Feature: Temporal Color Smoothing with variable decay-rate for long period average windows (#1043)

* Feature: Weighted Moving Average Smoothing with Decay

* fix assign

* try fix MSVC error related to always inline on static

* use proper imports for windows

* crossplatform inline declaration
This commit is contained in:
The-Master777 2020-11-02 07:52:33 +01:00 committed by GitHub
parent 83455441fa
commit 0dd8e45364
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 765 additions and 105 deletions

View File

@ -282,6 +282,7 @@
"edt_conf_enum_hsv": "HSV", "edt_conf_enum_hsv": "HSV",
"edt_conf_enum_left_right": "Left to right", "edt_conf_enum_left_right": "Left to right",
"edt_conf_enum_linear": "Linear", "edt_conf_enum_linear": "Linear",
"edt_conf_enum_decay": "Decay",
"edt_conf_enum_logdebug": "Debug", "edt_conf_enum_logdebug": "Debug",
"edt_conf_enum_logsilent": "Silent", "edt_conf_enum_logsilent": "Silent",
"edt_conf_enum_logverbose": "Verbose", "edt_conf_enum_logverbose": "Verbose",
@ -375,6 +376,14 @@
"edt_conf_smooth_type_title": "Type", "edt_conf_smooth_type_title": "Type",
"edt_conf_smooth_updateDelay_expl": "Delay the output in case your ambient light is faster than your TV.", "edt_conf_smooth_updateDelay_expl": "Delay the output in case your ambient light is faster than your TV.",
"edt_conf_smooth_updateDelay_title": "Update delay", "edt_conf_smooth_updateDelay_title": "Update delay",
"edt_conf_smooth_interpolationRate_expl": "Speed of the calculation of smooth intermediate frames.",
"edt_conf_smooth_interpolationRate_title": "Interpolation Rate",
"edt_conf_smooth_outputRate_title": "Output Rate",
"edt_conf_smooth_outputRate_expl": "The output speed to your led controller.",
"edt_conf_smooth_decay_title": "Decay-Power",
"edt_conf_smooth_decay_expl": "The speed of decay. 1 is linear, greater values are have stronger effect.",
"edt_conf_smooth_dithering_title": "Dithering",
"edt_conf_smooth_dithering_expl": "Improve color accuracy at high output speeds by alternating between adjacent colors.",
"edt_conf_smooth_updateFrequency_expl": "The output speed to your led controller.", "edt_conf_smooth_updateFrequency_expl": "The output speed to your led controller.",
"edt_conf_smooth_updateFrequency_title": "Update frequency", "edt_conf_smooth_updateFrequency_title": "Update frequency",
"edt_conf_v4l2_blueSignalThreshold_expl": "Darkens low blue values (recognized as black)", "edt_conf_v4l2_blueSignalThreshold_expl": "Darkens low blue values (recognized as black)",

View File

@ -533,7 +533,7 @@ function createJsonEditor(container,schema,setconfig,usePanel,arrayre)
{ {
for(var key in editor.root.editors) for(var key in editor.root.editors)
{ {
editor.getEditor("root."+key).setValue( window.serverConfig[key] ); editor.getEditor("root."+key).setValue(Object.assign({}, editor.getEditor("root."+key).value, window.serverConfig[key] ));
} }
} }

View File

@ -48,12 +48,16 @@
"smoothing" : "smoothing" :
{ {
"enable" : true, "enable" : true,
"type" : "linear", "type" : "linear",
"time_ms" : 200, "time_ms" : 200,
"updateFrequency" : 25.0000, "updateFrequency" : 25.0000,
"updateDelay" : 0, "interpolationRate" : 25.0000,
"continuousOutput" : true "outputRate" : 25.0000,
"decay" : 1,
"dithering" : false,
"updateDelay" : 0,
"continuousOutput" : true
}, },
"grabberV4L2" : "grabberV4L2" :

