mirror of
https://github.com/hyperion-project/hyperion.ng.git
synced 2023-10-10 13:36:59 +02:00
Dominant Color support (#1569)
* Dominant Color and Mean Color Squared * Workaround - Suppress empty LED updates * Add missing text * Dominant Colors advanced * Test with fixed initial colors * Test with fixed initial colors * Support new processing values via API * ImageToLED - Add reduced pixel processing, make dominant color advanced configurable * Updates on Grabber fps setting * ImageToLedMap - Remove maptype and update test * Update dynamic cluster array allocation
This commit is contained in:
parent
093361d3e4
commit
1ae37d151e
@ -253,6 +253,8 @@
|
||||
"edt_conf_bb_unknownFrameCnt_title": "Unknown frames",
|
||||
"edt_conf_bge_heading_title": "Background Effect/Color",
|
||||
"edt_conf_bobls_heading_title": "Boblight Server",
|
||||
"edt_conf_color_accuracyLevel_expl": "Level how accurate dominat colors are evaluated. A higher level creates more accurate results, but also requries more processing power. Should to be combined with reduced pixel processing.",
|
||||
"edt_conf_color_accuracyLevel_title": "Accuracy level",
|
||||
"edt_conf_color_backlightColored_expl": "Add some color to your backlight.",
|
||||
"edt_conf_color_backlightColored_title": "Colored backlight",
|
||||
"edt_conf_color_backlightThreshold_expl": "The minimum amount of brightness (backlight). Disabled during effects, colors and in status \"Off\"",
|
||||
@ -281,7 +283,7 @@
|
||||
"edt_conf_color_heading_title": "Color Calibration",
|
||||
"edt_conf_color_id_expl": "User given name",
|
||||
"edt_conf_color_id_title": "ID",
|
||||
"edt_conf_color_imageToLedMappingType_expl": "Overwrites the LED area assignment of your LED layout if it's not \"multicolor\"",
|
||||
"edt_conf_color_imageToLedMappingType_expl": "Overwrites the LED area assignment of your LED layout if it's not \"Mean Color Simple\"",
|
||||
"edt_conf_color_imageToLedMappingType_title": "LED area assignment",
|
||||
"edt_conf_color_leds_expl": "Assign this adjustment to all LEDs (*) or just some (0-24).",
|
||||
"edt_conf_color_leds_title": "LED index",
|
||||
@ -293,6 +295,8 @@
|
||||
"edt_conf_color_saturationGain_title": "Saturation gain",
|
||||
"edt_conf_color_brightnessGain_expl": "Adjusts the brightness of colors. 1.0 means no change, over 1.0 increases brightness, under 1.0 decreases brightness.",
|
||||
"edt_conf_color_brightnessGain_title": "Brightness gain",
|
||||
"edt_conf_color_reducedPixelSetFactorFactor_expl": "Evaluate only a set of pixels per LED area defined, Low ~25%, Medium ~10%, High ~6%",
|
||||
"edt_conf_color_reducedPixelSetFactorFactor_title": "Reduced pixel processing",
|
||||
"edt_conf_color_white_expl": "The calibrated white value.",
|
||||
"edt_conf_color_white_title": "White",
|
||||
"edt_conf_color_yellow_expl": "The calibrated yellow value.",
|
||||
@ -322,6 +326,8 @@
|
||||
"edt_conf_enum_color": "Color",
|
||||
"edt_conf_enum_custom": "Custom",
|
||||
"edt_conf_enum_decay": "Decay",
|
||||
"edt_conf_enum_delay": "Delay only",
|
||||
"edt_conf_enum_disabled": "Disabled",
|
||||
"edt_conf_enum_dl_error": "Error",
|
||||
"edt_conf_enum_dl_informational": "Informational",
|
||||
"edt_conf_enum_dl_nodebug": "No Debug output",
|
||||
@ -330,9 +336,12 @@
|
||||
"edt_conf_enum_dl_verbose1": "Verbosity level 1",
|
||||
"edt_conf_enum_dl_verbose2": "Verbosity level 2",
|
||||
"edt_conf_enum_dl_verbose3": "Verbosity level 3",
|
||||
"edt_conf_enum_dominant_color": "Dominant Color - per LED",
|
||||
"edt_conf_enum_dominant_color_advanced": "Dominant Color Advanced - per LED",
|
||||
"edt_conf_enum_effect": "Effect",
|
||||
"edt_conf_enum_gbr": "GBR",
|
||||
"edt_conf_enum_grb": "GRB",
|
||||
"edt_conf_enum_high": "High",
|
||||
"edt_conf_enum_hsv": "HSV",
|
||||
"edt_conf_enum_left_right": "Left to right",
|
||||
"edt_conf_enum_linear": "Linear",
|
||||
@ -340,7 +349,10 @@
|
||||
"edt_conf_enum_logsilent": "Silent",
|
||||
"edt_conf_enum_logverbose": "Verbose",
|
||||
"edt_conf_enum_logwarn": "Warning",
|
||||
"edt_conf_enum_multicolor_mean": "Multicolor",
|
||||
"edt_conf_enum_low": "Low",
|
||||
"edt_conf_enum_medium": "Medium",
|
||||
"edt_conf_enum_multicolor_mean": "Mean Color Simple - per LED",
|
||||
"edt_conf_enum_multicolor_mean_squared": "Mean Color Squared - per LED",
|
||||
"edt_conf_enum_please_select": "Please Select",
|
||||
"edt_conf_enum_rbg": "RBG",
|
||||
"edt_conf_enum_rgb": "RGB",
|
||||
@ -350,7 +362,7 @@
|
||||
"edt_conf_enum_transeffect_sudden": "Sudden",
|
||||
"edt_conf_enum_udp_ddp": "DDP",
|
||||
"edt_conf_enum_udp_raw": "RAW",
|
||||
"edt_conf_enum_unicolor_mean": "Unicolor",
|
||||
"edt_conf_enum_unicolor_mean": "Mean Color Image - applied to all LEDs",
|
||||
"edt_conf_fbs_heading_title": "Flatbuffers Server",
|
||||
"edt_conf_fbs_timeout_expl": "If no data is received for the given period, the component will be (soft) disabled.",
|
||||
"edt_conf_fbs_timeout_title": "Timeout",
|
||||
@ -974,8 +986,11 @@
|
||||
"remote_losthint": "Note: All changes will be lost after a restart.",
|
||||
"remote_maptype_intro": "Usually the LED layout defines which LED covers a specific picture area. You can change it here: $1.",
|
||||
"remote_maptype_label": "Mapping type",
|
||||
"remote_maptype_label_multicolor_mean": "Multicolor",
|
||||
"remote_maptype_label_unicolor_mean": "Unicolor",
|
||||
"remote_maptype_label_dominant_color": "Dominant Color",
|
||||
"remote_maptype_label_dominant_color_advanced": "Dominant Color Advanced",
|
||||
"remote_maptype_label_multicolor_mean": "Mean Color Simple",
|
||||
"remote_maptype_label_multicolor_mean_squared": "Mean Color Squared",
|
||||
"remote_maptype_label_unicolor_mean": "Mean Color Image",
|
||||
"remote_optgroup_syseffets": "System Effects",
|
||||
"remote_optgroup_templates_custom": "User Templates",
|
||||
"remote_optgroup_templates_system": "System Templates",
|
||||
|
@ -147,10 +147,7 @@ private slots:
|
||||
void handleSourceRequest(hyperion::Components component, int hyperionInd, bool listen);
|
||||
|
||||
///
|
||||
/// @brief Update Update capture rate
|
||||
/// @param type interval between frames in milliseconds
|
||||
///
|
||||
void updateTimer(int interval);
|
||||
|
||||
|
||||
protected:
|
||||
|
||||
@ -168,6 +165,11 @@ protected:
|
||||
///
|
||||
virtual bool close() { return true; }
|
||||
|
||||
/// @brief Update Update capture rate
|
||||
/// @param type interval between frames in milliseconds
|
||||
///
|
||||
void updateTimer(int interval);
|
||||
|
||||
|
||||
QString _grabberName;
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
#pragma once
|
||||
|
||||
#include <QString>
|
||||
#include <QSharedPointer>
|
||||
|
||||
// Utils includes
|
||||
#include <utils/Image.h>
|
||||
@ -46,7 +47,7 @@ public:
|
||||
/// @param[in] width The new width of the buffer-image
|
||||
/// @param[in] height The new height of the buffer-image
|
||||
///
|
||||
void setSize(unsigned width, unsigned height);
|
||||
void setSize(int width, int height);
|
||||
|
||||
///
|
||||
/// @brief Update the led string (eg on settings change)
|
||||
@ -56,6 +57,19 @@ public:
|
||||
/// Returns state of black border detector
|
||||
bool blackBorderDetectorEnabled() const;
|
||||
|
||||
///
|
||||
/// Factor to reduce the number of pixels evaluated during processing
|
||||
///
|
||||
/// @param[in] count Use every "count" pixel
|
||||
void setReducedPixelSetFactorFactor(int count);
|
||||
|
||||
///
|
||||
/// Set the accuracy used during processing
|
||||
/// (only for selected types)
|
||||
///
|
||||
/// @param[in] level The accuracy level (0-4)
|
||||
void setAccuracyLevel(int level);
|
||||
|
||||
/// Returns the current _userMappingType, this may not be the current applied type!
