return -EINVAL;
dev->port[num].obr = val;
return count;
}
static ssize_t version_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct ddb *dev = dev_get_drvdata(device);
return sprintf(buf, "%08x %08x\n",
dev->link[0].ids.hwid, dev->link[0].ids.regmapid);
}
static ssize_t hwid_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct ddb *dev = dev_get_drvdata(device);
return sprintf(buf, "0x%08X\n", dev->link[0].ids.hwid);
}
static ssize_t regmap_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct ddb *dev = dev_get_drvdata(device);
return sprintf(buf, "0x%08X\n", dev->link[0].ids.regmapid);
}
static ssize_t vlan_show(struct device *device,
struct device_attribute *attr, char *buf)
{
struct ddb *dev = dev_get_drvdata(device);
return sprintf(buf, "%u\n", dev->vlan);
}
static ssize_t vlan_store(struct device *device, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ddb *dev = dev_get_drvdata(device);
unsigned int val;
if (sscanf(buf, "%u\n", &val) != 1)
return -EINVAL;
if (val > 1)
return -EINVAL;
if (!dev->link[0].info->ns_num)
return -EINVAL;
ddbwritel(dev, 14 + (val ? 4 : 0), ETHER_LENGTH);
dev->vlan = val;
return count;
}
static ssize_t fmode_show(struct device *device,
struct device_attribute *attr, char *buf)
{
int num = attr->attr.name[5] - 0x30;
struct ddb *dev = dev_get_drvdata(device);
return sprintf(buf, "%u\n", dev->link[num].lnb.fmode);
}
static ssize_t devid_show(struct device *device,
struct device_attribute *attr, char *buf)
{
int num = attr->attr.name[5] - 0x30;
struct ddb *dev = dev_get_drvdata(device);
return sprintf(buf, "%08x\n", dev->link[num].ids.devid);
}
static ssize_t fmode_store(struct device *device, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ddb *dev = dev_get_drvdata(device);
int num = attr->attr.name[5] - 0x30;
unsigned int val;
if (sscanf(buf, "%u\n", &val) != 1)
return -EINVAL;
if (val > 3)
return -EINVAL;
ddb_lnb_init_fmode(dev, &dev->link[num], val);
return count;
}
static struct device_attribute ddb_attrs[] = {
__ATTR_RO(version),
__ATTR_RO(ports),
__ATTR_RO(ts_irq),
__ATTR_RO(i2c_irq),
__ATTR(gap0, 0664, gap_show, gap_store),
__ATTR(gap1, 0664, gap_show, gap_store),
__ATTR(gap2, 0664, gap_show, gap_store),
__ATTR(gap3, 0664, gap_show, gap_store),
__ATTR(obr0, 0664, obr_show, obr_store),
__ATTR(obr1, 0664, obr_show, obr_store),
__ATTR(obr2, 0664, obr_show, obr_store),
__ATTR(obr3, 0664, obr_show, obr_store),
__ATTR(vlan, 0664, vlan_show, vlan_store),
__ATTR(fmode0, 0664, fmode_show, fmode_store),
__ATTR(fmode1, 0664, fmode_show, fmode_store),
__ATTR(fmode2, 0664, fmode_show, fmode_store),
__ATTR(fmode3, 0664, fmode_show, fmode_store),
__ATTR_MRO(devid0, devid_show),
__ATTR_MRO(devid1, devid_show),
__ATTR_MRO(devid2, devid_show),
__ATTR_MRO(devid3, devid_show),
__ATTR_RO(hwid),
__ATTR_RO(regmap),
#if 0
__ATTR_RO(qam),
#endif
__ATTR(redirect, 0664, redirect_show, redirect_store),
__ATTR_MRO(snr, bsnr_show),
__ATTR_RO(bpsnr),
__ATTR_NULL,
};
static struct device_attribute ddb_attrs_temp[] = {
__ATTR_RO(temp),
};
static struct device_attribute ddb_attrs_mod[] = {
