Fix for Philips Hue flickering when switchOffOnBlack is set true (#668)

* Improved switch off on black feature.

* Changed "isnan" to "std::isnan"


Former-commit-id: 5db2b97674661e4e19f796a91dd443a501268e27
This commit is contained in:
ntim 2016-05-31 22:54:47 +02:00 committed by brindosch
parent 6f43fe1196
commit 03cee33784

View File

@ -1,342 +1,342 @@
// Local-Hyperion includes // Local-Hyperion includes
#include "LedDevicePhilipsHue.h" #include "LedDevicePhilipsHue.h"
// jsoncpp includes // jsoncpp includes
#include <json/json.h> #include <json/json.h>
// qt includes // qt includes
#include <QtCore/qmath.h> #include <QtCore/qmath.h>
#include <QEventLoop> #include <QEventLoop>
#include <QNetworkReply> #include <QNetworkReply>
#include <stdexcept> #include <stdexcept>
#include <set> #include <set>
bool operator ==(CiColor p1, CiColor p2) { bool operator ==(CiColor p1, CiColor p2) {
return (p1.x == p2.x) && (p1.y == p2.y) && (p1.bri == p2.bri); return (p1.x == p2.x) && (p1.y == p2.y) && (p1.bri == p2.bri);
} }
bool operator !=(CiColor p1, CiColor p2) { bool operator !=(CiColor p1, CiColor p2) {
return !(p1 == p2); return !(p1 == p2);
} }
PhilipsHueLight::PhilipsHueLight(unsigned int id, QString originalState, QString modelId) : PhilipsHueLight::PhilipsHueLight(unsigned int id, QString originalState, QString modelId) :
id(id), originalState(originalState) { id(id), originalState(originalState) {
// Hue system model ids (http://www.developers.meethue.com/documentation/supported-lights). // Hue system model ids (http://www.developers.meethue.com/documentation/supported-lights).
// Light strips, color iris, ... // Light strips, color iris, ...
const std::set<QString> GAMUT_A_MODEL_IDS = { "LLC001", "LLC005", "LLC006", "LLC007", "LLC010", "LLC011", "LLC012", const std::set<QString> GAMUT_A_MODEL_IDS = { "LLC001", "LLC005", "LLC006", "LLC007", "LLC010", "LLC011", "LLC012",
"LLC013", "LLC014", "LST001" }; "LLC013", "LLC014", "LST001" };
// Hue bulbs, spots, ... // Hue bulbs, spots, ...
const std::set<QString> GAMUT_B_MODEL_IDS = { "LCT001", "LCT002", "LCT003", "LCT007", "LLM001" }; const std::set<QString> GAMUT_B_MODEL_IDS = { "LCT001", "LCT002", "LCT003", "LCT007", "LLM001" };
// Hue Lightstrip plus, go ... // Hue Lightstrip plus, go ...
const std::set<QString> GAMUT_C_MODEL_IDS = { "LLC020", "LST002" }; const std::set<QString> GAMUT_C_MODEL_IDS = { "LLC020", "LST002" };
// Find id in the sets and set the appropiate color space. // Find id in the sets and set the appropiate color space.