|
||||
int getUserLedMappingType() const { return _userMappingType; }
|
||||
|
||||
@ -98,30 +112,45 @@ public:
|
||||
}
|
||||
|
||||
///
|
||||
/// Processes the image to a list of led colors. This will update the size of the buffer-image
|
||||
/// if required and call the image-to-leds mapping to determine the mean color per led.
|
||||
/// Processes the image to a list of LED colors. This will update the size of the buffer-image
|
||||
/// if required and call the image-to-LEDs mapping to determine the color per LED.
|
||||
///
|
||||
/// @param[in] image The image to translate to led values
|
||||
/// @param[in] image The image to translate to LED values
|
||||
///
|
||||
/// @return The color value per led
|
||||
/// @return The color value per LED
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
std::vector<ColorRgb> process(const Image<Pixel_T>& image)
|
||||
{
|
||||
std::vector<ColorRgb> colors;
|
||||
|
||||
if (image.width()>0 && image.height()>0)
|
||||
{
|
||||
// Ensure that the buffer-image is the proper size
|
||||
setSize(image);
|
||||
|
||||
assert(!_imageToLedColors.isNull());
|
||||
|
||||
// Check black border detection
|
||||
verifyBorder(image);
|
||||
|
||||
// Create a result vector and call the 'in place' function
|
||||
switch (_mappingType)
|
||||
{
|
||||
case 1: colors = _imageToLeds->getUniLedColor(image); break;
|
||||
default: colors = _imageToLeds->getMeanLedColor(image);
|
||||
case 1:
|
||||
colors = _imageToLedColors->getUniLedColor(image);
|
||||
break;
|
||||
case 2:
|
||||
colors = _imageToLedColors->getMeanLedColorSqrt(image);
|
||||
break;
|
||||
case 3:
|
||||
colors = _imageToLedColors->getDominantLedColor(image);
|
||||
break;
|
||||
case 4:
|
||||
colors = _imageToLedColors->getDominantLedColorAdv(image);
|
||||
break;
|
||||
default:
|
||||
colors = _imageToLedColors->getMeanLedColor(image);
|
||||
}
|
||||
}
|
||||
else
|
||||
@ -136,8 +165,8 @@ public:
|
||||
///
|
||||
/// Determines the led colors of the image in the buffer.
|
||||
///
|
||||
/// @param[in] image The image to translate to led values
|
||||
/// @param[out] ledColors The color value per led
|
||||
/// @param[in] image The image to translate to LED values
|
||||
/// @param[out] ledColors The color value per LED
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
void process(const Image<Pixel_T>& image, std::vector<ColorRgb>& ledColors)
|
||||
@ -153,8 +182,20 @@ public:
|
||||
// Determine the mean or uni colors of each led (using the existing mapping)
|
||||
switch (_mappingType)
|
||||
{
|
||||
case 1: _imageToLeds->getUniLedColor(image, ledColors); break;
|
||||
default: _imageToLeds->getMeanLedColor(image, ledColors);
|
||||
case 1:
|
||||
_imageToLedColors->getUniLedColor(image, ledColors);
|
||||
break;
|
||||
case 2:
|
||||
_imageToLedColors->getMeanLedColorSqrt(image, ledColors);
|
||||
break;
|
||||
case 3:
|
||||
_imageToLedColors->getDominantLedColor(image, ledColors);
|
||||
break;
|
||||
case 4:
|
||||
_imageToLedColors->getDominantLedColorAdv(image, ledColors);
|
||||
break;
|
||||
default:
|
||||
_imageToLedColors->getMeanLedColor(image, ledColors);
|
||||
}
|
||||
}
|
||||
else
|
||||
@ -164,9 +205,9 @@ public:
|
||||
}
|
||||
|
||||
///
|
||||
/// Get the hscan and vscan parameters for a single led
|
||||
/// Get the hscan and vscan parameters for a single LED
|
||||
///
|
||||
/// @param[in] led Index of the led
|
||||
/// @param[in] led Index of the LED
|
||||
/// @param[out] hscanBegin begin of the hscan
|
||||
/// @param[out] hscanEnd end of the hscan
|
||||
/// @param[out] vscanBegin begin of the hscan
|
||||
@ -175,6 +216,13 @@ public:
|
||||
bool getScanParameters(size_t led, double & hscanBegin, double & hscanEnd, double & vscanBegin, double & vscanEnd) const;
|
||||
|
||||
private:
|
||||
|
||||
void registerProcessingUnit(
|
||||
int width,
|
||||
int height,
|
||||
int horizontalBorder,
|
||||
int verticalBorder);
|
||||
|
||||
///
|
||||
/// Performs black-border detection (if enabled) on the given image
|
||||
///
|
||||
@ -183,34 +231,25 @@ private:
|
||||
template <typename Pixel_T>
|
||||
void verifyBorder(const Image<Pixel_T> & image)
|
||||
{
|
||||
if (!_borderProcessor->enabled() && ( _imageToLeds->horizontalBorder()!=0 || _imageToLeds->verticalBorder()!=0 ))
|
||||
if (!_borderProcessor->enabled() && ( _imageToLedColors->horizontalBorder()!=0 || _imageToLedColors->verticalBorder()!=0 ))
|
||||
{
|
||||
Debug(_log, "Reset border");
|
||||
_borderProcessor->process(image);
|
||||
delete _imageToLeds;
|
||||
_imageToLeds = new hyperion::ImageToLedsMap(image.width(), image.height(), 0, 0, _ledString.leds());
|
||||
registerProcessingUnit(image.width(), image.height(), 0, 0);
|
||||
}
|
||||
|
||||
if(_borderProcessor->enabled() && _borderProcessor->process(image))
|
||||
{
|
||||
const hyperion::BlackBorder border = _borderProcessor->getCurrentBorder();
|
||||
|
||||
// Clean up the old mapping
|
||||
delete _imageToLeds;
|
||||
|
||||
if (border.unknown)
|
||||
{
|
||||
// Construct a new buffer and mapping
|
||||
_imageToLeds = new hyperion::ImageToLedsMap(image.width(), image.height(), 0, 0, _ledString.leds());
|
||||
registerProcessingUnit(image.width(), image.height(), 0, 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Construct a new buffer and mapping
|
||||
_imageToLeds = new hyperion::ImageToLedsMap(image.width(), image.height(), border.horizontalSize, border.verticalSize, _ledString.leds());
|
||||
registerProcessingUnit(image.width(), image.height(), border.horizontalSize, border.verticalSize);
|
||||
}
|
||||
|
||||
//Debug(Logger::getInstance("BLACKBORDER"), "CURRENT BORDER TYPE: unknown=%d hor.size=%d vert.size=%d",
|
||||
// border.unknown, border.horizontalSize, border.verticalSize );
|
||||
}
|
||||
}
|
||||
|
||||
@ -218,6 +257,7 @@ private slots:
|
||||
void handleSettingsUpdate(settings::type type, const QJsonDocument& config);
|
||||
|
||||
private:
|
||||
|
||||
Logger * _log;
|
||||
/// The Led-string specification
|
||||
LedString _ledString;
|
||||