__ATTR_MRO(mod0, mod_show),
__ATTR_MRO(mod1, mod_show),
__ATTR_MRO(mod2, mod_show),
__ATTR_MRO(mod3, mod_show),
__ATTR_MRO(mod4, mod_show),
__ATTR_MRO(mod5, mod_show),
__ATTR_MRO(mod6, mod_show),
__ATTR_MRO(mod7, mod_show),
__ATTR_MRO(mod8, mod_show),
__ATTR_MRO(mod9, mod_show),
};
static struct device_attribute ddb_attrs_fan[] = {
__ATTR(fan, 0664, fan_show, fan_store),
};
static struct device_attribute ddb_attrs_snr[] = {
__ATTR(snr0, 0664, snr_show, snr_store),
__ATTR(snr1, 0664, snr_show, snr_store),
__ATTR(snr2, 0664, snr_show, snr_store),
__ATTR(snr3, 0664, snr_show, snr_store),
};
static struct device_attribute ddb_attrs_ctemp[] = {
__ATTR_MRO(temp0, ctemp_show),
__ATTR_MRO(temp1, ctemp_show),
__ATTR_MRO(temp2, ctemp_show),
__ATTR_MRO(temp3, ctemp_show),
};
static struct device_attribute ddb_attrs_led[] = {
__ATTR(led0, 0664, led_show, led_store),
__ATTR(led1, 0664, led_show, led_store),
__ATTR(led2, 0664, led_show, led_store),
__ATTR(led3, 0664, led_show, led_store),
};
static struct device_attribute ddb_attrs_fanspeed[] = {
__ATTR_MRO(fanspeed0, fanspeed_show),
__ATTR_MRO(fanspeed1, fanspeed_show),
__ATTR_MRO(fanspeed2, fanspeed_show),
__ATTR_MRO(fanspeed3, fanspeed_show),
};
static struct class ddb_class = {
.name = "ddbridge",
.owner = THIS_MODULE,
#if 0
.dev_attrs = ddb_attrs,
#endif
.devnode = ddb_devnode,
};
int ddb_class_create(void)
{
ddb_major = register_chrdev(0, DDB_NAME, &ddb_fops);
if (ddb_major < 0)
return ddb_major;
if (class_register(&ddb_class) < 0)
return -1;
return 0;
}
void ddb_class_destroy(void)
{
class_unregister(&ddb_class);
unregister_chrdev(ddb_major, DDB_NAME);
}
static void ddb_device_attrs_del(struct ddb *dev)
{
int i;
for (i = 0; i < 4; i++)
if (dev->link[i].info &&
dev->link[i].info->tempmon_irq)
device_remove_file(dev->ddb_dev,
&ddb_attrs_fanspeed[i]);
for (i = 0; i < dev->link[0].info->temp_num; i++)
device_remove_file(dev->ddb_dev, &ddb_attrs_temp[i]);
for (i = 0; i < dev->link[0].info->port_num; i++)
device_remove_file(dev->ddb_dev, &ddb_attrs_mod[i]);
for (i = 0; i < dev->link[0].info->fan_num; i++)
device_remove_file(dev->ddb_dev, &ddb_attrs_fan[i]);
for (i = 0; i < dev->i2c_num && i < 4; i++) {
if (dev->link[0].info->led_num)
device_remove_file(dev->ddb_dev, &ddb_attrs_led[i]);
device_remove_file(dev->ddb_dev, &ddb_attrs_snr[i]);
device_remove_file(dev->ddb_dev, &ddb_attrs_ctemp[i]);
}
for (i = 0; ddb_attrs[i].attr.name; i++)
device_remove_file(dev->ddb_dev, &ddb_attrs[i]);
}
static int ddb_device_attrs_add(struct ddb *dev)
{
int i;
for (i = 0; ddb_attrs[i].attr.name; i++)
if (device_create_file(dev->ddb_dev, &ddb_attrs[i]))
goto fail;
for (i = 0; i < dev->link[0].info->temp_num; i++)
if (device_create_file(dev->ddb_dev, &ddb_attrs_temp[i]))
goto fail;
for (i = 0; (i < dev->link[0].info->port_num) && (i < 10); i++)
if (device_create_file(dev->ddb_dev, &ddb_attrs_mod[i]))
goto fail;
for (i = 0; i < dev->link[0].info->fan_num; i++)
if (device_create_file(dev->ddb_dev, &ddb_attrs_fan[i]))
goto fail;
for (i = 0; (i < dev->i2c_num) && (i < 4); i++) {
if (device_create_file(dev->ddb_dev, &ddb_attrs_snr[i]))
goto fail;
if (device_create_file(dev->ddb_dev, &ddb_attrs_ctemp[i]))
goto fail;
if (dev->link[0].info->led_num)
if (device_create_file(dev->ddb_dev,
&ddb_attrs_led[i]))
goto fail;
}