View File

@ -6,15 +6,48 @@
#include <hyperion/Hyperion.h> #include <hyperion/Hyperion.h>
#include <cmath> #include <cmath>
#include <chrono>
#include <thread>
/// The number of microseconds per millisecond = 1000.
const int64_t MS_PER_MICRO = 1000;
#if defined(COMPILER_GCC)
#define ALWAYS_INLINE inline __attribute__((__always_inline__))
#elif defined(COMPILER_MSVC)
#define ALWAYS_INLINE __forceinline
#else
#define ALWAYS_INLINE inline
#endif
/// Clamps the rounded values to the byte-interval of [0, 255].
ALWAYS_INLINE long clampRounded(const floatT x) {
return std::min(255l, std::max(0l, std::lroundf(x)));
}
/// The number of bits that are used for shifting the fixed point values
const int FPShift = (sizeof(uint64_t)*8 - (12 + 9));
/// The number of bits that are reduce the shifting when converting from fixed to floating point. 8 bits = 256 values
const int SmallShiftBis = sizeof(uint8_t)*8;
/// The number of bits that are used for shifting the fixed point values plus SmallShiftBis
const int FPShiftSmall = (sizeof(uint64_t)*8 - (12 + 9 + SmallShiftBis));
const char* SETTINGS_KEY_SMOOTHING_TYPE = "type";
const char* SETTINGS_KEY_INTERPOLATION_RATE = "interpolationRate";
const char* SETTINGS_KEY_OUTPUT_RATE = "outputRate";
const char* SETTINGS_KEY_DITHERING = "dithering";
const char* SETTINGS_KEY_DECAY = "decay";
using namespace hyperion; using namespace hyperion;
const int64_t DEFAUL_SETTLINGTIME = 200; // settlingtime in ms const int64_t DEFAUL_SETTLINGTIME = 200; // settlingtime in ms
const double DEFAUL_UPDATEFREQUENCY = 25; // updatefrequncy in hz const double DEFAUL_UPDATEFREQUENCY = 25; // updatefrequncy in hz
const int64_t DEFAUL_UPDATEINTERVALL = static_cast<int64_t>(1000 / DEFAUL_UPDATEFREQUENCY); // updateintervall in ms const int64_t DEFAUL_UPDATEINTERVALL = static_cast<int64_t>(1000 / DEFAUL_UPDATEFREQUENCY); // updateintervall in ms
const unsigned DEFAUL_OUTPUTDEPLAY = 0; // outputdelay in ms const unsigned DEFAUL_OUTPUTDEPLAY = 0; // outputdelay in ms
LinearColorSmoothing::LinearColorSmoothing(const QJsonDocument& config, Hyperion* hyperion) LinearColorSmoothing::LinearColorSmoothing(const QJsonDocument &config, Hyperion *hyperion)
: QObject(hyperion) : QObject(hyperion)
, _log(Logger::getInstance("SMOOTHING")) , _log(Logger::getInstance("SMOOTHING"))
, _hyperion(hyperion) , _hyperion(hyperion)
@ -22,11 +55,13 @@ LinearColorSmoothing::LinearColorSmoothing(const QJsonDocument& config, Hyperion
, _settlingTime(DEFAUL_SETTLINGTIME) , _settlingTime(DEFAUL_SETTLINGTIME)
, _timer(new QTimer(this)) , _timer(new QTimer(this))
, _outputDelay(DEFAUL_OUTPUTDEPLAY) , _outputDelay(DEFAUL_OUTPUTDEPLAY)
, _smoothingType(SmoothingType::Linear)
, _writeToLedsEnable(false) , _writeToLedsEnable(false)
, _continuousOutput(false) , _continuousOutput(false)
, _pause(false) , _pause(false)
, _currentConfigId(0) , _currentConfigId(0)
, _enabled(false) , _enabled(false)
, tempValues(std::vector<uint64_t>(0, 0l))
{ {
// init cfg 0 (default) // init cfg 0 (default)
addConfig(DEFAUL_SETTLINGTIME, DEFAUL_UPDATEFREQUENCY, DEFAUL_OUTPUTDEPLAY); addConfig(DEFAUL_SETTLINGTIME, DEFAUL_UPDATEFREQUENCY, DEFAUL_OUTPUTDEPLAY);
@ -34,38 +69,54 @@ LinearColorSmoothing::LinearColorSmoothing(const QJsonDocument& config, Hyperion
selectConfig(0, true); selectConfig(0, true);
// add pause on cfg 1 // add pause on cfg 1
SMOOTHING_CFG cfg = {true, 0, 0, 0}; SMOOTHING_CFG cfg = {SmoothingType::Linear, 0, 0, 0, 0, 0, false};
_cfgList.append(cfg); _cfgList.append(cfg);
// listen for comp changes // listen for comp changes
connect(_hyperion, &Hyperion::compStateChangeRequest, this, &LinearColorSmoothing::componentStateChange); connect(_hyperion, &Hyperion::compStateChangeRequest, this, &LinearColorSmoothing::componentStateChange);
// timer // timer
connect(_timer, &QTimer::timeout, this, &LinearColorSmoothing::updateLeds); connect(_timer, &QTimer::timeout, this, &LinearColorSmoothing::updateLeds);
Info(_log, "LinearColorSmoothing sizeof floatT == %d", (sizeof(floatT)));
} }
void LinearColorSmoothing::handleSettingsUpdate(settings::type type, const QJsonDocument& config) void LinearColorSmoothing::handleSettingsUpdate(settings::type type, const QJsonDocument &config)
{ {
if(type == settings::SMOOTHING) if (type == settings::SMOOTHING)
{ {
// std::cout << "LinearColorSmoothing::handleSettingsUpdate" << std::endl; // std::cout << "LinearColorSmoothing::handleSettingsUpdate" << std::endl;
// std::cout << config.toJson().toStdString() << std::endl; // std::cout << config.toJson().toStdString() << std::endl;
QJsonObject obj = config.object(); QJsonObject obj = config.object();
if(enabled() != obj["enable"].toBool(true)) if (enabled() != obj["enable"].toBool(true))
setEnable(obj["enable"].toBool(true)); setEnable(obj["enable"].toBool(true));
_continuousOutput = obj["continuousOutput"].toBool(true); _continuousOutput = obj["continuousOutput"].toBool(true);
SMOOTHING_CFG cfg = {false, SMOOTHING_CFG cfg = {SmoothingType::Linear,true, 0, 0, 0, 0, 0, false, 1};
static_cast<int64_t>(obj["time_ms"].toInt(DEFAUL_SETTLINGTIME)),
static_cast<int64_t>(1000.0/obj["updateFrequency"].toDouble(DEFAUL_UPDATEFREQUENCY)), const QString typeString = obj[SETTINGS_KEY_SMOOTHING_TYPE].toString();
static_cast<unsigned>(obj["updateDelay"].toInt(DEFAUL_OUTPUTDEPLAY))
}; if(typeString == "linear") {
cfg.smoothingType = SmoothingType::Linear;
} else if(typeString == "decay") {
cfg.smoothingType = SmoothingType::Decay;
}
cfg.pause = false;
cfg.settlingTime = static_cast<int64_t>(obj["time_ms"].toInt(DEFAUL_SETTLINGTIME));
cfg.updateInterval = static_cast<int64_t>(1000.0 / obj["updateFrequency"].toDouble(DEFAUL_UPDATEFREQUENCY));