@ -226,15 +266,18 @@ private:
|
||||
hyperion::BlackBorderProcessor * _borderProcessor;
|
||||
|
||||
/// The mapping of image-pixels to LEDs
|
||||
hyperion::ImageToLedsMap* _imageToLeds;
|
||||
QSharedPointer<hyperion::ImageToLedsMap> _imageToLedColors;
|
||||
|
||||
/// Type of image 2 led mapping
|
||||
/// Type of image to LED mapping
|
||||
int _mappingType;
|
||||
/// Type of last requested user type
|
||||
int _userMappingType;
|
||||
/// Type of last requested hard type
|
||||
int _hardMappingType;
|
||||
|
||||
int _accuraryLevel;
|
||||
int _reducedPixelSetFactorFactor;
|
||||
|
||||
/// Hyperion instance pointer
|
||||
Hyperion* _hyperion;
|
||||
};
|
||||
|
@ -1,72 +1,90 @@
|
||||
|
||||
#pragma once
|
||||
#ifndef IMAGETOLEDSMAP_H
|
||||
#define IMAGETOLEDSMAP_H
|
||||
|
||||
// STL includes
|
||||
#include <cassert>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
#include <cmath>
|
||||
|
||||
// hyperion-utils includes
|
||||
#include <utils/Image.h>
|
||||
#include <utils/Logger.h>
|
||||
#include <utils/ColorRgbScalar.h>
|
||||
#include <utils/ColorSys.h>
|
||||
|
||||
// hyperion includes
|
||||
#include <hyperion/LedString.h>
|
||||
|
||||
namespace hyperion
|
||||
{
|
||||
|
||||
///
|
||||
/// The ImageToLedsMap holds a mapping of indices into an image to leds. It can be used to
|
||||
/// calculate the average (or mean) color per led for a specific region.
|
||||
/// The ImageToLedsMap holds a mapping of indices into an image to LEDs. It can be used to
|
||||
/// calculate the average (aka mean) or dominant color per LED for a given region.
|
||||
///
|
||||
class ImageToLedsMap
|
||||
class ImageToLedsMap : public QObject
|
||||
{
|
||||
Q_OBJECT
|
||||
|
||||
public:
|
||||
|
||||
///
|
||||
/// Constructs an mapping from the absolute indices in an image to each led based on the border
|
||||
/// definition given in the list of leds. The map holds absolute indices to any given image,
|
||||
/// Constructs an mapping from the absolute indices in an image to each LED based on the border
|
||||
/// definition given in the list of LEDs. The map holds absolute indices to any given image,
|
||||
/// provided that it is row-oriented.
|
||||
/// The mapping is created purely on size (width and height). The given borders are excluded
|
||||
/// from indexing.
|
||||
///
|
||||
/// @param[in] log Logger
|
||||
/// @param[in] width The width of the indexed image
|
||||
/// @param[in] height The width of the indexed image
|
||||
/// @param[in] horizontalBorder The size of the horizontal border (0=no border)
|
||||
/// @param[in] verticalBorder The size of the vertical border (0=no border)
|
||||
/// @param[in] leds The list with led specifications
|
||||
/// @param[in] reducedProcessingFactor Factor to reduce the number of pixels evaluated during processing
|
||||
/// @param[in] accuraryLevel The accuracy used during processing (only for selected types)
|
||||
///
|
||||
ImageToLedsMap(
|
||||
const unsigned width,
|
||||
const unsigned height,
|
||||
const unsigned horizontalBorder,
|
||||
const unsigned verticalBorder,
|
||||
const std::vector<Led> & leds);
|
||||
Logger* log,
|
||||
int width,
|
||||
int height,
|
||||
int horizontalBorder,
|
||||
int verticalBorder,
|
||||
const std::vector<Led> & leds,
|
||||
int reducedProcessingFactor = 0,
|
||||
int accuraryLevel = 0);
|
||||
|
||||
///
|
||||
/// Returns the width of the indexed image
|
||||
///
|
||||
/// @return The width of the indexed image [pixels]
|
||||
///
|
||||
unsigned width() const;
|
||||
int width() const;
|
||||
|
||||
///
|
||||
/// Returns the height of the indexed image
|
||||
///
|
||||
/// @return The height of the indexed image [pixels]
|
||||
///
|
||||
unsigned height() const;
|
||||
int height() const;
|
||||
|
||||
unsigned horizontalBorder() const { return _horizontalBorder; }
|
||||
unsigned verticalBorder() const { return _verticalBorder; }
|
||||
int horizontalBorder() const { return _horizontalBorder; }
|
||||
int verticalBorder() const { return _verticalBorder; }
|
||||
|
||||
///
|
||||
/// Determines the mean color for each led using the mapping the image given
|
||||
/// Set the accuracy used during processing
|
||||
/// (only for selected types)
|
||||
///
|
||||
/// @param[in] level The accuracy level (0-4)
|
||||
void setAccuracyLevel (int level);
|
||||
|
||||
///
|
||||
/// Determines the mean color for each LED using the LED area mapping given
|
||||
/// at construction.
|
||||
///
|
||||
/// @param[in] image The image from which to extract the led colors
|
||||
///
|
||||
/// @return ledColors The vector containing the output
|
||||
/// @return The vector containing the output
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
std::vector<ColorRgb> getMeanLedColor(const Image<Pixel_T> & image) const
|
||||
@ -77,20 +95,18 @@ namespace hyperion
|
||||
}
|
||||
|
||||
///
|
||||
/// Determines the mean color for each led using the mapping the image given
|
||||
/// Determines the mean color for each LED using the LED area mapping given
|
||||
/// at construction.
|
||||
///
|
||||
/// @param[in] image The image from which to extract the led colors
|
||||
/// @param[in] image The image from which to extract the LED colors
|
||||
/// @param[out] ledColors The vector containing the output
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
void getMeanLedColor(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
|
||||
{
|
||||
// Sanity check for the number of leds
|
||||
//assert(_colorsMap.size() == ledColors.size());
|
||||
if(_colorsMap.size() != ledColors.size())
|
||||
{
|
||||
Debug(Logger::getInstance("HYPERION"), "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
|
||||
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
|
||||
return;
|
||||
}
|
||||
|
||||
@ -104,12 +120,52 @@ namespace hyperion
|
||||
}
|
||||
|
||||
///
|
||||
/// Determines the uni color for each led using the mapping the image given
|
||||
/// Determines the mean color squared for each LED using the LED area mapping given
|
||||
/// at construction.
