ImageToLED - Add reduced pixel processing, make dominant color advanced configurable

This commit is contained in:
LordGrey
2023-02-13 18:12:51 +01:00
parent 9b25b76723
commit 1063eadec5
6 changed files with 265 additions and 88 deletions

View File

@@ -1,6 +1,7 @@
#pragma once
#include <QString>
#include <QSharedPointer>
// Utils includes
#include <utils/Image.h>
@@ -46,7 +47,7 @@ public:
/// @param[in] width The new width of the buffer-image
/// @param[in] height The new height of the buffer-image
///
void setSize(unsigned width, unsigned height);
void setSize(int width, int height);
///
/// @brief Update the led string (eg on settings change)
@@ -56,6 +57,19 @@ public:
/// Returns state of black border detector
bool blackBorderDetectorEnabled() const;
///
/// Factor to reduce the number of pixels evaluated during processing
///
/// @param[in] count Use every "count" pixel
void setReducedPixelSetFactorFactor(int count);
///
/// Set the accuracy used during processing
/// (only for selected types)
///
/// @param[in] level The accuracy level (0-4)
void setAccuracyLevel(int level);
/// Returns the current _userMappingType, this may not be the current applied type!
int getUserLedMappingType() const { return _userMappingType; }
@@ -109,11 +123,14 @@ public:
std::vector<ColorRgb> process(const Image<Pixel_T>& image)
{
std::vector<ColorRgb> colors;
if (image.width()>0 && image.height()>0)
{
// Ensure that the buffer-image is the proper size
setSize(image);
assert(!_imageToLedColors.isNull());
// Check black border detection
verifyBorder(image);
@@ -121,19 +138,19 @@ public:
switch (_mappingType)
{
case 1:
colors = _imageToLeds->getUniLedColor(image);
colors = _imageToLedColors->getUniLedColor(image);
break;
case 2:
colors = _imageToLeds->getMeanLedColorSqrt(image);
colors = _imageToLedColors->getMeanLedColorSqrt(image);
break;
case 3:
colors = _imageToLeds->getDominantLedColor(image);
colors = _imageToLedColors->getDominantLedColor(image);
break;
case 4:
colors = _imageToLeds->getDominantLedColorAdv(image);
colors = _imageToLedColors->getDominantLedColorAdv(image);
break;
default:
colors = _imageToLeds->getMeanLedColor(image);
colors = _imageToLedColors->getMeanLedColor(image);
}
}
else
@@ -166,19 +183,19 @@ public:
switch (_mappingType)
{
case 1:
_imageToLeds->getUniLedColor(image, ledColors);
_imageToLedColors->getUniLedColor(image, ledColors);
break;
case 2:
_imageToLeds->getMeanLedColorSqrt(image, ledColors);
_imageToLedColors->getMeanLedColorSqrt(image, ledColors);
break;
case 3:
_imageToLeds->getDominantLedColor(image, ledColors);
_imageToLedColors->getDominantLedColor(image, ledColors);
break;
case 4:
_imageToLeds->getDominantLedColorAdv(image, ledColors);
_imageToLedColors->getDominantLedColorAdv(image, ledColors);
break;
default:
_imageToLeds->getMeanLedColor(image, ledColors);
_imageToLedColors->getMeanLedColor(image, ledColors);
}
}
else
@@ -199,6 +216,13 @@ public:
bool getScanParameters(size_t led, double & hscanBegin, double & hscanEnd, double & vscanBegin, double & vscanEnd) const;
private:
void registerProcessingUnit(
int width,
int height,
int horizontalBorder,
int verticalBorder);
///
/// Performs black-border detection (if enabled) on the given image
///
@@ -207,30 +231,24 @@ private:
template <typename Pixel_T>
void verifyBorder(const Image<Pixel_T> & image)
{
if (!_borderProcessor->enabled() && ( _imageToLeds->horizontalBorder()!=0 || _imageToLeds->verticalBorder()!=0 ))
if (!_borderProcessor->enabled() && ( _imageToLedColors->horizontalBorder()!=0 || _imageToLedColors->verticalBorder()!=0 ))
{
Debug(_log, "Reset border");
_borderProcessor->process(image);
delete _imageToLeds;
_imageToLeds = new hyperion::ImageToLedsMap(image.width(), image.height(), 0, 0, _ledString.leds());
registerProcessingUnit(image.width(), image.height(), 0, 0);
}
if(_borderProcessor->enabled() && _borderProcessor->process(image))
{
const hyperion::BlackBorder border = _borderProcessor->getCurrentBorder();
// Clean up the old mapping
delete _imageToLeds;
if (border.unknown)
{
// Construct a new buffer and mapping
_imageToLeds = new hyperion::ImageToLedsMap(image.width(), image.height(), 0, 0, _ledString.leds());
registerProcessingUnit(image.width(), image.height(), 0, 0);
}
else
{
// Construct a new buffer and mapping
_imageToLeds = new hyperion::ImageToLedsMap(image.width(), image.height(), border.horizontalSize, border.verticalSize, _ledString.leds());
registerProcessingUnit(image.width(), image.height(), border.horizontalSize, border.verticalSize);
}
}
}
@@ -239,6 +257,7 @@ private slots:
void handleSettingsUpdate(settings::type type, const QJsonDocument& config);
private:
Logger * _log;
/// The Led-string specification
LedString _ledString;
@@ -247,7 +266,7 @@ private:
hyperion::BlackBorderProcessor * _borderProcessor;
/// The mapping of image-pixels to LEDs
hyperion::ImageToLedsMap* _imageToLeds;
QSharedPointer<hyperion::ImageToLedsMap> _imageToLedColors;
/// Type of image to LED mapping
int _mappingType;
@@ -256,6 +275,9 @@ private:
/// Type of last requested hard type
int _hardMappingType;
int _accuraryLevel;
int _reducedPixelSetFactorFactor;
/// Hyperion instance pointer
Hyperion* _hyperion;
};