cfg.outputRate = obj[SETTINGS_KEY_OUTPUT_RATE].toDouble(DEFAUL_UPDATEFREQUENCY);
cfg.interpolationRate = obj[SETTINGS_KEY_INTERPOLATION_RATE].toDouble(DEFAUL_UPDATEFREQUENCY);
cfg.outputDelay = static_cast<unsigned>(obj["updateDelay"].toInt(DEFAUL_OUTPUTDEPLAY));
cfg.dithering = obj[SETTINGS_KEY_DITHERING].toBool(false);
cfg.decay = obj[SETTINGS_KEY_DECAY].toDouble(1.0);
//Debug( _log, "smoothing cfg_id %d: pause: %d bool, settlingTime: %d ms, interval: %d ms (%u Hz), updateDelay: %u frames", _currentConfigId, cfg.pause, cfg.settlingTime, cfg.updateInterval, unsigned(1000.0/cfg.updateInterval), cfg.outputDelay ); //Debug( _log, "smoothing cfg_id %d: pause: %d bool, settlingTime: %d ms, interval: %d ms (%u Hz), updateDelay: %u frames", _currentConfigId, cfg.pause, cfg.settlingTime, cfg.updateInterval, unsigned(1000.0/cfg.updateInterval), cfg.outputDelay );
_cfgList[0] = cfg; _cfgList[0] = cfg;
// if current id is 0, we need to apply the settings (forced) // if current id is 0, we need to apply the settings (forced)
if( _currentConfigId == 0) if (_currentConfigId == 0)
{ {
//Debug( _log, "_currentConfigId == 0"); //Debug( _log, "_currentConfigId == 0");
selectConfig(0, true); selectConfig(0, true);
@ -79,15 +130,18 @@ void LinearColorSmoothing::handleSettingsUpdate(settings::type type, const QJson
int LinearColorSmoothing::write(const std::vector<ColorRgb> &ledValues) int LinearColorSmoothing::write(const std::vector<ColorRgb> &ledValues)
{ {
_targetTime = QDateTime::currentMSecsSinceEpoch() + _settlingTime; _targetTime = micros() + (MS_PER_MICRO * _settlingTime);
_targetValues = ledValues; _targetValues = ledValues;
rememberFrame(ledValues);
// received a new target color // received a new target color
if (_previousValues.empty()) if (_previousValues.empty())
{ {
// not initialized yet // not initialized yet
_previousTime = QDateTime::currentMSecsSinceEpoch(); _previousWriteTime = micros();
_previousValues = ledValues; _previousValues = ledValues;
_previousInterpolationTime = micros();
//Debug( _log, "Start Smoothing timer: settlingTime: %d ms, interval: %d ms (%u Hz), updateDelay: %u frames", _settlingTime, _updateInterval, unsigned(1000.0/_updateInterval), _outputDelay ); //Debug( _log, "Start Smoothing timer: settlingTime: %d ms, interval: %d ms (%u Hz), updateDelay: %u frames", _settlingTime, _updateInterval, unsigned(1000.0/_updateInterval), _outputDelay );
QMetaObject::invokeMethod(_timer, "start", Qt::QueuedConnection, Q_ARG(int, _updateInterval)); QMetaObject::invokeMethod(_timer, "start", Qt::QueuedConnection, Q_ARG(int, _updateInterval));
@ -96,7 +150,7 @@ int LinearColorSmoothing::write(const std::vector<ColorRgb> &ledValues)
return 0; return 0;
} }
int LinearColorSmoothing::updateLedValues(const std::vector<ColorRgb>& ledValues) int LinearColorSmoothing::updateLedValues(const std::vector<ColorRgb> &ledValues)
{ {
int retval = 0; int retval = 0;
if (!_enabled) if (!_enabled)
@ -110,75 +164,366 @@ int LinearColorSmoothing::updateLedValues(const std::vector<ColorRgb>& ledValues
return retval; return retval;
} }
void LinearColorSmoothing::updateLeds() void LinearColorSmoothing::intitializeComponentVectors(const size_t ledCount)
{ {
int64_t now = QDateTime::currentMSecsSinceEpoch(); // (Re-)Initialize the color-vectors that store the Mean-Value
int64_t deltaTime = _targetTime - now; if (_ledCount != ledCount)
//Debug(_log, "elapsed Time [%d], _targetTime [%d] - now [%d], deltaTime [%d]", now -_previousTime, _targetTime, now, deltaTime);
if (deltaTime < 0)
{ {
_previousValues = _targetValues; _ledCount = ledCount;
_previousTime = now;
queueColors(_previousValues); const size_t len = 3 * ledCount;
_writeToLedsEnable = _continuousOutput;
meanValues = std::vector<floatT>(len, 0.0f);
residualErrors = std::vector<floatT>(len, 0.0f);
tempValues = std::vector<uint64_t>(len, 0l);
} }
else
// Zero the temp vector
std::fill(tempValues.begin(), tempValues.end(), 0l);
}
void LinearColorSmoothing::writeDirect()
{
const int64_t now = micros();
_previousValues = _targetValues;
_previousWriteTime = now;
queueColors(_previousValues);
_writeToLedsEnable = _continuousOutput;
}
void LinearColorSmoothing::writeFrame()
{
const int64_t now = micros();
_previousWriteTime = now;
queueColors(_previousValues);
_writeToLedsEnable = _continuousOutput;
}
ALWAYS_INLINE int64_t LinearColorSmoothing::micros() const
{
const auto now = std::chrono::high_resolution_clock::now();
return (std::chrono::duration_cast<std::chrono::microseconds>(now.time_since_epoch())).count();
}
void LinearColorSmoothing::assembleAndDitherFrame()
{
if (meanValues.empty())
{ {
_writeToLedsEnable = true; return;
}
//std::cout << "LinearColorSmoothing::updateLeds> _previousValues: "; LedDevice::printLedValues ( _previousValues ); // The number of leds present in each frame
const size_t N = _targetValues.size();
float k = 1.0f - 1.0f * deltaTime / (_targetTime - _previousTime); for (size_t i = 0; i < N; ++i)
{
// Add residuals for error diffusion (temporal dithering)
const floatT fr = meanValues[3 * i + 0] + residualErrors[3 * i + 0];
const floatT fg = meanValues[3 * i + 1] + residualErrors[3 * i + 1];
const floatT fb = meanValues[3 * i + 2] + residualErrors[3 * i + 2];
int reddif = 0, greendif = 0, bluedif = 0; // Convert to to 8-bit value
const long ir = clampRounded(fr);
const long ig = clampRounded(fg);
const long ib = clampRounded(fb);
for (size_t i = 0; i < _previousValues.size(); ++i) // Update the colors
{ ColorRgb &prev = _previousValues[i];
ColorRgb & prev = _previousValues[i]; prev.red = (uint8_t)ir;
ColorRgb & target = _targetValues[i]; prev.green = (uint8_t)ig;
prev.blue = (uint8_t)ib;
reddif = target.red - prev.red; // Determine the component errors