|
||||
///
|
||||
/// @param[in] image The image from which to extract the led colors
|
||||
///
|
||||
/// @return ledColors The vector containing the output
|
||||
/// @return The vector containing the output
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
std::vector<ColorRgb> getMeanLedColorSqrt(const Image<Pixel_T> & image) const
|
||||
{
|
||||
std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
|
||||
getMeanLedColorSqrt(image, colors);
|
||||
return colors;
|
||||
}
|
||||
|
||||
///
|
||||
/// Determines the mean color squared for each LED using the LED area mapping given
|
||||
/// at construction.
|
||||
///
|
||||
/// @param[in] image The image from which to extract the LED colors
|
||||
/// @param[out] ledColors The vector containing the output
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
void getMeanLedColorSqrt(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
|
||||
{
|
||||
if(_colorsMap.size() != ledColors.size())
|
||||
{
|
||||
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
|
||||
return;
|
||||
}
|
||||
|
||||
// Iterate each led and compute the mean
|
||||
auto led = ledColors.begin();
|
||||
for (auto colors = _colorsMap.begin(); colors != _colorsMap.end(); ++colors, ++led)
|
||||
{
|
||||
const ColorRgb color = calcMeanColorSqrt(image, *colors);
|
||||
*led = color;
|
||||
}
|
||||
}
|
||||
|
||||
///
|
||||
/// Determines the mean color of the image and assigns it to all LEDs
|
||||
///
|
||||
/// @param[in] image The image from which to extract the led color
|
||||
///
|
||||
/// @return The vector containing the output
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
std::vector<ColorRgb> getUniLedColor(const Image<Pixel_T> & image) const
|
||||
@ -120,57 +176,145 @@ namespace hyperion
|
||||
}
|
||||
|
||||
///
|
||||
/// Determines the uni color for each led using the mapping the image given
|
||||
/// at construction.
|
||||
/// Determines the mean color of the image and assigns it to all LEDs
|
||||
///
|
||||
/// @param[in] image The image from which to extract the led colors
|
||||
/// @param[in] image The image from which to extract the LED colors
|
||||
/// @param[out] ledColors The vector containing the output
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
void getUniLedColor(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
|
||||
{
|
||||
// Sanity check for the number of leds
|
||||
// assert(_colorsMap.size() == ledColors.size());
|
||||
if(_colorsMap.size() != ledColors.size())
|
||||
{
|
||||
Debug(Logger::getInstance("HYPERION"), "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
|
||||
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
// calculate uni color
|
||||
const ColorRgb color = calcMeanColor(image);
|
||||
//Update all LEDs with same color
|
||||
std::fill(ledColors.begin(),ledColors.end(), color);
|
||||
}
|
||||
|
||||
private:
|
||||
/// The width of the indexed image
|
||||
const unsigned _width;
|
||||
/// The height of the indexed image
|
||||
const unsigned _height;
|
||||
|
||||
const unsigned _horizontalBorder;
|
||||
|
||||
const unsigned _verticalBorder;
|
||||
|
||||
/// The absolute indices into the image for each led
|
||||
std::vector<std::vector<int32_t>> _colorsMap;
|
||||
///
|
||||
/// Determines the dominant color for each LED using the LED area mapping given
|
||||
/// at construction.
|
||||
///
|
||||
/// @param[in] image The image from which to extract the LED color
|
||||
///
|
||||
/// @return The vector containing the output
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
std::vector<ColorRgb> getDominantLedColor(const Image<Pixel_T> & image) const
|
||||
{
|
||||
std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
|
||||
getDominantLedColor(image, colors);
|
||||
return colors;
|
||||
}
|
||||
|
||||
///
|
||||
/// Calculates the 'mean color' of the given list. This is the mean over each color-channel
|
||||
/// Determines the dominant color for each LED using the LED area mapping given
|
||||
/// at construction.
|
||||
///
|
||||
/// @param[in] image The image from which to extract the LED colors
|
||||
/// @param[out] ledColors The vector containing the output
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
void getDominantLedColor(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
|
||||
{
|
||||
// Sanity check for the number of LEDs
|
||||
if(_colorsMap.size() != ledColors.size())
|
||||
{
|
||||
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
|
||||
return;
|
||||
}
|
||||
|
||||
// Iterate each led and compute the dominant color
|
||||
auto led = ledColors.begin();
|
||||
for (auto colors = _colorsMap.begin(); colors != _colorsMap.end(); ++colors, ++led)
|
||||
{
|
||||
const ColorRgb color = calculateDominantColor(image, *colors);
|
||||
*led = color;
|
||||
}
|
||||
}
|
||||
|
||||
///
|
||||
/// Determines the dominant color using a k-means algorithm for each LED using the LED area mapping given
|
||||
/// at construction.
|
||||
///
|
||||
/// @param[in] image The image from which to extract the LED color
|
||||
///
|
||||
/// @return The vector containing the output
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
std::vector<ColorRgb> getDominantLedColorAdv(const Image<Pixel_T> & image) const
|
||||
{
|
||||
std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
|
||||
getDominantLedColorAdv(image, colors);
|
||||
return colors;
|
||||
}
|
||||
|
||||
///
|
||||
/// Determines the dominant color using a k-means algorithm for each LED using the LED area mapping given
|
||||
/// at construction.
|
||||
///
|
||||
/// @param[in] image The image from which to extract the LED colors
|
||||
/// @param[out] ledColors The vector containing the output
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
void getDominantLedColorAdv(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
|
||||
{
|
||||
// Sanity check for the number of LEDs
|
||||
if(_colorsMap.size() != ledColors.size())
|
||||
{
|
||||
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
|
||||
return;
|
||||
}
|
||||
|
||||
// Iterate each led and compute the dominant color
|
||||
auto led = ledColors.begin();
|
||||
for (auto colors = _colorsMap.begin(); colors != _colorsMap.end(); ++colors, ++led)
|
||||
{
|
||||
const ColorRgb color = calculateDominantColorAdv(image, *colors);
|
||||
*led = color;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