for (i = 0; i < 4; i++)
if (dev->link[i].info &&
dev->link[i].info->tempmon_irq)
if (device_create_file(dev->ddb_dev,
&ddb_attrs_fanspeed[i]))
goto fail;
return 0;
fail:
return -1;
}
static int ddb_device_create(struct ddb *dev)
{
int res = 0;
if (ddb_num == DDB_MAX_ADAPTER)
return -ENOMEM;
mutex_lock(&ddb_mutex);
dev->nr = ddb_num;
ddbs[dev->nr] = dev;
dev->ddb_dev = device_create(&ddb_class, dev->dev,
MKDEV(ddb_major, dev->nr),
dev, "ddbridge%d", dev->nr);
if (IS_ERR(dev->ddb_dev)) {
res = PTR_ERR(dev->ddb_dev);
dev_info(dev->dev, "Could not create ddbridge%d\n", dev->nr);
goto fail;
}
res = ddb_device_attrs_add(dev);
if (res) {
ddb_device_attrs_del(dev);
device_destroy(&ddb_class, MKDEV(ddb_major, dev->nr));
ddbs[dev->nr] = 0;
dev->ddb_dev = ERR_PTR(-ENODEV);
} else {
ddb_num++;
}
fail:
mutex_unlock(&ddb_mutex);
return res;
}
void ddb_device_destroy(struct ddb *dev)
{
if (IS_ERR(dev->ddb_dev))
return;
ddb_device_attrs_del(dev);
device_destroy(&ddb_class, MKDEV(ddb_major, dev->nr));
}
#define LINK_IRQ_HANDLE(_l, _nr) \
do { if ((s & (1UL << (_nr))) && dev->handler[_l][_nr]) \
dev->handler[_l][_nr](dev->handler_data[_l][_nr]); } \
while (0)
static void gtl_link_handler(unsigned long priv)
{
struct ddb *dev = (struct ddb *)priv;
u32 regs = dev->link[0].info->regmap->gtl->base;
dev_info(dev->dev, "GT link change: %u\n",
(1 & ddbreadl(dev, regs)));
}
static void link_tasklet(unsigned long data)
{
struct ddb_link *link = (struct ddb_link *)data;
struct ddb *dev = link->dev;
u32 s, tag = DDB_LINK_TAG(link->nr);
u32 l = link->nr;
s = ddbreadl(dev, tag | INTERRUPT_STATUS);
dev_info(dev->dev, "gtl_irq %08x = %08x\n", tag | INTERRUPT_STATUS, s);
if (!s)
return;
ddbwritel(dev, s, tag | INTERRUPT_ACK);
LINK_IRQ_HANDLE(l, 0);
LINK_IRQ_HANDLE(l, 1);
LINK_IRQ_HANDLE(l, 2);
LINK_IRQ_HANDLE(l, 3);
LINK_IRQ_HANDLE(l, 24);
}
static void gtl_irq_handler(unsigned long priv)
{
struct ddb_link *link = (struct ddb_link *)priv;
#if 1
struct ddb *dev = link->dev;
u32 s, l = link->nr, tag = DDB_LINK_TAG(link->nr);
while ((s = ddbreadl(dev, tag | INTERRUPT_STATUS))) {
ddbwritel(dev, s, tag | INTERRUPT_ACK);
LINK_IRQ_HANDLE(l, 0);
LINK_IRQ_HANDLE(l, 1);
LINK_IRQ_HANDLE(l, 2);
LINK_IRQ_HANDLE(l, 3);
LINK_IRQ_HANDLE(l, 24);
}
#else
tasklet_schedule(&link->tasklet);
#endif
}
static int ddb_gtl_init_link(struct ddb *dev, u32 l)
{
struct ddb_link *link = &dev->link[l];
u32 regs = dev->link[0].info->regmap->gtl->base +
(l - 1) * dev->link[0].info->regmap->gtl->size;
u32 id, subid, base = dev->link[0].info->regmap->irq_base_gtl;
dev_info(dev->dev, "Checking GT link %u: regs = %08x\n", l, regs);
spin_lock_init(&link->lock);
mutex_init(&link->lnb.lock);
link->lnb.fmode = 0xffffffff;
mutex_init(&link->flash_mutex);
link->nr = l;
link->dev = dev;
link->regs = regs;
if (!(1 & ddbreadl(dev, regs))) {
u32 c;
for (c = 0; c < 5; c++) {
ddbwritel(dev, 2, regs);
msleep(20);
ddbwritel(dev, 0, regs);
msleep(200);
if (1 & ddbreadl(dev, regs))
break;
}
if (c == 5)
return -1;
}
id = ddbreadl(dev, DDB_LINK_TAG(l) | 8);
subid = ddbreadl(dev, DDB_LINK_TAG(l) | 12);
link->info = get_ddb_info(id & 0xffff, id >> 16,
subid & 0xffff, subid >> 16);
if (link->info->type != DDB_OCTOPUS_MAX_CT &&