greendif = target.green - prev.green; residualErrors[3 * i + 0] = fr - ir;
bluedif = target.blue - prev.blue; residualErrors[3 * i + 1] = fg - ig;
residualErrors[3 * i + 2] = fb - ib;
prev.red += (reddif < 0 ? -1:1) * std::ceil(k * std::abs(reddif));
prev.green += (greendif < 0 ? -1:1) * std::ceil(k * std::abs(greendif));
prev.blue += (bluedif < 0 ? -1:1) * std::ceil(k * std::abs(bluedif));
}
_previousTime = now;
//std::cout << "LinearColorSmoothing::updateLeds> _targetValues: "; LedDevice::printLedValues ( _targetValues );
queueColors(_previousValues);
} }
} }
void LinearColorSmoothing::queueColors(const std::vector<ColorRgb> & ledColors) void LinearColorSmoothing::assembleFrame()
{
if (meanValues.empty())
{
return;
}
// The number of leds present in each frame
const size_t N = _targetValues.size();
for (size_t i = 0; i < N; ++i)
{
// Convert to to 8-bit value
const long ir = clampRounded(meanValues[3 * i + 0]);
const long ig = clampRounded(meanValues[3 * i + 1]);
const long ib = clampRounded(meanValues[3 * i + 2]);
// Update the colors
ColorRgb &prev = _previousValues[i];
prev.red = (uint8_t)ir;
prev.green = (uint8_t)ig;
prev.blue = (uint8_t)ib;
}
}
ALWAYS_INLINE void LinearColorSmoothing::aggregateComponents(const std::vector<ColorRgb>& colors, std::vector<uint64_t>& weighted, const floatT weight) {
// Determine the integer-scale by converting the weight to fixed point
const uint64_t scale = (1l<<FPShift) * static_cast<double>(weight);
const size_t N = colors.size();
for (size_t i = 0; i < N; ++i)
{
const ColorRgb &color = colors[i];
// Scale the colors
const uint64_t red = scale * color.red;
const uint64_t green = scale * color.green;
const uint64_t blue = scale * color.blue;
// Accumulate in the vector
weighted[3 * i + 0] += red;
weighted[3 * i + 1] += green;
weighted[3 * i + 2] += blue;
}
}
void LinearColorSmoothing::interpolateFrame()
{
const int64_t now = micros();
// The number of leds present in each frame
const size_t N = _targetValues.size();
intitializeComponentVectors(N);
/// Time where the frame has been shown
int64_t frameStart;
/// Time where the frame display would have ended
int64_t frameEnd = now;
/// Time where the current window has started
const int64_t windowStart = now - (MS_PER_MICRO * _settlingTime);
/// The total weight of the frames that were included in our window; sum of the individual weights
floatT fs = 0.0f;
// To calculate the mean component we iterate over all relevant frames;
// from the most recent to the oldest frame that still clips our moving-average window given by time (now)
for (auto it = _frameQueue.rbegin(); it != _frameQueue.rend() && frameEnd > windowStart; ++it)
{
// Starting time of a frame in the window is clipped to the window start
frameStart = std::max(windowStart, it->time);
// Weight the current frame relative to the overall window based on start and end times
const floatT weight = _weightFrame(frameStart, frameEnd, windowStart);
fs += weight;
// Aggregate the RGB components of this frame's LED colors using the individual weighting
aggregateComponents(it->colors, tempValues, weight);
// The previous (earlier) frame display has ended when the current frame stared to show,
// so we can use this as the frame-end time for next iteration
frameEnd = frameStart;
}
/// The inverse scaling factor for the color components, clamped to (0, 1.0]; 1.0 for fs < 1, 1 : fs otherwise
const floatT inv_fs = ((fs < 1.0f) ? 1.0f : 1.0f / fs) / (1 << SmallShiftBis);
// Normalize the mean component values for the window (fs)
for (size_t i = 0; i < 3 * N; ++i)
{
meanValues[i] = (tempValues[i] >> FPShiftSmall) * inv_fs;
}
_previousInterpolationTime = now;
}
void LinearColorSmoothing::performDecay(const int64_t now) {
/// The target time when next frame interpolation should be performed
const int64_t interpolationTarget = _previousInterpolationTime + _interpolationIntervalMicros;
/// The target time when next write operation should be performed
const int64_t writeTarget = _previousWriteTime + _outputIntervalMicros;
/// Whether a frame interpolation is pending
const bool interpolatePending = now > interpolationTarget;
/// Whether a write is pending
const bool writePending = now > writeTarget;
// Check whether a new interpolation frame is due
if (interpolatePending)
{
interpolateFrame();
++_interpolationCounter;
// Assemble the frame now when no dithering is applied
if(!_dithering) {
assembleFrame();
}
}
// Check whether to frame output is due
if (writePending)
{
// Dither the frame to diffuse rounding errors
if(_dithering) {
assembleAndDitherFrame();
}
writeFrame();
++_renderedCounter;
}
// Check for sleep when no operation is pending.
// As our QTimer is not capable of sub 1ms timing but instead performs spinning -
// we have to do µsec-sleep to free CPU time; otherwise the thread would consume 100% CPU time.
if(_updateInterval <= 0 && !(interpolatePending || writePending)) {
const int64_t nextActionExpected = std::min(interpolationTarget, writeTarget);
const int64_t microsTillNextAction = nextActionExpected - now;
const int64_t SLEEP_MAX_MICROS = 1000l; // We want to use usleep for up to 1ms
const int64_t SLEEP_RES_MICROS = 100l; // Expected resolution is >= 100µs on stock linux
if(microsTillNextAction > SLEEP_RES_MICROS) {
const int64_t wait = std::min(microsTillNextAction - SLEEP_RES_MICROS, SLEEP_MAX_MICROS);
//usleep(wait);
std::this_thread::sleep_for(std::chrono::microseconds(wait));
}
}
// Write stats every 30 sec
if ((now > (_renderedStatTime + 30 * 1000000)) && (_renderedCounter > _renderedStatCounter))
{
Info(_log, "decay - rendered frames [%d] (%f/s), interpolated frames [%d] (%f/s) in [%f ms]"
, _renderedCounter - _renderedStatCounter