Logger* _log;
|
||||
|
||||
/// The width of the indexed image
|
||||
const int _width;
|
||||
/// The height of the indexed image
|
||||
const int _height;
|
||||
|
||||
const int _horizontalBorder;
|
||||
const int _verticalBorder;
|
||||
|
||||
/// Evaluate every "count" pixel
|
||||
int _nextPixelCount;
|
||||
|
||||
/// Number of clusters used during dominant color advanced processing (k-means)
|
||||
int _clusterCount;
|
||||
|
||||
/// The absolute indices into the image for each led
|
||||
std::vector<std::vector<int>> _colorsMap;
|
||||
|
||||
///
|
||||
/// Calculates the 'mean color' over the given image. This is the mean over each color-channel
|
||||
/// (red, green, blue)
|
||||
///
|
||||
/// @param[in] image The image a section from which an average color must be computed
|
||||
/// @param[in] colors The list with colors
|
||||
/// @param[in] pixels The list of pixel indices for the given image to be evaluated///
|
||||
///
|
||||
/// @return The mean of the given list of colors (or black when empty)
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
ColorRgb calcMeanColor(const Image<Pixel_T> & image, const std::vector<int32_t> & colors) const
|
||||
ColorRgb calcMeanColor(const Image<Pixel_T> & image, const std::vector<int32_t> & pixels) const
|
||||
{
|
||||
const auto colorVecSize = colors.size();
|
||||
|
||||
if (colorVecSize == 0)
|
||||
const auto pixelNum = pixels.size();
|
||||
if (pixelNum == 0)
|
||||
{
|
||||
return ColorRgb::BLACK;
|
||||
}
|
||||
@ -179,20 +323,20 @@ namespace hyperion
|
||||
uint_fast32_t cummRed = 0;
|
||||
uint_fast32_t cummGreen = 0;
|
||||
uint_fast32_t cummBlue = 0;
|
||||
const auto& imgData = image.memptr();
|
||||
|
||||
for (const unsigned colorOffset : colors)
|
||||
const auto& imgData = image.memptr();
|
||||
for (const int pixelOffset : pixels)
|
||||
{
|
||||
const auto& pixel = imgData[colorOffset];
|
||||
const auto& pixel = imgData[pixelOffset];
|
||||
cummRed += pixel.red;
|
||||
cummGreen += pixel.green;
|
||||
cummBlue += pixel.blue;
|
||||
}
|
||||
|
||||
// Compute the average of each color channel
|
||||
const uint8_t avgRed = uint8_t(cummRed/colorVecSize);
|
||||
const uint8_t avgGreen = uint8_t(cummGreen/colorVecSize);
|
||||
const uint8_t avgBlue = uint8_t(cummBlue/colorVecSize);
|
||||
const uint8_t avgRed = uint8_t(cummRed/pixelNum);
|
||||
const uint8_t avgGreen = uint8_t(cummGreen/pixelNum);
|
||||
const uint8_t avgBlue = uint8_t(cummBlue/pixelNum);
|
||||
|
||||
// Return the computed color
|
||||
return {avgRed, avgGreen, avgBlue};
|
||||
@ -213,11 +357,11 @@ namespace hyperion
|
||||
uint_fast32_t cummRed = 0;
|
||||
uint_fast32_t cummGreen = 0;
|
||||
uint_fast32_t cummBlue = 0;
|
||||
const unsigned imageSize = image.width() * image.height();
|
||||
|
||||
const unsigned pixelNum = image.width() * image.height();
|
||||
const auto& imgData = image.memptr();
|
||||
|
||||
for (unsigned idx=0; idx<imageSize; idx++)
|
||||
for (unsigned idx=0; idx<pixelNum; idx++)
|
||||
{
|
||||
const auto& pixel = imgData[idx];
|
||||
cummRed += pixel.red;
|
||||
@ -226,13 +370,289 @@ namespace hyperion
|
||||
}
|
||||
|
||||
// Compute the average of each color channel
|
||||
const uint8_t avgRed = uint8_t(cummRed/imageSize);
|
||||
const uint8_t avgGreen = uint8_t(cummGreen/imageSize);
|
||||
const uint8_t avgBlue = uint8_t(cummBlue/imageSize);
|
||||
const uint8_t avgRed = uint8_t(cummRed/pixelNum);
|
||||
const uint8_t avgGreen = uint8_t(cummGreen/pixelNum);
|
||||
const uint8_t avgBlue = uint8_t(cummBlue/pixelNum);
|
||||
|
||||
// Return the computed color
|
||||
return {avgRed, avgGreen, avgBlue};
|
||||
}
|
||||
|
||||
///
|
||||
/// Calculates the 'mean color' squared over the given image. This is the mean over each color-channel
|
||||
/// (red, green, blue)
|
||||
///
|
||||
/// @param[in] image The image a section from which an average color must be computed
|
||||
/// @param[in] pixels The list of pixel indices for the given image to be evaluated
|
||||
///
|
||||
/// @return The mean of the given list of colors (or black when empty)
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
ColorRgb calcMeanColorSqrt(const Image<Pixel_T> & image, const std::vector<int32_t> & pixels) const
|
||||
{
|
||||
const auto pixelNum = pixels.size();
|
||||
if (pixelNum == 0)
|
||||
{
|
||||
return ColorRgb::BLACK;
|
||||
}
|
||||
|
||||
// Accumulate the squared sum of each separate color channel
|
||||
uint_fast32_t cummRed = 0;
|
||||
uint_fast32_t cummGreen = 0;
|
||||
uint_fast32_t cummBlue = 0;
|
||||
|
||||
const auto& imgData = image.memptr();
|
||||
|
||||
for (const int colorOffset : pixels)
|
||||
{
|
||||
const auto& pixel = imgData[colorOffset];
|
||||
|
||||
cummRed += pixel.red * pixel.red;
|
||||
cummGreen += pixel.green * pixel.green;
|
||||
cummBlue += pixel.blue * pixel.blue;
|
||||
}
|
||||
|
||||
// Compute the average of each color channel
|
||||
const uint8_t avgRed = uint8_t(std::min(std::lround(sqrt(static_cast<double>(cummRed/pixelNum))), 255L));
|
||||
const uint8_t avgGreen = uint8_t(std::min(std::lround(sqrt(static_cast<double>(cummGreen/pixelNum))), 255L));
|
||||
const uint8_t avgBlue = uint8_t(std::min(std::lround(sqrt(static_cast<double>(cummBlue/pixelNum))), 255L));
|
||||
|
||||
// Return the computed color
|
||||
return {avgRed, avgGreen, avgBlue};
|
||||
}
|
||||
|
||||
///
|
||||
/// Calculates the 'mean color' squared over the given image. This is the mean over each color-channel
|
||||
/// (red, green, blue)
|
||||
///
|
||||
/// @param[in] image The image a section from which an average color must be computed
|
||||
///
|
||||
/// @return The mean of the given list of colors (or black when empty)
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
ColorRgb calcMeanColorSqrt(const Image<Pixel_T> & image) const
|
||||
{
|
||||
// Accumulate the squared sum of each separate color channel
|
||||
uint_fast32_t cummRed = 0;
|
||||
uint_fast32_t cummGreen = 0;
|
||||
uint_fast32_t cummBlue = 0;
|
||||
|
||||
const unsigned pixelNum = image.width() * image.height();
|
||||
const auto& imgData = image.memptr();
|
||||
|
||||
for (int idx=0; idx<pixelNum; ++idx)
|
||||
{
|
||||
const auto& pixel = imgData[idx];
|
||||
cummRed += pixel.red * pixel.red;
|
||||
cummGreen += pixel.green * pixel.green;
|
||||
cummBlue += pixel.blue * pixel.blue;
|
||||
}
|
||||
|
||||