if (GAMUT_A_MODEL_IDS.find(modelId) != GAMUT_A_MODEL_IDS.end()) { if (GAMUT_A_MODEL_IDS.find(modelId) != GAMUT_A_MODEL_IDS.end()) {
colorSpace.red = {0.703f, 0.296f}; colorSpace.red = {0.703f, 0.296f};
colorSpace.green = {0.2151f, 0.7106f}; colorSpace.green = {0.2151f, 0.7106f};
colorSpace.blue = {0.138f, 0.08f}; colorSpace.blue = {0.138f, 0.08f};
} else if (GAMUT_B_MODEL_IDS.find(modelId) != GAMUT_B_MODEL_IDS.end()) { } else if (GAMUT_B_MODEL_IDS.find(modelId) != GAMUT_B_MODEL_IDS.end()) {
colorSpace.red = {0.675f, 0.322f}; colorSpace.red = {0.675f, 0.322f};
colorSpace.green = {0.4091f, 0.518f}; colorSpace.green = {0.4091f, 0.518f};
colorSpace.blue = {0.167f, 0.04f}; colorSpace.blue = {0.167f, 0.04f};
} else if (GAMUT_C_MODEL_IDS.find(modelId) != GAMUT_B_MODEL_IDS.end()) { } else if (GAMUT_C_MODEL_IDS.find(modelId) != GAMUT_B_MODEL_IDS.end()) {
colorSpace.red = {0.675f, 0.322f}; colorSpace.red = {0.675f, 0.322f};
colorSpace.green = {0.2151f, 0.7106f}; colorSpace.green = {0.2151f, 0.7106f};
colorSpace.blue = {0.167f, 0.04f}; colorSpace.blue = {0.167f, 0.04f};
} else { } else {
colorSpace.red = {1.0f, 0.0f}; colorSpace.red = {1.0f, 0.0f};
colorSpace.green = {0.0f, 1.0f}; colorSpace.green = {0.0f, 1.0f};
colorSpace.blue = {0.0f, 0.0f}; colorSpace.blue = {0.0f, 0.0f};
} }
// Initialize black color. // Initialize black color.
black = rgbToCiColor(0.0f, 0.0f, 0.0f); black = rgbToCiColor(0.0f, 0.0f, 0.0f);
// Initialize color with black // Initialize color with black
color = {black.x, black.y, black.bri}; color = {black.x, black.y, black.bri};
} }
float PhilipsHueLight::crossProduct(CiColor p1, CiColor p2) { float PhilipsHueLight::crossProduct(CiColor p1, CiColor p2) {
return p1.x * p2.y - p1.y * p2.x; return p1.x * p2.y - p1.y * p2.x;
} }
bool PhilipsHueLight::isPointInLampsReach(CiColor p) { bool PhilipsHueLight::isPointInLampsReach(CiColor p) {
CiColor v1 = { colorSpace.green.x - colorSpace.red.x, colorSpace.green.y - colorSpace.red.y }; CiColor v1 = { colorSpace.green.x - colorSpace.red.x, colorSpace.green.y - colorSpace.red.y };
CiColor v2 = { colorSpace.blue.x - colorSpace.red.x, colorSpace.blue.y - colorSpace.red.y }; CiColor v2 = { colorSpace.blue.x - colorSpace.red.x, colorSpace.blue.y - colorSpace.red.y };
CiColor q = { p.x - colorSpace.red.x, p.y - colorSpace.red.y }; CiColor q = { p.x - colorSpace.red.x, p.y - colorSpace.red.y };
float s = crossProduct(q, v2) / crossProduct(v1, v2); float s = crossProduct(q, v2) / crossProduct(v1, v2);
float t = crossProduct(v1, q) / crossProduct(v1, v2); float t = crossProduct(v1, q) / crossProduct(v1, v2);
if ((s >= 0.0f) && (t >= 0.0f) && (s + t <= 1.0f)) { if ((s >= 0.0f) && (t >= 0.0f) && (s + t <= 1.0f)) {
return true; return true;
} }
return false; return false;
} }
CiColor PhilipsHueLight::getClosestPointToPoint(CiColor a, CiColor b, CiColor p) { CiColor PhilipsHueLight::getClosestPointToPoint(CiColor a, CiColor b, CiColor p) {
CiColor AP = { p.x - a.x, p.y - a.y }; CiColor AP = { p.x - a.x, p.y - a.y };
CiColor AB = { b.x - a.x, b.y - a.y }; CiColor AB = { b.x - a.x, b.y - a.y };
float ab2 = AB.x * AB.x + AB.y * AB.y; float ab2 = AB.x * AB.x + AB.y * AB.y;
float ap_ab = AP.x * AB.x + AP.y * AB.y; float ap_ab = AP.x * AB.x + AP.y * AB.y;
float t = ap_ab / ab2; float t = ap_ab / ab2;
if (t < 0.0f) { if (t < 0.0f) {
t = 0.0f; t = 0.0f;
} else if (t > 1.0f) { } else if (t > 1.0f) {
t = 1.0f; t = 1.0f;
} }
return {a.x + AB.x * t, a.y + AB.y * t}; return {a.x + AB.x * t, a.y + AB.y * t};
} }
float PhilipsHueLight::getDistanceBetweenTwoPoints(CiColor p1, CiColor p2) { float PhilipsHueLight::getDistanceBetweenTwoPoints(CiColor p1, CiColor p2) {
// Horizontal difference. // Horizontal difference.