, (1.0f * (_renderedCounter - _renderedStatCounter) / ((now - _renderedStatTime) / 1000000.0f))
, _interpolationCounter - _interpolationStatCounter
, (1.0f * (_interpolationCounter - _interpolationStatCounter) / ((now - _renderedStatTime) / 1000000.0f))
, (now - _renderedStatTime) / 1000.0f
);
_renderedStatTime = now;
_renderedStatCounter = _renderedCounter;
_interpolationStatCounter = _interpolationCounter;
}
}
void LinearColorSmoothing::performLinear(const int64_t now) {
const int64_t deltaTime = _targetTime - now;
const float k = 1.0f - 1.0f * deltaTime / (_targetTime - _previousWriteTime);
const size_t N = _previousValues.size();
for (size_t i = 0; i < N; ++i)
{
const ColorRgb &target = _targetValues[i];
ColorRgb &prev = _previousValues[i];
const int reddif = target.red - prev.red;
const int greendif = target.green - prev.green;
const int bluedif = target.blue - prev.blue;
prev.red += (reddif < 0 ? -1:1) * std::ceil(k * std::abs(reddif));
prev.green += (greendif < 0 ? -1:1) * std::ceil(k * std::abs(greendif));
prev.blue += (bluedif < 0 ? -1:1) * std::ceil(k * std::abs(bluedif));
}
writeFrame();
}
void LinearColorSmoothing::updateLeds()
{
const int64_t now = micros();
const int64_t deltaTime = _targetTime - now;
//Debug(_log, "elapsed Time [%d], _targetTime [%d] - now [%d], deltaTime [%d]", now -_previousWriteTime, _targetTime, now, deltaTime);
if (deltaTime < 0)
{
writeDirect();
return;
}
switch (_smoothingType)
{
case Decay:
performDecay(now);
break;
case Linear:
// Linear interpolation is default
default:
performLinear(now);
break;
}
}
void LinearColorSmoothing::rememberFrame(const std::vector<ColorRgb> &ledColors)
{
//Info(_log, "rememberFrame - before _frameQueue.size() [%d]", _frameQueue.size());
const int64_t now = micros();
// Maintain the queue by removing outdated frames
const int64_t windowStart = now - (MS_PER_MICRO * _settlingTime);
int p = -1; // Start with -1 instead of 0, so we keep the last frame at least partially clipping the window
// As the frames are ordered chronologically we scan from the front (oldest) till we find the first fresh frame
for (auto it = _frameQueue.begin(); it != _frameQueue.end() && it->time < windowStart; ++it)
{
++p;
}
if (p > 0)
{
//Info(_log, "rememberFrame - erasing %d frames", p);
_frameQueue.erase(_frameQueue.begin(), _frameQueue.begin() + p);
}
// Append the latest frame at back of the queue
const REMEMBERED_FRAME frame = REMEMBERED_FRAME(now, ledColors);
_frameQueue.push_back(frame);
//Info(_log, "rememberFrame - after _frameQueue.size() [%d]", _frameQueue.size());
}
void LinearColorSmoothing::clearRememberedFrames()
{
_frameQueue.clear();
_ledCount = 0;
meanValues.clear();
residualErrors.clear();
tempValues.clear();
}
void LinearColorSmoothing::queueColors(const std::vector<ColorRgb> &ledColors)
{ {
//Debug(_log, "queueColors - _outputDelay[%d] _outputQueue.size() [%d], _writeToLedsEnable[%d]", _outputDelay, _outputQueue.size(), _writeToLedsEnable); //Debug(_log, "queueColors - _outputDelay[%d] _outputQueue.size() [%d], _writeToLedsEnable[%d]", _outputDelay, _outputQueue.size(), _writeToLedsEnable);
if (_outputDelay == 0) if (_outputDelay == 0)
{ {
// No output delay => immediate write // No output delay => immediate write
if ( _writeToLedsEnable && !_pause) if (_writeToLedsEnable && !_pause)
{ {
// if ( ledColors.size() == 0 ) // if ( ledColors.size() == 0 )
// qFatal ("No LedValues! - in LinearColorSmoothing::queueColors() - _outputDelay == 0"); // qFatal ("No LedValues! - in LinearColorSmoothing::queueColors() - _outputDelay == 0");
// else // else
emit _hyperion->ledDeviceData(ledColors); emit _hyperion->ledDeviceData(ledColors);
} }
} }
else else
{ {
// Push new colors in the delay-buffer // Push new colors in the delay-buffer
if ( _writeToLedsEnable ) if (_writeToLedsEnable)
_outputQueue.push_back(ledColors); _outputQueue.push_back(ledColors);
// If the delay-buffer is filled pop the front and write to device // If the delay-buffer is filled pop the front and write to device
if (_outputQueue.size() > 0 ) if (_outputQueue.size() > 0)
{ {
if ( _outputQueue.size() > _outputDelay || !_writeToLedsEnable ) if (_outputQueue.size() > _outputDelay || !_writeToLedsEnable)
{ {
if (!_pause) if (!_pause)
{ {
@ -196,17 +541,19 @@ void LinearColorSmoothing::clearQueuedColors()
_previousValues.clear(); _previousValues.clear();
_targetValues.clear(); _targetValues.clear();
clearRememberedFrames();
} }
void LinearColorSmoothing::componentStateChange(hyperion::Components component, bool state) void LinearColorSmoothing::componentStateChange(hyperion::Components component, bool state)
{ {
_writeToLedsEnable = state; _writeToLedsEnable = state;
if(component == hyperion::COMP_LEDDEVICE) if (component == hyperion::COMP_LEDDEVICE)
{ {
clearQueuedColors(); clearQueuedColors();
} }
if(component == hyperion::COMP_SMOOTHING) if (component == hyperion::COMP_SMOOTHING)
{ {
setEnable(state); setEnable(state);
} }
@ -230,7 +577,17 @@ void LinearColorSmoothing::setPause(bool pause)
unsigned LinearColorSmoothing::addConfig(int settlingTime_ms, double ledUpdateFrequency_hz, unsigned updateDelay) unsigned LinearColorSmoothing::addConfig(int settlingTime_ms, double ledUpdateFrequency_hz, unsigned updateDelay)
{ {
SMOOTHING_CFG cfg = {false, settlingTime_ms, int64_t(1000.0/ledUpdateFrequency_hz), updateDelay}; SMOOTHING_CFG cfg = {
SmoothingType::Linear,
false,
settlingTime_ms,
int64_t(1000.0 / ledUpdateFrequency_hz),
ledUpdateFrequency_hz,
ledUpdateFrequency_hz,
updateDelay,
false,
1
};
_cfgList.append(cfg); _cfgList.append(cfg);