// Compute the average of each color channel
|
||||
const uint8_t avgRed = uint8_t(std::lround(sqrt(static_cast<double>(cummRed/pixelNum))));
|
||||
const uint8_t avgGreen = uint8_t(std::lround(sqrt(static_cast<double>(cummGreen/pixelNum))));
|
||||
const uint8_t avgBlue = uint8_t(std::lround(sqrt(static_cast<double>(cummBlue/pixelNum))));
|
||||
|
||||
// Return the computed color
|
||||
return {avgRed, avgGreen, avgBlue};
|
||||
}
|
||||
|
||||
///
|
||||
/// Calculates the 'dominant color' of an image area defined by a list of pixel indices
|
||||
///
|
||||
/// @param[in] image The image for which a dominant color is to be computed
|
||||
/// @param[in] pixels The list of pixel indices for the given image to be evaluated
|
||||
///
|
||||
/// @return The image area's dominant color or black, if no pixel indices provided
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
ColorRgb calculateDominantColor(const Image<Pixel_T> & image, const std::vector<int> & pixels) const
|
||||
{
|
||||
ColorRgb dominantColor {ColorRgb::BLACK};
|
||||
|
||||
const auto pixelNum = pixels.size();
|
||||
if (pixelNum > 0)
|
||||
{
|
||||
const auto& imgData = image.memptr();
|
||||
|
||||
QMap<QRgb,int> colorDistributionMap;
|
||||
int count = 0;
|
||||
for (const int pixelOffset : pixels)
|
||||
{
|
||||
QRgb color = imgData[pixelOffset].rgb();
|
||||
if (colorDistributionMap.contains(color)) {
|
||||
colorDistributionMap[color] = colorDistributionMap[color] + 1;
|
||||
}
|
||||
else {
|
||||
colorDistributionMap[color] = 1;
|
||||
}
|
||||
|
||||
int colorsFound = colorDistributionMap[color];
|
||||
if (colorsFound > count) {
|
||||
dominantColor.setRgb(color);
|
||||
count = colorsFound;
|
||||
}
|
||||
}
|
||||
}
|
||||
return dominantColor;
|
||||
}
|
||||
|
||||
///
|
||||
/// Calculates the 'dominant color' of an image
|
||||
///
|
||||
/// @param[in] image The image for which a dominant color is to be computed
|
||||
///
|
||||
/// @return The image's dominant color
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
ColorRgb calculateDominantColor(const Image<Pixel_T> & image) const
|
||||
{
|
||||
const unsigned pixelNum = image.width() * image.height();
|
||||
|
||||
std::vector<int> pixels(pixelNum);
|
||||
std::iota(pixels.begin(), pixels.end(), 0);
|
||||
|
||||
return calculateDominantColor(image, pixels);
|
||||
}
|
||||
|
||||
template <typename Pixel_T>
|
||||
struct ColorCluster {
|
||||
|
||||
ColorCluster():count(0) {}
|
||||
ColorCluster(Pixel_T color):count(0),color(color) {}
|
||||
|
||||
Pixel_T color;
|
||||
Pixel_T newColor;
|
||||
int count;
|
||||
};
|
||||
|
||||
const ColorRgb DEFAULT_CLUSTER_COLORS[5] {
|
||||
{ColorRgb::BLACK},
|
||||
{ColorRgb::GREEN},
|
||||
{ColorRgb::WHITE},
|
||||
{ColorRgb::RED},
|
||||
{ColorRgb::YELLOW}
|
||||
};
|
||||
|
||||
///
|
||||
/// Calculates the 'dominant color' of an image area defined by a list of pixel indices
|
||||
/// using a k-means algorithm (https://robocraft.ru/computervision/1063)
|
||||
///
|
||||
/// @param[in] image The image for which a dominant color is to be computed
|
||||
/// @param[in] pixels The list of pixel indices for the given image to be evaluated
|
||||
///
|
||||
/// @return The image area's dominant color or black, if no pixel indices provided
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
ColorRgb calculateDominantColorAdv(const Image<Pixel_T> & image, const std::vector<int> & pixels) const
|
||||
{
|
||||
ColorRgb dominantColor {ColorRgb::BLACK};
|
||||
const auto pixelNum = pixels.size();
|
||||
if (pixelNum > 0)
|
||||
{
|
||||
// initial cluster with different colors
|
||||
auto clusters = std::unique_ptr< ColorCluster<ColorRgbScalar> >(new ColorCluster<ColorRgbScalar>[_clusterCount]);
|
||||
for(int k = 0; k < _clusterCount; ++k)
|
||||
{
|
||||
clusters.get()[k].newColor = DEFAULT_CLUSTER_COLORS[k];
|
||||
}
|
||||
|
||||
// k-means
|
||||
double min_rgb_euclidean {0};
|
||||
double old_rgb_euclidean {0};
|
||||
|
||||
while(1)
|
||||
{
|
||||
for(int k = 0; k < _clusterCount; ++k)
|
||||
{
|
||||
clusters.get()[k].count = 0;
|
||||
clusters.get()[k].color = clusters.get()[k].newColor;
|
||||
clusters.get()[k].newColor.setRgb(ColorRgb::BLACK);
|
||||
}
|
||||
|
||||
const auto& imgData = image.memptr();
|
||||
for (const int pixelOffset : pixels)
|
||||
{
|
||||
const auto& pixel = imgData[pixelOffset];
|
||||
|
||||
min_rgb_euclidean = 255 * 255 * 255;
|
||||
int clusterIndex = -1;
|
||||
for(int k = 0; k < _clusterCount; ++k)
|
||||
{
|
||||
double euclid = ColorSys::rgb_euclidean(ColorRgbScalar(pixel), clusters.get()[k].color);
|
||||
|
||||
if( euclid < min_rgb_euclidean ) {
|
||||
min_rgb_euclidean = euclid;
|
||||
clusterIndex = k;
|
||||
}
|
||||
}
|
||||
|
||||
clusters.get()[clusterIndex].count++;
|
||||
clusters.get()[clusterIndex].newColor += ColorRgbScalar(pixel);
|
||||
}
|
||||
|
||||
min_rgb_euclidean = 0;
|
||||
for(int k = 0; k < _clusterCount; ++k)
|
||||
{
|
||||
if (clusters.get()[k].count > 0)
|
||||
{
|
||||
// new color
|
||||
clusters.get()[k].newColor /= clusters.get()[k].count;
|
||||
double ecli = ColorSys::rgb_euclidean(clusters.get()[k].newColor, clusters.get()[k].color);
|
||||
if(ecli > min_rgb_euclidean)
|
||||
{
|
||||
min_rgb_euclidean = ecli;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if( fabs(min_rgb_euclidean - old_rgb_euclidean) < 1)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
old_rgb_euclidean = min_rgb_euclidean;
|
||||
}
|
||||
|
||||
int colorsFoundMax = 0;
|
||||
int dominantClusterIdx {0};
|
||||
|
||||
for(int clusterIdx=0; clusterIdx < _clusterCount; ++clusterIdx){
|
||||
int colorsFoundinCluster = clusters.get()[clusterIdx].count;
|
||||
if (colorsFoundinCluster > colorsFoundMax) {
|
||||
colorsFoundMax = colorsFoundinCluster;
|
||||
dominantClusterIdx = clusterIdx;
|
||||
}
|
||||
}
|
||||
|
||||
dominantColor.red = static_cast<uint8_t>(clusters.get()[dominantClusterIdx].newColor.red);
|
||||
dominantColor.green = static_cast<uint8_t>(clusters.get()[dominantClusterIdx].newColor.green);
|
||||
dominantColor.blue = static_cast<uint8_t>(clusters.get()[dominantClusterIdx].newColor.blue);
|
||||
}
|
||||
|
||||
return dominantColor;
|
||||
}
|
||||
|
||||
///
|
||||
/// Calculates the 'dominant color' of an image area defined by a list of pixel indices
|
||||
/// using a k-means algorithm (https://robocraft.ru/computervision/1063)
|
||||
///