View File

@@ -17,15 +17,14 @@
namespace hyperion
{
/// Number of clusters for k-means calculation
const int CLUSTER_COUNT {5};
///
/// The ImageToLedsMap holds a mapping of indices into an image to LEDs. It can be used to
/// calculate the average (aka mean) or dominant color per LED for a given region.
///
class ImageToLedsMap
class ImageToLedsMap : public QObject
{
Q_OBJECT
public:
///
@@ -35,17 +34,26 @@ namespace hyperion
/// The mapping is created purely on size (width and height). The given borders are excluded
/// from indexing.
///
/// @param[in] log Logger
/// @param[in] mappingType Type of the mapping algorithm
/// @param[in] width The width of the indexed image
/// @param[in] height The width of the indexed image
/// @param[in] horizontalBorder The size of the horizontal border (0=no border)
/// @param[in] verticalBorder The size of the vertical border (0=no border)
/// @param[in] leds The list with led specifications
/// @param[in] reducedProcessingFactor Factor to reduce the number of pixels evaluated during processing
/// @param[in] accuraryLevel The accuracy used during processing (only for selected types)
///
ImageToLedsMap(int width,
ImageToLedsMap(
Logger* log,
int mappingType,
int width,
int height,
int horizontalBorder,
int verticalBorder,
const std::vector<Led> & leds);
const std::vector<Led> & leds,
int reducedProcessingFactor = 0,
int accuraryLevel = 0);
///
/// Returns the width of the indexed image
@@ -64,6 +72,13 @@ namespace hyperion
int horizontalBorder() const { return _horizontalBorder; }
int verticalBorder() const { return _verticalBorder; }
///
/// Set the accuracy used during processing
/// (only for selected types)
///
/// @param[in] level The accuracy level (0-4)
void setAccuracyLevel (int level);
///
/// Determines the mean color for each LED using the LED area mapping given
/// at construction.
@@ -92,7 +107,7 @@ namespace hyperion
{
if(_colorsMap.size() != ledColors.size())
{
Debug(Logger::getInstance("HYPERION"), "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
return;
}
@@ -133,7 +148,7 @@ namespace hyperion
{
if(_colorsMap.size() != ledColors.size())
{
Debug(Logger::getInstance("HYPERION"), "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
return;
}
@@ -172,7 +187,7 @@ namespace hyperion
{
if(_colorsMap.size() != ledColors.size())
{
Debug(Logger::getInstance("HYPERION"), "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
return;
}
@@ -211,7 +226,7 @@ namespace hyperion
// Sanity check for the number of LEDs
if(_colorsMap.size() != ledColors.size())
{
Debug(Logger::getInstance("HYPERION"), "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
return;
}
@@ -253,7 +268,7 @@ namespace hyperion
// Sanity check for the number of LEDs
if(_colorsMap.size() != ledColors.size())
{
Debug(Logger::getInstance("HYPERION"), "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
return;
}
@@ -267,6 +282,11 @@ namespace hyperion
}
private:
Logger* _log;