float dx = p1.x - p2.x; float dx = p1.x - p2.x;
// Vertical difference. // Vertical difference.
float dy = p1.y - p2.y; float dy = p1.y - p2.y;
// Absolute value. // Absolute value.
return sqrt(dx * dx + dy * dy); return sqrt(dx * dx + dy * dy);
} }
CiColor PhilipsHueLight::rgbToCiColor(float red, float green, float blue) { CiColor PhilipsHueLight::rgbToCiColor(float red, float green, float blue) {
// Apply gamma correction. // Apply gamma correction.
float r = (red > 0.04045f) ? powf((red + 0.055f) / (1.0f + 0.055f), 2.4f) : (red / 12.92f); float r = (red > 0.04045f) ? powf((red + 0.055f) / (1.0f + 0.055f), 2.4f) : (red / 12.92f);
float g = (green > 0.04045f) ? powf((green + 0.055f) / (1.0f + 0.055f), 2.4f) : (green / 12.92f); float g = (green > 0.04045f) ? powf((green + 0.055f) / (1.0f + 0.055f), 2.4f) : (green / 12.92f);
float b = (blue > 0.04045f) ? powf((blue + 0.055f) / (1.0f + 0.055f), 2.4f) : (blue / 12.92f); float b = (blue > 0.04045f) ? powf((blue + 0.055f) / (1.0f + 0.055f), 2.4f) : (blue / 12.92f);
// Convert to XYZ space. // Convert to XYZ space.
float X = r * 0.649926f + g * 0.103455f + b * 0.197109f; float X = r * 0.649926f + g * 0.103455f + b * 0.197109f;
float Y = r * 0.234327f + g * 0.743075f + b * 0.022598f; float Y = r * 0.234327f + g * 0.743075f + b * 0.022598f;
float Z = r * 0.0000000f + g * 0.053077f + b * 1.035763f; float Z = r * 0.0000000f + g * 0.053077f + b * 1.035763f;
// Convert to x,y space. // Convert to x,y space.
float cx = X / (X + Y + Z); float cx = X / (X + Y + Z);
float cy = Y / (X + Y + Z); float cy = Y / (X + Y + Z);
if (std::isnan(cx)) { if (std::isnan(cx)) {
cx = 0.0f; cx = 0.0f;
} }
if (std::isnan(cy)) { if (std::isnan(cy)) {
cy = 0.0f; cy = 0.0f;
} }
// Brightness is simply Y in the XYZ space. // Brightness is simply Y in the XYZ space.
CiColor xy = { cx, cy, Y }; CiColor xy = { cx, cy, Y };
// Check if the given XY value is within the color reach of our lamps. // Check if the given XY value is within the color reach of our lamps.
if (!isPointInLampsReach(xy)) { if (!isPointInLampsReach(xy)) {
// It seems the color is out of reach let's find the closes color we can produce with our lamp and send this XY value out. // It seems the color is out of reach let's find the closes color we can produce with our lamp and send this XY value out.