|
||||
/// @param[in] image The image for which a dominant color is to be computed
|
||||
///
|
||||
/// @return The image's dominant color
|
||||
///
|
||||
template <typename Pixel_T>
|
||||
ColorRgb calculateDominantColorAdv(const Image<Pixel_T> & image) const
|
||||
{
|
||||
const unsigned pixelNum = image.width() * image.height();
|
||||
|
||||
std::vector<int> pixels(pixelNum);
|
||||
std::iota(pixels.begin(), pixels.end(), 0);
|
||||
|
||||
return calculateDominantColorAdv(image, pixels);
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace hyperion
|
||||
|
||||
#endif // IMAGETOLEDSMAP_H
|
||||
|
@ -6,6 +6,7 @@
|
||||
|
||||
#include <QString>
|
||||
#include <QTextStream>
|
||||
#include <QRgb>
|
||||
|
||||
///
|
||||
/// Plain-Old-Data structure containing the red-green-blue color specification. Size of the
|
||||
@ -52,6 +53,18 @@ struct ColorRgb
|
||||
return a;
|
||||
}
|
||||
|
||||
QRgb rgb() const
|
||||
{
|
||||
return qRgb(red,green,blue);
|
||||
}
|
||||
|
||||
void setRgb(QRgb rgb)
|
||||
{
|
||||
red = static_cast<uint8_t>(qRed(rgb));
|
||||
green = static_cast<uint8_t>(qGreen(rgb));
|
||||
blue = static_cast<uint8_t>(qBlue(rgb));
|
||||
}
|
||||
|
||||
QString toQString() const
|
||||
{
|
||||
return QString("(%1,%2,%3)").arg(red).arg(green).arg(blue);
|
||||
|
203
include/utils/ColorRgbScalar.h
Normal file
203
include/utils/ColorRgbScalar.h
Normal file
@ -0,0 +1,203 @@
|
||||
#ifndef COLORRGBSCALAR_H
|
||||
#define COLORRGBSCALAR_H
|
||||
|
||||
// STL includes
|
||||
#include <cstdint>
|
||||
#include <iostream>
|
||||
|
||||
#include <QString>
|
||||
#include <QTextStream>
|
||||
#include <QRgb>
|
||||
#include <utils/ColorRgb.h>
|
||||
|
||||
///
|
||||
/// Plain-Old-Data structure containing the red-green-blue color specification. Size of the
|
||||
/// structure is exactly 3 times int for easy writing to led-device
|
||||
///
|
||||
struct ColorRgbScalar
|
||||
{
|
||||
/// The red color channel
|
||||
int red;
|
||||
/// The green color channel
|
||||
int green;
|
||||
/// The blue color channel
|
||||
int blue;
|
||||
|
||||
/// 'Black' RgbColor (0, 0, 0)
|
||||
static const ColorRgbScalar BLACK;
|
||||
/// 'Red' RgbColor (255, 0, 0)
|
||||
static const ColorRgbScalar RED;
|
||||
/// 'Green' RgbColor (0, 255, 0)
|
||||
static const ColorRgbScalar GREEN;
|
||||
/// 'Blue' RgbColor (0, 0, 255)
|
||||
static const ColorRgbScalar BLUE;
|
||||
/// 'Yellow' RgbColor (255, 255, 0)
|
||||
static const ColorRgbScalar YELLOW;
|
||||
/// 'White' RgbColor (255, 255, 255)
|
||||
static const ColorRgbScalar WHITE;
|
||||
|
||||
ColorRgbScalar() = default;
|
||||
|
||||
ColorRgbScalar(int _red, int _green,int _blue):
|
||||
red(_red),
|
||||
green(_green),
|
||||
blue(_blue)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
ColorRgbScalar(ColorRgb rgb):
|
||||
red(rgb.red),
|
||||
green(rgb.green),
|
||||
blue(rgb.blue)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
ColorRgbScalar operator-(const ColorRgbScalar& b) const
|
||||
{
|
||||
ColorRgbScalar a(*this);
|
||||
a.red -= b.red;
|
||||
a.green -= b.green;
|
||||
a.blue -= b.blue;
|
||||
return a;
|
||||
}
|
||||
|
||||
void setRgb(QRgb rgb)
|
||||
{
|
||||
red = qRed(rgb);
|
||||
green = qGreen(rgb);
|
||||
blue = qBlue(rgb);
|
||||
}
|
||||
|
||||
void setRgb(ColorRgb rgb)
|
||||
{
|
||||
red = rgb.red;
|
||||
green = rgb.green;
|
||||
blue = rgb.blue;
|
||||
}
|
||||
|
||||
QString toQString() const
|
||||
{
|
||||
return QString("(%1,%2,%3)").arg(red).arg(green).arg(blue);
|
||||
}
|
||||
};
|
||||
/// Assert to ensure that the size of the structure is 'only' 3 times int
|
||||
static_assert(sizeof(ColorRgbScalar) == 3 * sizeof(int), "Incorrect size of ColorRgbInt");
|
||||
|
||||
|
||||
///
|
||||
/// Stream operator to write ColorRgbInt to an outputstream (format "'{'[red]','[green]','[blue]'}'")
|
||||
///
|
||||
/// @param os The output stream
|
||||
/// @param color The color to write
|
||||
/// @return The output stream (with the color written to it)
|
||||
///
|
||||
inline std::ostream& operator<<(std::ostream& os, const ColorRgbScalar& color)
|
||||
{
|
||||
os << "{"
|
||||
<< static_cast<unsigned>(color.red) << ","
|
||||
<< static_cast<unsigned>(color.green) << ","
|
||||
<< static_cast<unsigned>(color.blue)
|
||||
<< "}";
|
||||
|
||||
return os;
|
||||
}
|
||||
|
||||
///
|
||||
/// Stream operator to write ColorRgbInt to a QTextStream (format "'{'[red]','[green]','[blue]'}'")
|
||||
///
|
||||
/// @param os The output stream
|
||||
/// @param color The color to write
|
||||
/// @return The output stream (with the color written to it)
|
||||
///
|
||||
inline QTextStream& operator<<(QTextStream &os, const ColorRgbScalar& color)
|
||||
{
|
||||
os << "{"
|
||||
<< static_cast<unsigned>(color.red) << ","
|
||||
<< static_cast<unsigned>(color.green) << ","
|
||||
<< static_cast<unsigned>(color.blue)
|
||||
<< "}";
|
||||
|
||||
return os;
|
||||
}
|
||||
|
||||
/// Compare operator to check if a color is 'equal' to another color
|
||||
inline bool operator==(const ColorRgbScalar & lhs, const ColorRgbScalar & rhs)
|
||||
{
|
||||
return lhs.red == rhs.red &&
|
||||
lhs.green == rhs.green &&
|
||||
lhs.blue == rhs.blue;
|
||||
}
|
||||
|
||||
/// Compare operator to check if a color is 'smaller' than another color
|
||||
inline bool operator<(const ColorRgbScalar & lhs, const ColorRgbScalar & rhs)
|
||||
{
|
||||
return lhs.red < rhs.red &&
|
||||
lhs.green < rhs.green &&
|
||||
lhs.blue < rhs.blue;
|
||||
}
|
||||
|
||||
/// Compare operator to check if a color is 'not equal' to another color
|
||||
inline bool operator!=(const ColorRgbScalar & lhs, const ColorRgbScalar & rhs)
|
||||
{
|
||||
return !(lhs == rhs);
|
||||
}
|
||||
|
||||
/// Compare operator to check if a color is 'smaller' than or 'equal' to another color
|
||||
inline bool operator<=(const ColorRgbScalar & lhs, const ColorRgbScalar & rhs)
|
||||
{
|
||||
return lhs.red <= rhs.red &&
|
||||
lhs.green <= rhs.green &&
|
||||
lhs.blue <= rhs.blue;
|
||||
}
|
||||
|
||||
/// Compare operator to check if a color is 'greater' to another color
|
||||
inline bool operator>(const ColorRgbScalar & lhs, const ColorRgbScalar & rhs)
|
||||
{
|
||||
return lhs.red > rhs.red &&
|
||||
lhs.green > rhs.green &&
|
||||
lhs.blue > rhs.blue;
|
||||
}
|
||||
|
||||
/// Compare operator to check if a color is 'greater' than or 'equal' to another color