//Debug( _log, "smoothing cfg %d: pause: %d bool, settlingTime: %d ms, interval: %d ms (%u Hz), updateDelay: %u frames", _cfgList.count()-1, cfg.pause, cfg.settlingTime, cfg.updateInterval, unsigned(1000.0/cfg.updateInterval), cfg.outputDelay ); //Debug( _log, "smoothing cfg %d: pause: %d bool, settlingTime: %d ms, interval: %d ms (%u Hz), updateDelay: %u frames", _cfgList.count()-1, cfg.pause, cfg.settlingTime, cfg.updateInterval, unsigned(1000.0/cfg.updateInterval), cfg.outputDelay );
@ -240,17 +597,26 @@ unsigned LinearColorSmoothing::addConfig(int settlingTime_ms, double ledUpdateFr
unsigned LinearColorSmoothing::updateConfig(unsigned cfgID, int settlingTime_ms, double ledUpdateFrequency_hz, unsigned updateDelay) unsigned LinearColorSmoothing::updateConfig(unsigned cfgID, int settlingTime_ms, double ledUpdateFrequency_hz, unsigned updateDelay)
{ {
unsigned updatedCfgID = cfgID; unsigned updatedCfgID = cfgID;
if ( cfgID < static_cast<unsigned>(_cfgList.count()) ) if (cfgID < static_cast<unsigned>(_cfgList.count()))
{ {
SMOOTHING_CFG cfg = {false, settlingTime_ms, int64_t(1000.0/ledUpdateFrequency_hz), updateDelay}; SMOOTHING_CFG cfg = {
SmoothingType::Linear,
false,
settlingTime_ms,
int64_t(1000.0 / ledUpdateFrequency_hz),
ledUpdateFrequency_hz,
ledUpdateFrequency_hz,
updateDelay,
false,
1};
_cfgList[updatedCfgID] = cfg; _cfgList[updatedCfgID] = cfg;
} }
else else
{ {
updatedCfgID = addConfig ( settlingTime_ms, ledUpdateFrequency_hz, updateDelay); updatedCfgID = addConfig(settlingTime_ms, ledUpdateFrequency_hz, updateDelay);
} }
// Debug( _log, "smoothing updatedCfgID %u: settlingTime: %d ms, " // Debug( _log, "smoothing updatedCfgID %u: settlingTime: %d ms, "
// "interval: %d ms (%u Hz), updateDelay: %u frames", cfgID, _settlingTime, int64_t(1000.0/ledUpdateFrequency_hz), unsigned(ledUpdateFrequency_hz), updateDelay ); // "interval: %d ms (%u Hz), updateDelay: %u frames", cfgID, _settlingTime, int64_t(1000.0/ledUpdateFrequency_hz), unsigned(ledUpdateFrequency_hz), updateDelay );
return updatedCfgID; return updatedCfgID;
} }
@ -264,18 +630,54 @@ bool LinearColorSmoothing::selectConfig(unsigned cfg, bool force)
} }
//Debug( _log, "selectConfig FORCED - _currentConfigId [%u], force [%d]", cfg, force); //Debug( _log, "selectConfig FORCED - _currentConfigId [%u], force [%d]", cfg, force);
if ( cfg < (unsigned)_cfgList.count()) if (cfg < (unsigned)_cfgList.count())
{ {
_settlingTime = _cfgList[cfg].settlingTime; _smoothingType = _cfgList[cfg].smoothingType;
_outputDelay = _cfgList[cfg].outputDelay; _settlingTime = _cfgList[cfg].settlingTime;
_pause = _cfgList[cfg].pause; _outputDelay = _cfgList[cfg].outputDelay;
_pause = _cfgList[cfg].pause;
_outputRate = _cfgList[cfg].outputRate;
_outputIntervalMicros = int64_t(1000000.0 / _outputRate); // 1s = 1e6 µs
_interpolationRate = _cfgList[cfg].interpolationRate;
_interpolationIntervalMicros = int64_t(1000000.0 / _interpolationRate);
_dithering = _cfgList[cfg].dithering;
_decay = _cfgList[cfg].decay;
_invWindow = 1.0f / (MS_PER_MICRO * _settlingTime);
// Set _weightFrame based on the given decay
const float decay = _decay;
const floatT inv_window = _invWindow;
// For decay != 1 use power-based approach for calculating the moving average values
if(std::abs(decay - 1.0f) > std::numeric_limits<float>::epsilon()) {
// Exponential Decay
_weightFrame = [inv_window,decay](const int64_t fs, const int64_t fe, const int64_t ws) {
const floatT s = (fs - ws) * inv_window;
const floatT t = (fe - ws) * inv_window;
return (decay + 1) * (std::pow(t, decay) - std::pow(s, decay));
};
} else {
// For decay == 1 use linear interpolation of the moving average values
// Linear Decay
_weightFrame = [inv_window](const int64_t fs, const int64_t fe, const int64_t ws) {
// Linear weighting = (end - start) * scale
return static_cast<floatT>((fe - fs) * inv_window);
};
}
_renderedStatTime = micros();
_renderedCounter = 0;
_renderedStatCounter = 0;
_interpolationCounter = 0;
_interpolationStatCounter = 0;
if (_cfgList[cfg].updateInterval != _updateInterval) if (_cfgList[cfg].updateInterval != _updateInterval)
{ {
QMetaObject::invokeMethod(_timer, "stop", Qt::QueuedConnection); QMetaObject::invokeMethod(_timer, "stop", Qt::QueuedConnection);
_updateInterval = _cfgList[cfg].updateInterval; _updateInterval = _cfgList[cfg].updateInterval;
if ( this->enabled() && this->_writeToLedsEnable ) if (this->enabled() && this->_writeToLedsEnable)
{ {
//Debug( _log, "_cfgList[cfg].updateInterval != _updateInterval - Restart timer - _updateInterval [%d]", _updateInterval); //Debug( _log, "_cfgList[cfg].updateInterval != _updateInterval - Restart timer - _updateInterval [%d]", _updateInterval);
QMetaObject::invokeMethod(_timer, "start", Qt::QueuedConnection, Q_ARG(int, _updateInterval)); QMetaObject::invokeMethod(_timer, "start", Qt::QueuedConnection, Q_ARG(int, _updateInterval));
@ -290,6 +692,9 @@ bool LinearColorSmoothing::selectConfig(unsigned cfg, bool force)
// DebugIf( enabled() && !_pause, _log, "set smoothing cfg: %u settlingTime: %d ms, interval: %d ms, updateDelay: %u frames", _currentConfigId, _settlingTime, _updateInterval, _outputDelay ); // DebugIf( enabled() && !_pause, _log, "set smoothing cfg: %u settlingTime: %d ms, interval: %d ms, updateDelay: %u frames", _currentConfigId, _settlingTime, _updateInterval, _outputDelay );
// DebugIf( _pause, _log, "set smoothing cfg: %d, pause", _currentConfigId ); // DebugIf( _pause, _log, "set smoothing cfg: %d, pause", _currentConfigId );
const float thalf = (1.0-std::pow(1.0/2, 1.0/_decay))*_settlingTime;
Info( _log, "%s - Time: %d ms, outputRate %f Hz, interpolationRate: %f Hz, timer: %d ms, Dithering: %d, Decay: %f -> HalfTime: %f ms", _smoothingType == SmoothingType::Decay ? "decay" : "linear", _settlingTime, _outputRate, _interpolationRate, _updateInterval, _dithering ? 1 : 0, _decay, thalf);
return true; return true;
} }