link->info->type != DDB_OCTOPUS_MAX) {
dev_info(dev->dev,
"Detected GT link but found invalid ID %08x. You might have to update (flash) the add-on card first.",
id);
return -1;
}
link->ids.devid = id;
ddbwritel(dev, 1, regs + 0x20);
dev->handler_data[0][base + l] = (unsigned long)link;
dev->handler[0][base + l] = gtl_irq_handler;
dev->link[l].ids.hwid = ddbreadl(dev, DDB_LINK_TAG(l) | 0);
dev->link[l].ids.regmapid = ddbreadl(dev, DDB_LINK_TAG(l) | 4);
dev->link[l].ids.vendor = id & 0xffff;
dev->link[l].ids.device = id >> 16;
dev->link[l].ids.subvendor = subid & 0xffff;
dev->link[l].ids.subdevice = subid >> 16;
dev_info(dev->dev, "GTL %s\n", dev->link[l].info->name);
dev_info(dev->dev, "GTL HW %08x REGMAP %08x\n",
dev->link[l].ids.hwid,
dev->link[l].ids.regmapid);
dev_info(dev->dev, "GTL ID %08x\n",
ddbreadl(dev, DDB_LINK_TAG(l) | 8));
tasklet_init(&link->tasklet, link_tasklet, (unsigned long)link);
ddbwritel(dev, 0xffffffff, DDB_LINK_TAG(l) | INTERRUPT_ACK);
ddbwritel(dev, 0x0100000f, DDB_LINK_TAG(l) | INTERRUPT_ENABLE);
return 0;
}
static int ddb_gtl_init(struct ddb *dev)
{
u32 l, base = dev->link[0].info->regmap->irq_base_gtl;
dev->handler_data[0][base] = (unsigned long)dev;
dev->handler[0][base] = gtl_link_handler;
for (l = 1; l < dev->link[0].info->regmap->gtl->num + 1; l++)
ddb_gtl_init_link(dev, l);
return 0;
}
/****************************************************************************/
/****************************************************************************/
/****************************************************************************/
static void tempmon_setfan(struct ddb_link *link)
{
u32 temp, temp2, pwm;
if ((ddblreadl(link, TEMPMON_CONTROL) &
TEMPMON_CONTROL_OVERTEMP) != 0) {
dev_info(link->dev->dev, "Over temperature condition\n");
link->over_temperature_error = 1;
}
temp = (ddblreadl(link, TEMPMON_SENSOR0) >> 8) & 0xFF;
if (temp & 0x80)
temp = 0;
temp2 = (ddblreadl(link, TEMPMON_SENSOR1) >> 8) & 0xFF;
if (temp2 & 0x80)
temp2 = 0;
if (temp2 > temp)
temp = temp2;
pwm = (ddblreadl(link, TEMPMON_FANCONTROL) >> 8) & 0x0F;
if (pwm > 10)
pwm = 10;
if (temp >= link->temp_tab[pwm]) {
while (pwm < 10 && temp >= link->temp_tab[pwm + 1])
pwm += 1;
} else {
while (pwm > 1 && temp < link->temp_tab[pwm - 2])
pwm -= 1;
}
ddblwritel(link, (pwm << 8), TEMPMON_FANCONTROL);
}
static void temp_handler(unsigned long data)
{
struct ddb_link *link = (struct ddb_link *)data;
spin_lock(&link->temp_lock);
tempmon_setfan(link);
spin_unlock(&link->temp_lock);
}
static int tempmon_init(struct ddb_link *link, int first_time)
{
struct ddb *dev = link->dev;
int status = 0;
u32 l = link->nr;
spin_lock_irq(&link->temp_lock);
if (first_time) {
static u8 temperature_table[11] = {
30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80};
memcpy(link->temp_tab, temperature_table,
sizeof(temperature_table));
}
dev->handler[l][link->info->tempmon_irq] = temp_handler;
dev->handler_data[l][link->info->tempmon_irq] = (unsigned long)link;
ddblwritel(link, (TEMPMON_CONTROL_OVERTEMP | TEMPMON_CONTROL_AUTOSCAN |
TEMPMON_CONTROL_INTENABLE),
TEMPMON_CONTROL);
ddblwritel(link, (3 << 8), TEMPMON_FANCONTROL);
link->over_temperature_error =