CiColor pAB = getClosestPointToPoint(colorSpace.red, colorSpace.green, xy); CiColor pAB = getClosestPointToPoint(colorSpace.red, colorSpace.green, xy);
CiColor pAC = getClosestPointToPoint(colorSpace.blue, colorSpace.red, xy); CiColor pAC = getClosestPointToPoint(colorSpace.blue, colorSpace.red, xy);
CiColor pBC = getClosestPointToPoint(colorSpace.green, colorSpace.blue, xy); CiColor pBC = getClosestPointToPoint(colorSpace.green, colorSpace.blue, xy);
// Get the distances per point and see which point is closer to our Point. // Get the distances per point and see which point is closer to our Point.
float dAB = getDistanceBetweenTwoPoints(xy, pAB); float dAB = getDistanceBetweenTwoPoints(xy, pAB);
float dAC = getDistanceBetweenTwoPoints(xy, pAC); float dAC = getDistanceBetweenTwoPoints(xy, pAC);
float dBC = getDistanceBetweenTwoPoints(xy, pBC); float dBC = getDistanceBetweenTwoPoints(xy, pBC);
float lowest = dAB; float lowest = dAB;
CiColor closestPoint = pAB; CiColor closestPoint = pAB;
if (dAC < lowest) { if (dAC < lowest) {
lowest = dAC; lowest = dAC;
closestPoint = pAC; closestPoint = pAC;
} }
if (dBC < lowest) { if (dBC < lowest) {
lowest = dBC; lowest = dBC;
closestPoint = pBC; closestPoint = pBC;
} }
// Change the xy value to a value which is within the reach of the lamp. // Change the xy value to a value which is within the reach of the lamp.
xy.x = closestPoint.x; xy.x = closestPoint.x;
xy.y = closestPoint.y; xy.y = closestPoint.y;
} }
return xy; return xy;
} }
LedDevicePhilipsHue::LedDevicePhilipsHue(const std::string& output, const std::string& username, bool switchOffOnBlack, LedDevicePhilipsHue::LedDevicePhilipsHue(const std::string& output, const std::string& username, bool switchOffOnBlack,
int transitiontime, std::vector<unsigned int> lightIds) : int transitiontime, std::vector<unsigned int> lightIds) :
host(output.c_str()), username(username.c_str()), switchOffOnBlack(switchOffOnBlack), transitiontime( host(output.c_str()), username(username.c_str()), switchOffOnBlack(switchOffOnBlack), transitiontime(
transitiontime), lightIds(lightIds) { transitiontime), lightIds(lightIds) {
manager = new QNetworkAccessManager(); manager = new QNetworkAccessManager();
timer.setInterval(3000); timer.setInterval(3000);
timer.setSingleShot(true); timer.setSingleShot(true);
connect(&timer, SIGNAL(timeout()), this, SLOT(restoreStates())); connect(&timer, SIGNAL(timeout()), this, SLOT(restoreStates()));
} }
LedDevicePhilipsHue::~LedDevicePhilipsHue() { LedDevicePhilipsHue::~LedDevicePhilipsHue() {
delete manager; delete manager;
} }
int LedDevicePhilipsHue::write(const std::vector<ColorRgb> & ledValues) { int LedDevicePhilipsHue::write(const std::vector<ColorRgb> & ledValues) {
// Save light states if not done before. // Save light states if not done before.
if (!areStatesSaved()) { if (!areStatesSaved()) {
saveStates((unsigned int) ledValues.size()); saveStates((unsigned int) ledValues.size());
switchOn((unsigned int) ledValues.size()); switchOn((unsigned int) ledValues.size());
} }
// If there are less states saved than colors given, then maybe something went wrong before. // If there are less states saved than colors given, then maybe something went wrong before.
if (lights.size() != ledValues.size()) { if (lights.size() != ledValues.size()) {
restoreStates(); restoreStates();
return 0; return 0;
} }
// Iterate through colors and set light states. // Iterate through colors and set light states.
unsigned int idx = 0; unsigned int idx = 0;
for (const ColorRgb& color : ledValues) { for (const ColorRgb& color : ledValues) {
// Get lamp. // Get lamp.
PhilipsHueLight& lamp = lights.at(idx); PhilipsHueLight& lamp = lights.at(idx);
// Scale colors from [0, 255] to [0, 1] and convert to xy space. // Scale colors from [0, 255] to [0, 1] and convert to xy space.