View File

@ -2,6 +2,7 @@
// STL includes // STL includes
#include <vector> #include <vector>
#include <deque>
// Qt includes // Qt includes
#include <QVector> #include <QVector>
@ -13,14 +14,62 @@
// settings // settings
#include <utils/settings.h> #include <utils/settings.h>
// The type of float
#define floatT float // Select double, float or __fp16
class QTimer; class QTimer;
class Logger; class Logger;
class Hyperion; class Hyperion;
/// The type of smoothing to perform
enum SmoothingType {
/// "Linear" smoothing algorithm
Linear,
/// Decay based smoothing algorithm
Decay,
};
/// Linear Smooting class /// Linear Smooting class
/// ///
/// This class processes the requested led values and forwards them to the device after applying /// This class processes the requested led values and forwards them to the device after applying
/// a linear smoothing effect. This class can be handled as a generic LedDevice. /// a smoothing effect to LED colors. This class can be handled as a generic LedDevice.
///
/// Currently, two types of smoothing are supported:
///
/// - Linear: A linear smoothing effect that interpolates the previous to the target colors.
/// - Decay: A temporal smoothing effect that uses a decay based algorithm that interpolates
/// colors based on the age of previous frames and a given decay-power.
///
/// The smoothing is performed on a history of relevant LED-color frames that are
/// incorporated in the smoothing window (given by the configured settling time).
///
/// For each moment, all ingress frames that were received during the smoothing window
/// are reduced to the concrete color values using a weighted moving average. This is
/// done by applying a decay-controlled weighting-function to individual the colors of
/// each frame.
///
/// Decay
/// =====
/// The decay-power influences the weight of individual frames based on their 'age'.
///
/// * A decay value of 1 indicates linear decay. The colors are given by the moving average
/// with a weight that is strictly proportionate to the fraction of time each frame was
/// visible during the smoothing window. As a result, equidistant frames will have an
/// equal share when calculating an intermediate frame.
///
/// * A decay value greater than 1 indicates non-linear decay. With higher powers, the
/// decay is stronger. I.e. newer frames in the smoothing window will have more influence
/// on colors of intermediate frames than older ones.
///
/// Dithering
/// =========
/// A temporal dithering algorithm is used to minimize rounding errors, when downsampling
/// the average color values to the 8-bit RGB resolution of the LED-device. Effectively,
/// this performs diffusion of the residual errors across multiple egress frames.
///
///
class LinearColorSmoothing : public QObject class LinearColorSmoothing : public QObject
{ {
Q_OBJECT Q_OBJECT
@ -30,14 +79,14 @@ public:
/// @param config The configuration document smoothing /// @param config The configuration document smoothing
/// @param hyperion The hyperion parent instance /// @param hyperion The hyperion parent instance
/// ///
LinearColorSmoothing(const QJsonDocument& config, Hyperion* hyperion); LinearColorSmoothing(const QJsonDocument &config, Hyperion *hyperion);
/// LED values as input for the smoothing filter /// LED values as input for the smoothing filter
/// ///
/// @param ledValues The color-value per led /// @param ledValues The color-value per led
/// @return Zero on success else negative /// @return Zero on success else negative
/// ///
virtual int updateLedValues(const std::vector<ColorRgb>& ledValues); virtual int updateLedValues(const std::vector<ColorRgb> &ledValues);
void setEnable(bool enable); void setEnable(bool enable);
void setPause(bool pause); void setPause(bool pause);
@ -52,7 +101,7 @@ public:
/// ///
/// @return The index of the cfg which can be passed to selectConfig() /// @return The index of the cfg which can be passed to selectConfig()
/// ///
unsigned addConfig(int settlingTime_ms, double ledUpdateFrequency_hz=25.0, unsigned updateDelay=0); unsigned addConfig(int settlingTime_ms, double ledUpdateFrequency_hz = 25.0, unsigned updateDelay = 0);
/// ///
/// @brief Update a smoothing cfg which can be used with selectConfig() /// @brief Update a smoothing cfg which can be used with selectConfig()
@ -65,7 +114,7 @@ public:
/// ///
/// @return The index of the cfg which can be passed to selectConfig() /// @return The index of the cfg which can be passed to selectConfig()
/// ///
unsigned updateConfig(unsigned cfgID, int settlingTime_ms, double ledUpdateFrequency_hz=25.0, unsigned updateDelay=0); unsigned updateConfig(unsigned cfgID, int settlingTime_ms, double ledUpdateFrequency_hz = 25.0, unsigned updateDelay = 0);
/// ///
/// @brief select a smoothing cfg given by cfg index from addConfig() /// @brief select a smoothing cfg given by cfg index from addConfig()
@ -82,7 +131,7 @@ public slots:
/// @param type settingyType from enum /// @param type settingyType from enum
/// @param config configuration object /// @param config configuration object
/// ///
void handleSettingsUpdate(settings::type type, const QJsonDocument& config); void handleSettingsUpdate(settings::type type, const QJsonDocument &config);
private slots: private slots:
/// Timer callback which writes updated led values to the led device /// Timer callback which writes updated led values to the led device
@ -96,13 +145,12 @@ private slots:
void componentStateChange(hyperion::Components component, bool state); void componentStateChange(hyperion::Components component, bool state);
private: private:
/** /**
* Pushes the colors into the output queue and popping the head to the led-device * Pushes the colors into the output queue and popping the head to the led-device
* *
* @param ledColors The colors to queue * @param ledColors The colors to queue
*/ */
void queueColors(const std::vector<ColorRgb> & ledColors); void queueColors(const std::vector<ColorRgb> &ledColors);
void clearQueuedColors(); void clearQueuedColors();
/// write updated values as input for the smoothing filter /// write updated values as input for the smoothing filter
@ -113,10 +161,10 @@ private:
virtual int write(const std::vector<ColorRgb> &ledValues); virtual int write(const std::vector<ColorRgb> &ledValues);
/// Logger instance /// Logger instance
Logger* _log; Logger *_log;
/// Hyperion instance /// Hyperion instance
Hyperion* _hyperion; Hyperion *_hyperion;
/// The interval at which to update the leds (msec) /// The interval at which to update the leds (msec)
int64_t _updateInterval; int64_t _updateInterval;
@ -125,7 +173,7 @@ private:
int64_t _settlingTime; int64_t _settlingTime;
/// The Qt timer object /// The Qt timer object
QTimer * _timer; QTimer *_timer;
/// The timestamp at which the target data should be fully applied /// The timestamp at which the target data should be fully applied
int64_t _targetTime; int64_t _targetTime;
@ -134,15 +182,45 @@ private:
std::vector<ColorRgb> _targetValues; std::vector<ColorRgb> _targetValues;
/// The timestamp of the previously written led data /// The timestamp of the previously written led data
int64_t _previousTime; int64_t _previousWriteTime;
/// The timestamp of the previously data interpolation
int64_t _previousInterpolationTime;
/// The previously written led data /// The previously written led data
std::vector<ColorRgb> _previousValues; std::vector<ColorRgb> _previousValues;
/// The number of updates to keep in the output queue (delayed) before being output /// The number of updates to keep in the output queue (delayed) before being output
unsigned _outputDelay; unsigned _outputDelay;
/// The output queue /// The output queue
std::list<std::vector<ColorRgb> > _outputQueue; std::deque<std::vector<ColorRgb>> _outputQueue;
/// A frame of led colors used for temporal smoothing
class REMEMBERED_FRAME
{
public:
/// The time this frame was received
int64_t time;
/// The led colors
std::vector<ColorRgb> colors;
REMEMBERED_FRAME ( REMEMBERED_FRAME && ) = default;
REMEMBERED_FRAME ( const REMEMBERED_FRAME & ) = default;
REMEMBERED_FRAME & operator= ( const REMEMBERED_FRAME & ) = default;
REMEMBERED_FRAME(const int64_t time, const std::vector<ColorRgb> colors)
: time(time)
, colors(colors)
{}
};
/// The type of smoothing to perform
SmoothingType _smoothingType;
/// The queue of temporarily remembered frames
std::deque<REMEMBERED_FRAME> _frameQueue;
/// Prevent sending data to device when no intput data is sent /// Prevent sending data to device when no intput data is sent
bool _writeToLedsEnable; bool _writeToLedsEnable;
@ -153,17 +231,146 @@ private:
/// Flag for pausing /// Flag for pausing
bool _pause; bool _pause;
/// The rate at which color frames should be written to LED device.
double _outputRate;
/// The interval time in microseconds for writing of LED Frames.
int64_t _outputIntervalMicros;
/// The rate at which interpolation of LED frames should be performed.
double _interpolationRate;
/// The interval time in microseconds for interpolation of LED Frames.
int64_t _interpolationIntervalMicros;
/// Whether to apply temproral dithering to diffuse rounding errors when downsampling to 8-bit RGB colors.
bool _dithering;
/// The decay power > 0. A value of exactly 1 is linear decay, higher numbers indicate a faster decay rate.
double _decay;
/// Value of 1.0 / settlingTime; inverse of the window size used for weighting of frames.
floatT _invWindow;
struct SMOOTHING_CFG struct SMOOTHING_CFG
{ {
bool pause; /// The type of smoothing to perform
int64_t settlingTime; SmoothingType smoothingType;
int64_t updateInterval;
unsigned outputDelay;
};
/// Whether to pause output
bool pause;
/// The time of the smoothing window.
int64_t settlingTime;
/// The interval time in millisecons of the timer used for scheduling LED update operations. A value of 0 indicates sub-millisecond timing.
int64_t updateInterval;
// The rate at which color frames should be written to LED device.
double outputRate;
/// The rate at which interpolation of LED frames should be performed.
double interpolationRate;
/// The number of frames the output is delayed
unsigned outputDelay;
/// Whether to apply temproral dithering to diffuse rounding errors when downsampling to 8-bit RGB colors. Improves color accuracy.
bool dithering;
/// The decay power > 0. A value of exactly 1 is linear decay, higher numbers indicate a faster decay rate.
double decay;
};
/// smooth config list /// smooth config list
QVector<SMOOTHING_CFG> _cfgList; QVector<SMOOTHING_CFG> _cfgList;
unsigned _currentConfigId; unsigned _currentConfigId;
bool _enabled; bool _enabled;
/// Pushes the colors into the frame queue and cleans outdated frames from memory.
///
/// @param ledColors The next colors to queue
void rememberFrame(const std::vector<ColorRgb> &ledColors);
/// Frees the LED frames that were queued for calculating the moving average.
void clearRememberedFrames();
/// (Re-)Initializes the color-component vectors with given number of values.
///
/// @param ledCount The number of colors.
void intitializeComponentVectors(const size_t ledCount);
/// The number of led component-values that must be held per color; i.e. size of the color vectors reds / greens / blues
size_t _ledCount = 0;
/// The average component colors red, green, blue of the leds
std::vector<floatT> meanValues;
/// The residual component errors of the leds
std::vector<floatT> residualErrors;
/// The accumulated led color values in 64-bit fixed point domain
std::vector<uint64_t> tempValues;
/// Writes the target frame RGB data to the LED device without any interpolation.
void writeDirect();
/// Writes the assembled RGB data to the LED device.
void writeFrame();
/// Assembles a frame of LED colors in order to write RGB data to the LED device.
/// Temporal dithering is applied to diffuse the downsampling error for RGB color components.
void assembleAndDitherFrame();
/// Assembles a frame of LED colors in order to write RGB data to the LED device.
/// No dithering is applied, RGB color components are just rounded to nearest integer.
void assembleFrame();
/// Prepares a frame of LED colors by interpolating using the current smoothing window
void interpolateFrame();
/// Performes a decay-based smoothing effect. The frames are interpolated based on their age and a given decay-power.
///
/// The ingress frames that were received during the current smoothing window are reduced using a weighted moving average
/// by applying the weighting-function to the color components of each frame.
///
/// When downsampling the average color values to the 8-bit RGB resolution of the LED device, rounding errors are minimized
/// by temporal dithering algorithm (error diffusion of residual errors).
void performDecay(const int64_t now);
/// Performs a linear smoothing effect
void performLinear(const int64_t now);
/// Aggregates the RGB components of the LED colors using the given weight and updates weighted accordingly
///
/// @param colors The LED colors to aggregate.
/// @param weighted The target vector, that accumulates the terms.
/// @param weight The weight to use.
static inline void aggregateComponents(const std::vector<ColorRgb>& colors, std::vector<uint64_t>& weighted, const floatT weight);
/// Gets the current time in microseconds from high precision system clock.
inline int64_t micros() const;
/// The time, when the rendering statistics were logged previously
int64_t _renderedStatTime;
/// The total number of frames that were rendered to the LED device
int64_t _renderedCounter;
/// The count of frames that have been rendered to the LED device when statistics were shown previously
int64_t _renderedStatCounter;
/// The total number of frames that were interpolated using the smoothing algorithm
int64_t _interpolationCounter;
/// The count of frames that have been interpolated when statistics were shown previously
int64_t _interpolationStatCounter;
/// Frame weighting function for finding the frame's integral value
///
/// @param frameStart The start of frame time.
/// @param frameEnd The end of frame time.
/// @param windowStart The window start time.
/// @returns The frame weight.
std::function<floatT(int64_t, int64_t, int64_t)> _weightFrame;
}; };