((ddblreadl(link, TEMPMON_CONTROL) &
TEMPMON_CONTROL_OVERTEMP) != 0);
if (link->over_temperature_error) {
dev_info(dev->dev, "Over temperature condition\n");
status = -1;
}
tempmon_setfan(link);
spin_unlock_irq(&link->temp_lock);
return status;
}
static int ddb_init_tempmon(struct ddb_link *link)
{
const struct ddb_info *info = link->info;
if (!info->tempmon_irq)
return 0;
if (info->type == DDB_OCTOPUS_MAX ||
info->type == DDB_OCTOPUS_MAX_CT)
if (link->ids.regmapid < 0x00010002)
return 0;
spin_lock_init(&link->temp_lock);
return tempmon_init(link, 1);
}
/****************************************************************************/
/****************************************************************************/
/****************************************************************************/
static int ddb_init_boards(struct ddb *dev)
{
const struct ddb_info *info;
struct ddb_link *link;
u32 l;
for (l = 0; l < DDB_MAX_LINK; l++) {
link = &dev->link[l];
info = link->info;
if (!info)
continue;
dev_info(dev->dev,
"link %u vendor %04x device %04x subvendor %04x subdevice %04x\n",
l,
dev->link[l].ids.vendor,
dev->link[l].ids.device,
dev->link[l].ids.subvendor,
dev->link[l].ids.subdevice);
if (info->board_control) {
ddbwritel(dev, 0, DDB_LINK_TAG(l) | BOARD_CONTROL);
msleep(100);
ddbwritel(dev, info->board_control_2,
DDB_LINK_TAG(l) | BOARD_CONTROL);
usleep_range(2000, 3000);
ddbwritel(dev, info->board_control_2 |
info->board_control,
DDB_LINK_TAG(l) | BOARD_CONTROL);
usleep_range(2000, 3000);
}
ddb_init_tempmon(link);
}
return 0;
}
int ddb_init(struct ddb *dev)
{
mutex_init(&dev->link[0].flash_mutex);
mutex_init(&dev->ioctl_mutex);
if (no_init) {
ddb_device_create(dev);
return 0;
}
if (dev->link[0].info->ns_num) {
ddbwritel(dev, 1, ETHER_CONTROL);
dev->vlan = vlan;
ddbwritel(dev, 14 + (dev->vlan ? 4 : 0), ETHER_LENGTH);
}
mutex_init(&dev->link[0].lnb.lock);
if (dev->link[0].info->regmap->gtl)
ddb_gtl_init(dev);
ddb_init_boards(dev);
if (ddb_i2c_init(dev) < 0)
goto fail;
ddb_ports_init(dev);
if (dev->link[0].info->type == DDB_MOD)
ddbridge_mod_init(dev);
if (ddb_buffers_alloc(dev) < 0) {
dev_info(dev->dev,
"Could not allocate buffer memory\n");
goto fail2;
}
if (ddb_ports_attach(dev) < 0)
goto fail3;
ddb_nsd_attach(dev);
ddb_device_create(dev);
if (dev->link[0].info->fan_num) {
ddbwritel(dev, 1, GPIO_DIRECTION);
ddbwritel(dev, 1, GPIO_OUTPUT);
}
return 0;
fail3:
ddb_ports_detach(dev);
dev_err(dev->dev, "fail3\n");
ddb_ports_release(dev);
fail2:
dev_err(dev->dev, "fail2\n");
ddb_buffers_free(dev);
ddb_i2c_release(dev);
fail:
dev_err(dev->dev, "fail1\n");
return -1;
}
static void ddb_reset_io(struct ddb *dev, u32 reg)
{
ddbwritel(dev, 0x00, reg);
ddbwritel(dev, 0x02, reg);
ddbwritel(dev, 0x00, reg);
}
void ddb_reset_ios(struct ddb *dev)
{
u32 i;
const struct ddb_regmap *rm = dev->link[0].info->regmap;
if (rm->input)
for (i = 0; i < rm->input->num; i++)
ddb_reset_io(dev,
rm->input->base + i * rm->input->size);
if (rm->output)
for (i = 0; i < rm->output->num; i++)
ddb_reset_io(dev,
rm->output->base + i * rm->output->size);
usleep_range(5000, 6000);
}
void ddb_unmap(struct ddb *dev)
{
if (dev->regs)
iounmap(dev->regs);
vfree(dev);
}