CiColor xy = lamp.rgbToCiColor(color.red / 255.0f, color.green / 255.0f, color.blue / 255.0f); CiColor xy = lamp.rgbToCiColor(color.red / 255.0f, color.green / 255.0f, color.blue / 255.0f);
// Write color if color has been changed. // Write color if color has been changed.
if (xy != lamp.color) { if (xy != lamp.color) {
// Switch on if the lamp has been previously switched off. // From a color to black.
if (switchOffOnBlack && lamp.color == lamp.black) { if (switchOffOnBlack && lamp.color != lamp.black && xy == lamp.black) {
put(getStateRoute(lamp.id), QString("{\"on\": true}")); put(getStateRoute(lamp.id), QString("{\"on\": false}"));
} }
// Send adjust color and brightness command in JSON format. // From black to a color
// We have to set the transition time each time. else if (switchOffOnBlack && lamp.color == lamp.black && xy != lamp.black) {
put(getStateRoute(lamp.id), // Send adjust color and brightness command in JSON format.
QString("{\"xy\": [%1, %2], \"bri\": %3, \"transitiontime\": %4}").arg(xy.x).arg(xy.y).arg( // We have to set the transition time each time.
qRound(xy.bri * 255.0f)).arg(transitiontime)); // Send also command to switch the lamp on.
put(getStateRoute(lamp.id),
} QString("{\"on\": true, \"xy\": [%1, %2], \"bri\": %3, \"transitiontime\": %4}").arg(xy.x).arg(
// Switch lamp off if switchOffOnBlack is enabled and the lamp is currently on. xy.y).arg(qRound(xy.bri * 255.0f)).arg(transitiontime));
if (switchOffOnBlack) { }
// From black to a color. // Normal color change.
if (lamp.color == lamp.black && xy != lamp.black) { else {
put(getStateRoute(lamp.id), QString("{\"on\": true}")); // Send adjust color and brightness command in JSON format.
} // We have to set the transition time each time.
// From a color to black. put(getStateRoute(lamp.id),
else if (lamp.color != lamp.black && xy == lamp.black) { QString("{\"xy\": [%1, %2], \"bri\": %3, \"transitiontime\": %4}").arg(xy.x).arg(xy.y).arg(
put(getStateRoute(lamp.id), QString("{\"on\": false}")); qRound(xy.bri * 255.0f)).arg(transitiontime));
} }
} }
// Remember last color. // Remember last color.
lamp.color = xy; lamp.color = xy;
// Next light id. // Next light id.
idx++; idx++;
} }
timer.start(); timer.start();
return 0; return 0;
} }
int LedDevicePhilipsHue::switchOff() { int LedDevicePhilipsHue::switchOff() {
timer.stop(); timer.stop();
// If light states have been saved before, ... // If light states have been saved before, ...
if (areStatesSaved()) { if (areStatesSaved()) {
// ... restore them. // ... restore them.
restoreStates(); restoreStates();
} }
return 0; return 0;
} }
void LedDevicePhilipsHue::put(QString route, QString content) { void LedDevicePhilipsHue::put(QString route, QString content) {
QString url = getUrl(route); QString url = getUrl(route);
// Perfrom request // Perfrom request
QNetworkRequest request(url); QNetworkRequest request(url);
QNetworkReply* reply = manager->put(request, content.toLatin1()); QNetworkReply* reply = manager->put(request, content.toLatin1());
// Connect finished signal to quit slot of the loop. // Connect finished signal to quit slot of the loop.