View File

@ -14,11 +14,10 @@
{ {
"type" : "string", "type" : "string",
"title" : "edt_conf_smooth_type_title", "title" : "edt_conf_smooth_type_title",
"enum" : ["linear"], "enum" : ["linear", "decay"],
"default" : "linear", "default" : "linear",
"options" : { "options" : {
"enum_titles" : ["edt_conf_enum_linear"], "enum_titles" : ["edt_conf_enum_linear", "edt_conf_enum_decay"]
"hidden":true
}, },
"propertyOrder" : 2 "propertyOrder" : 2
}, },
@ -27,7 +26,7 @@
"type" : "integer", "type" : "integer",
"title" : "edt_conf_smooth_time_ms_title", "title" : "edt_conf_smooth_time_ms_title",
"minimum" : 25, "minimum" : 25,
"maximum": 600, "maximum": 5000,
"default" : 200, "default" : 200,
"append" : "edt_append_ms", "append" : "edt_append_ms",
"propertyOrder" : 3 "propertyOrder" : 3
@ -37,11 +36,47 @@
"type" : "number", "type" : "number",
"title" : "edt_conf_smooth_updateFrequency_title", "title" : "edt_conf_smooth_updateFrequency_title",
"minimum" : 1.0, "minimum" : 1.0,
"maximum" : 100.0, "maximum" : 2000.0,
"default" : 25.0, "default" : 25.0,
"append" : "edt_append_hz", "append" : "edt_append_hz",
"propertyOrder" : 4 "propertyOrder" : 4
}, },
"interpolationRate" :
{
"type" : "number",
"title" : "edt_conf_smooth_interpolationRate_title",
"minimum" : 1.0,
"maximum": 1000.0,
"default" : 0,
"append" : "edt_append_hz",
"propertyOrder" : 5
},
"outputRate" :
{
"type" : "number",
"title" : "edt_conf_smooth_outputRate_title",
"minimum" : 1.0,
"maximum": 1000.0,
"default" : 0,
"append" : "edt_append_hz",
"propertyOrder" : 6
},
"decay" :
{
"type" : "number",
"title" : "edt_conf_smooth_decay_title",
"default" : 1.0,
"minimum" : 1.0,
"maximum": 20.0,
"propertyOrder" : 7
},
"dithering" :
{
"type" : "boolean",
"title" : "edt_conf_smooth_dithering_title",
"default" : true,
"propertyOrder" : 8
},
"updateDelay" : "updateDelay" :
{ {
"type" : "integer", "type" : "integer",
@ -50,14 +85,14 @@
"maximum": 2048, "maximum": 2048,
"default" : 0, "default" : 0,
"append" : "edt_append_ms", "append" : "edt_append_ms",
"propertyOrder" : 5 "propertyOrder" : 9
}, },
"continuousOutput" : "continuousOutput" :
{ {
"type" : "boolean", "type" : "boolean",
"title" : "edt_conf_smooth_continuousOutput_title", "title" : "edt_conf_smooth_continuousOutput_title",
"default" : true, "default" : true,
"propertyOrder" : 6 "propertyOrder" : 10
} }
}, },
"additionalProperties" : false "additionalProperties" : false