hyperion.ng/libsrc/leddevice/LedDeviceAtmoOrb.cpp

141 lines
4.0 KiB
C++
Raw Normal View History

// Local-Hyperion includes
#include "LedDeviceAtmoOrb.h"
// qt includes
#include <QtCore/qmath.h>
#include <QEventLoop>
#include <QtNetwork>
#include <QNetworkReply>
#include <stdexcept>
#include <string>
#include <set>
AtmoOrbLight::AtmoOrbLight(unsigned int id) {
// Not implemented
}
LedDeviceAtmoOrb::LedDeviceAtmoOrb(const std::string &output, bool useOrbSmoothing,
int transitiontime, int skipSmoothingDiff, int port, int numLeds, std::vector<unsigned int> orbIds) :
multicastGroup(output.c_str()), useOrbSmoothing(useOrbSmoothing), transitiontime(transitiontime), skipSmoothingDiff(skipSmoothingDiff),
multiCastGroupPort(port), numLeds(numLeds), orbIds(orbIds) {
manager = new QNetworkAccessManager();
groupAddress = QHostAddress(multicastGroup);
udpSocket = new QUdpSocket(this);
udpSocket->bind(multiCastGroupPort, QUdpSocket::ShareAddress | QUdpSocket::ReuseAddressHint);
joinedMulticastgroup = udpSocket->joinMulticastGroup(groupAddress);
}
int LedDeviceAtmoOrb::write(const std::vector <ColorRgb> &ledValues) {
// If not in multicast group return
if (!joinedMulticastgroup) {
return 0;
}
// Command options:
//
// 1 = force off
// 2 = use lamp smoothing and validate by Orb ID
// 4 = validate by Orb ID
// When setting useOrbSmoothing = true it's recommended to disable Hyperion's own smoothing as it will conflict (double smoothing)
int commandType = 4;
if(useOrbSmoothing)
{
commandType = 2;
}
// Iterate through colors and set Orb color
// Start off with idx 1 as 0 is reserved for controlling all orbs at once
unsigned int idx = 1;
for (const ColorRgb &color : ledValues) {
// If color difference is higher than skipSmoothingDiff than we skip Orb smoothing (if enabled) and send it right away
if ((skipSmoothingDiff != 0 && useOrbSmoothing) && (abs(color.red - lastRed) >= skipSmoothingDiff || abs(color.blue - lastBlue) >= skipSmoothingDiff ||
abs(color.green - lastGreen) >= skipSmoothingDiff))
{
// Skip Orb smoothing when using (command type 4)
for (unsigned int i = 0; i < orbIds.size(); i++) {
if (orbIds[i] == idx) {
setColor(idx, color, 4);
}
}
}
else {
// Send color
for (unsigned int i = 0; i < orbIds.size(); i++) {
if (orbIds[i] == idx) {
setColor(idx, color, commandType);
}
}
}
// Next light id.
idx++;
}
return 0;
}
void LedDeviceAtmoOrb::setColor(unsigned int orbId, const ColorRgb &color, int commandType) {
QByteArray bytes;
bytes.resize(5 + numLeds * 3);
bytes.fill('\0');
// Command identifier: C0FFEE
bytes[0] = 0xC0;
bytes[1] = 0xFF;
bytes[2] = 0xEE;
// Command type
bytes[3] = commandType;
// Orb ID
bytes[4] = orbId;
// RED / GREEN / BLUE
bytes[5] = color.red;
bytes[6] = color.green;
bytes[7] = color.blue;
sendCommand(bytes);
}
void LedDeviceAtmoOrb::sendCommand(const QByteArray &bytes) {
QByteArray datagram = bytes;
udpSocket->writeDatagram(datagram.data(), datagram.size(),
groupAddress, multiCastGroupPort);
}
int LedDeviceAtmoOrb::switchOff() {
for (unsigned int i = 0; i < orbIds.size(); i++) {
QByteArray bytes;
bytes.resize(5 + numLeds * 3);
bytes.fill('\0');
// Command identifier: C0FFEE
bytes[0] = 0xC0;
bytes[1] = 0xFF;
bytes[2] = 0xEE;
// Command type
bytes[3] = 1;
// Orb ID
bytes[4] = orbIds[i];
// RED / GREEN / BLUE
bytes[5] = 0;
bytes[6] = 0;
bytes[7] = 0;
sendCommand(bytes);
}
return 0;
}
LedDeviceAtmoOrb::~LedDeviceAtmoOrb() {
delete manager;
}