QEventLoop loop; QEventLoop loop;
loop.connect(reply, SIGNAL(finished()), SLOT(quit())); loop.connect(reply, SIGNAL(finished()), SLOT(quit()));
// Go into the loop until the request is finished. // Go into the loop until the request is finished.
loop.exec(); loop.exec();
// Free space. // Free space.
reply->deleteLater(); reply->deleteLater();
} }
QByteArray LedDevicePhilipsHue::get(QString route) { QByteArray LedDevicePhilipsHue::get(QString route) {
QString url = getUrl(route); QString url = getUrl(route);
// Perfrom request // Perfrom request
QNetworkRequest request(url); QNetworkRequest request(url);
QNetworkReply* reply = manager->get(request); QNetworkReply* reply = manager->get(request);
// Connect requestFinished signal to quit slot of the loop. // Connect requestFinished signal to quit slot of the loop.
QEventLoop loop; QEventLoop loop;
loop.connect(reply, SIGNAL(finished()), SLOT(quit())); loop.connect(reply, SIGNAL(finished()), SLOT(quit()));
// Go into the loop until the request is finished. // Go into the loop until the request is finished.
loop.exec(); loop.exec();
// Read all data of the response. // Read all data of the response.
QByteArray response = reply->readAll(); QByteArray response = reply->readAll();
// Free space. // Free space.
reply->deleteLater(); reply->deleteLater();
// Return response // Return response
return response; return response;
} }
QString LedDevicePhilipsHue::getStateRoute(unsigned int lightId) { QString LedDevicePhilipsHue::getStateRoute(unsigned int lightId) {
return QString("lights/%1/state").arg(lightId); return QString("lights/%1/state").arg(lightId);
} }
QString LedDevicePhilipsHue::getRoute(unsigned int lightId) { QString LedDevicePhilipsHue::getRoute(unsigned int lightId) {
return QString("lights/%1").arg(lightId); return QString("lights/%1").arg(lightId);
} }
QString LedDevicePhilipsHue::getUrl(QString route) { QString LedDevicePhilipsHue::getUrl(QString route) {
return QString("http://%1/api/%2/%3").arg(host).arg(username).arg(route); return QString("http://%1/api/%2/%3").arg(host).arg(username).arg(route);
} }
void LedDevicePhilipsHue::saveStates(unsigned int nLights) { void LedDevicePhilipsHue::saveStates(unsigned int nLights) {
// Clear saved lamps. // Clear saved lamps.
lights.clear(); lights.clear();
// Use json parser to parse reponse. // Use json parser to parse reponse.
Json::Reader reader; Json::Reader reader;
Json::FastWriter writer; Json::FastWriter writer;
// Read light ids if none have been supplied by the user. // Read light ids if none have been supplied by the user.
if (lightIds.size() != nLights) { if (lightIds.size() != nLights) {
lightIds.clear(); lightIds.clear();
// //
QByteArray response = get("lights"); QByteArray response = get("lights");
Json::Value json; Json::Value json;
if (!reader.parse(QString(response).toStdString(), json)) { if (!reader.parse(QString(response).toStdString(), json)) {
throw std::runtime_error(("No lights found at " + getUrl("lights")).toStdString()); throw std::runtime_error(("No lights found at " + getUrl("lights")).toStdString());
} }
// Loop over all children. // Loop over all children.
for (Json::ValueIterator it = json.begin(); it != json.end() && lightIds.size() < nLights; it++) { for (Json::ValueIterator it = json.begin(); it != json.end() && lightIds.size() < nLights; it++) {
int lightId = atoi(it.key().asCString()); int lightId = atoi(it.key().asCString());
lightIds.push_back(lightId); lightIds.push_back(lightId);
std::cout << "LedDevicePhilipsHue::saveStates(nLights=" << nLights << "): found light with id " << lightId std::cout << "LedDevicePhilipsHue::saveStates(nLights=" << nLights << "): found light with id " << lightId
<< "." << std::endl; << "." << std::endl;
} }
// Check if we found enough lights. // Check if we found enough lights.
if (lightIds.size() != nLights) { if (lightIds.size() != nLights) {
throw std::runtime_error(("Not enough lights found at " + getUrl("lights")).toStdString()); throw std::runtime_error(("Not enough lights found at " + getUrl("lights")).toStdString());
} }
} }
// Iterate lights. // Iterate lights.
for (unsigned int i = 0; i < nLights; i++) { for (unsigned int i = 0; i < nLights; i++) {
// Read the response. // Read the response.