int _mappingType;
/// The width of the indexed image
const int _width;
/// The height of the indexed image
@@ -275,6 +295,12 @@ namespace hyperion
const int _horizontalBorder;
const int _verticalBorder;
/// Evaluate every "count" pixel
int _nextPixelCount;
/// Number of clusters used during dominant color advanced processing (k-means)
int _clusterCount;
/// The absolute indices into the image for each led
std::vector<std::vector<int>> _colorsMap;
@@ -496,12 +522,21 @@ namespace hyperion
struct ColorCluster {
ColorCluster():count(0) {}
ColorCluster(Pixel_T color):count(0),color(color) {}
Pixel_T color;
Pixel_T newColor;
int count;
};
const ColorRgb DEFAULT_CLUSTER_COLORS[5] {
{ColorRgb::BLACK},
{ColorRgb::GREEN},
{ColorRgb::WHITE},
{ColorRgb::RED},
{ColorRgb::YELLOW}
};
///
/// Calculates the 'dominant color' of an image area defined by a list of pixel indices
/// using a k-means algorithm (https://robocraft.ru/computervision/1063)
@@ -519,31 +554,11 @@ namespace hyperion
const auto pixelNum = pixels.size();
if (pixelNum > 0)
{
ColorCluster<ColorRgbScalar> clusters[CLUSTER_COUNT];
// initial cluster colors
switch (CLUSTER_COUNT) {
case 5:
clusters[4].newColor = ColorRgbScalar(ColorRgb::YELLOW);
case 4:
clusters[3].newColor = ColorRgbScalar(ColorRgb::RED);
case 3:
clusters[2].newColor = ColorRgbScalar(ColorRgb::WHITE);
case 2:
clusters[1].newColor = ColorRgbScalar(ColorRgb::GREEN);
case 1:
clusters[0].newColor = ColorRgbScalar(ColorRgb::BLACK);
break;
default:
for(int k = 0; k < CLUSTER_COUNT; ++k)
{
int randomRed = rand() % static_cast<int>(256);
int randomGreen = rand() % static_cast<int>(256);
int randomBlue = rand() % static_cast<int>(256);
clusters[k].newColor = ColorRgbScalar(randomRed, randomGreen, randomBlue);
}
break;
// initial cluster with different colors
ColorCluster<ColorRgbScalar> clusters[_clusterCount];
for(int k = 0; k < _clusterCount; ++k)
{
clusters[k].newColor = DEFAULT_CLUSTER_COLORS[k];
}
// k-means
@@ -552,7 +567,7 @@ namespace hyperion
while(1)
{
for(int k = 0; k < CLUSTER_COUNT; ++k)
for(int k = 0; k < _clusterCount; ++k)
{
clusters[k].count = 0;
clusters[k].color = clusters[k].newColor;
@@ -566,7 +581,7 @@ namespace hyperion
min_rgb_euclidean = 255 * 255 * 255;
int clusterIndex = -1;
for(int k = 0; k < CLUSTER_COUNT; ++k)
for(int k = 0; k < _clusterCount; ++k)
{
double euclid = ColorSys::rgb_euclidean(ColorRgbScalar(pixel), clusters[k].color);
@@ -581,7 +596,7 @@ namespace hyperion
}
min_rgb_euclidean = 0;
for(int k = 0; k < CLUSTER_COUNT; ++k)
for(int k = 0; k < _clusterCount; ++k)
{
if (clusters[k].count > 0)
{
@@ -606,7 +621,7 @@ namespace hyperion
int colorsFoundMax = 0;
int dominantClusterIdx {0};
for(int clusterIdx=0; clusterIdx < CLUSTER_COUNT; ++clusterIdx){
for(int clusterIdx=0; clusterIdx < _clusterCount; ++clusterIdx){
int colorsFoundinCluster = clusters[clusterIdx].count;
if (colorsFoundinCluster > colorsFoundMax) {
colorsFoundMax = colorsFoundinCluster;