QByteArray response = get(getRoute(lightIds.at(i))); QByteArray response = get(getRoute(lightIds.at(i)));
// Parse JSON. // Parse JSON.
Json::Value json; Json::Value json;
if (!reader.parse(QString(response).toStdString(), json)) { if (!reader.parse(QString(response).toStdString(), json)) {
// Error occured, break loop. // Error occured, break loop.
std::cerr << "LedDevicePhilipsHue::saveStates(nLights=" << nLights << "): got invalid response from light " std::cerr << "LedDevicePhilipsHue::saveStates(nLights=" << nLights << "): got invalid response from light "
<< getUrl(getRoute(lightIds.at(i))).toStdString() << "." << std::endl; << getUrl(getRoute(lightIds.at(i))).toStdString() << "." << std::endl;
break; break;
} }
// Get state object values which are subject to change. // Get state object values which are subject to change.
Json::Value state(Json::objectValue); Json::Value state(Json::objectValue);
if (!json.isMember("state")) { if (!json.isMember("state")) {
std::cerr << "LedDevicePhilipsHue::saveStates(nLights=" << nLights << "): got no state for light from " std::cerr << "LedDevicePhilipsHue::saveStates(nLights=" << nLights << "): got no state for light from "
<< getUrl(getRoute(lightIds.at(i))).toStdString() << std::endl; << getUrl(getRoute(lightIds.at(i))).toStdString() << std::endl;
break; break;
} }
if (!json["state"].isMember("on")) { if (!json["state"].isMember("on")) {
std::cerr << "LedDevicePhilipsHue::saveStates(nLights=" << nLights << "): got no valid state from light " std::cerr << "LedDevicePhilipsHue::saveStates(nLights=" << nLights << "): got no valid state from light "
<< getUrl(getRoute(lightIds.at(i))).toStdString() << std::endl; << getUrl(getRoute(lightIds.at(i))).toStdString() << std::endl;
break; break;
} }
state["on"] = json["state"]["on"]; state["on"] = json["state"]["on"];
if (json["state"]["on"] == true) { if (json["state"]["on"] == true) {
state["xy"] = json["state"]["xy"]; state["xy"] = json["state"]["xy"];
state["bri"] = json["state"]["bri"]; state["bri"] = json["state"]["bri"];
} }
// Determine the model id. // Determine the model id.
QString modelId = QString(writer.write(json["modelid"]).c_str()).trimmed().replace("\"", ""); QString modelId = QString(writer.write(json["modelid"]).c_str()).trimmed().replace("\"", "");
QString originalState = QString(writer.write(state).c_str()).trimmed(); QString originalState = QString(writer.write(state).c_str()).trimmed();
// Save state object. // Save state object.
lights.push_back(PhilipsHueLight(lightIds.at(i), originalState, modelId)); lights.push_back(PhilipsHueLight(lightIds.at(i), originalState, modelId));
} }
} }
void LedDevicePhilipsHue::switchOn(unsigned int nLights) { void LedDevicePhilipsHue::switchOn(unsigned int nLights) {
for (PhilipsHueLight light : lights) { for (PhilipsHueLight light : lights) {
put(getStateRoute(light.id), "{\"on\": true}"); put(getStateRoute(light.id), "{\"on\": true}");
} }
} }
void LedDevicePhilipsHue::restoreStates() { void LedDevicePhilipsHue::restoreStates() {
for (PhilipsHueLight light : lights) { for (PhilipsHueLight light : lights) {
put(getStateRoute(light.id), light.originalState); put(getStateRoute(light.id), light.originalState);
} }
// Clear saved light states. // Clear saved light states.
lights.clear(); lights.clear();
} }
bool LedDevicePhilipsHue::areStatesSaved() { bool LedDevicePhilipsHue::areStatesSaved() {
return !lights.empty(); return !lights.empty();
} }