|
||||
inline bool operator>=(const ColorRgbScalar & lhs, const ColorRgbScalar & rhs)
|
||||
{
|
||||
return lhs.red >= rhs.red &&
|
||||
lhs.green >= rhs.green &&
|
||||
lhs.blue >= rhs.blue;
|
||||
}
|
||||
|
||||
inline ColorRgbScalar& operator+=(ColorRgbScalar& lhs, const ColorRgbScalar& rhs)
|
||||
{
|
||||
lhs.red += rhs.red;
|
||||
lhs.green += rhs.green;
|
||||
lhs.blue += rhs.blue;
|
||||
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline ColorRgbScalar operator+(ColorRgbScalar lhs, const ColorRgbScalar rhs)
|
||||
{
|
||||
lhs += rhs;
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline ColorRgbScalar& operator/=(ColorRgbScalar& lhs, int count)
|
||||
{
|
||||
if (count > 0)
|
||||
{
|
||||
lhs.red /= count;
|
||||
lhs.green /= count;
|
||||
lhs.blue /= count;
|
||||
}
|
||||
return lhs;
|
||||
}
|
||||
|
||||
inline ColorRgbScalar operator/(ColorRgbScalar lhs, int count)
|
||||
{
|
||||
lhs /= count;
|
||||
return lhs;
|
||||
}
|
||||
|
||||
#endif // COLORRGBSCALAR_H
|
@ -30,11 +30,11 @@ struct ColorRgba
|
||||
static const ColorRgba WHITE;
|
||||
};
|
||||
|
||||
/// Assert to ensure that the size of the structure is 'only' 3 bytes
|
||||
/// Assert to ensure that the size of the structure is 'only' 4 bytes
|
||||
static_assert(sizeof(ColorRgba) == 4, "Incorrect size of ColorARGB");
|
||||
|
||||
///
|
||||
/// Stream operator to write ColorRgb to an outputstream (format "'{'[alpha]', '[red]','[green]','[blue]'}'")
|
||||
/// Stream operator to write ColorRgba to an outputstream (format "'{'[alpha]', '[red]','[green]','[blue]'}'")
|
||||
///
|
||||
/// @param os The output stream
|
||||
/// @param color The color to write
|
||||
|
@ -105,6 +105,19 @@ public:
|
||||
/// @note See https://bottosson.github.io/posts/colorpicker/#okhsv
|
||||
///
|
||||
static void okhsv2rgb(double hue, double saturation, double value, uint8_t & red, uint8_t & green, uint8_t & blue);
|
||||
|
||||
template <typename Pixel_T>
|
||||
static double rgb_euclidean(Pixel_T p1, Pixel_T p2)
|
||||
{
|
||||
double val = sqrt(
|
||||
(p1.red - p2.red) * (p1.red - p2.red) +
|
||||
(p1.green - p2.green) * (p1.green - p2.green) +
|
||||
(p1.blue - p2.blue) * (p1.blue - p2.blue)
|
||||
);
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#endif // COLORSYS_H
|
||||
|
@ -12,7 +12,7 @@
|
||||
},
|
||||
"mappingType": {
|
||||
"type" : "string",
|
||||
"enum" : ["multicolor_mean", "unicolor_mean"]
|
||||
"enum" : ["multicolor_mean", "unicolor_mean", "multicolor_mean_squared", "dominant_color", "dominant_color_advanced"]
|
||||
}
|
||||
},
|
||||
"additionalProperties": false
|
||||
|
@ -74,9 +74,6 @@ void VideoWrapper::handleSettingsUpdate(settings::type type, const QJsonDocument
|
||||
// Device resolution
|
||||
_grabber.setWidthHeight(obj["width"].toInt(0), obj["height"].toInt(0));
|
||||
|
||||
// Device framerate
|
||||
_grabber.setFramerate(obj["fps"].toInt(15));
|
||||
|
||||
// Device encoding format
|
||||
_grabber.setEncoding(obj["encoding"].toString("NO_CHANGE"));
|
||||
|
||||
@ -124,6 +121,11 @@ void VideoWrapper::handleSettingsUpdate(settings::type type, const QJsonDocument
|
||||
obj["blueSignalThreshold"].toDouble(0.0)/100.0,
|
||||
obj["noSignalCounterThreshold"].toInt(50));
|
||||
|
||||
// Device framerate
|
||||
_grabber.setFramerate(obj["fps"].toInt(15));
|
||||
|
||||
updateTimer(_ggrabber->getUpdateInterval());
|
||||
|
||||
// Reload the Grabber if any settings have been changed that require it
|
||||
_grabber.reload(getV4lGrabberState());
|
||||
}
|
||||
|
@ -149,6 +149,8 @@ bool Grabber::setWidthHeight(int width, int height)
|
||||
|
||||
bool Grabber::setFramerate(int fps)
|
||||
{
|
||||
Debug(_log,"Set new frames per second to: %i fps, current fps: %i", fps, _fps);
|
||||
|
||||
if((fps > 0) && (_fps != fps))
|
||||
{
|
||||
Info(_log,"Set new frames per second to: %i fps", fps);
|
||||
|
@ -186,7 +186,8 @@ void GrabberWrapper::updateTimer(int interval)
|
||||
}
|
||||
|
||||
void GrabberWrapper::handleSettingsUpdate(settings::type type, const QJsonDocument& config)
|
||||
{ if(type == settings::SYSTEMCAPTURE && !_grabberName.startsWith("V4L"))
|
||||
{
|
||||
if(type == settings::SYSTEMCAPTURE && !_grabberName.startsWith("V4L"))
|
||||
{
|
||||
// extract settings
|
||||
const QJsonObject& obj = config.object();
|
||||
|
@ -4,26 +4,83 @@
|
||||
#include <hyperion/ImageProcessor.h>
|
||||
#include <hyperion/ImageToLedsMap.h>
|
||||
|
||||
// Blacborder includes
|
||||
// Blackborder includes
|
||||
#include <blackborder/BlackBorderProcessor.h>
|
||||
|
||||
#include <QSharedPointer>
|
||||
#include <QRgb>
|
||||
|
||||
using namespace hyperion;
|
||||
|
||||
void ImageProcessor::registerProcessingUnit(
|
||||
int width,
|
||||
int height,
|
||||
int horizontalBorder,
|
||||
int verticalBorder)
|
||||
{
|
||||
if (width > 0 && height > 0)
|
||||
{
|
||||
_imageToLedColors = QSharedPointer<ImageToLedsMap>(new ImageToLedsMap(
|
||||
_log,
|
||||
width,
|
||||
height,
|
||||
horizontalBorder,
|
||||
verticalBorder,
|
||||
_ledString.leds(),
|
||||
_reducedPixelSetFactorFactor,
|
||||
_accuraryLevel
|
||||
));
|
||||
}
|
||||
else
|
||||
{
|
||||
_imageToLedColors = QSharedPointer<ImageToLedsMap>(nullptr);
|
||||
}
|
||||
}
|
||||
|
||||
// global transform method
|
||||
int ImageProcessor::mappingTypeToInt(const QString& mappingType)
|
||||
{
|
||||
if (mappingType == "unicolor_mean" )
|
||||
{
|
||||
return 1;
|
||||
|
||||
}
|
||||
else if (mappingType == "multicolor_mean_squared" )
|
||||
{
|
||||
return 2;
|
||||
}
|
||||
else if (mappingType == "dominant_color" )
|
||||
{
|
||||
return 3;
|
||||
}
|
||||
else if (mappingType == "dominant_color_advanced" )
|
||||
{
|
||||
return 4;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
// global transform method
|
||||
QString ImageProcessor::mappingTypeToStr(int mappingType)
|
||||
{
|
||||
if (mappingType == 1 )
|
||||
return "unicolor_mean";
|
||||
QString typeText;
|
||||
switch (mappingType) {
|
||||
case 1:
|
||||
typeText = "unicolor_mean";
|
||||
break;
|
||||
case 2:
|
||||
typeText = "multicolor_mean_squared";
|
||||
break;
|
||||
case 3:
|
||||
typeText = "dominant_color";
|
||||
break;
|
||||
case 4:
|
||||
typeText = "dominant_color_advanced";
|
||||
break;
|
||||
default:
|
||||
typeText = "multicolor_mean";
|
||||
break;
|
||||
}
|
||||
|
||||
return "multicolor_mean";
|
||||
return typeText;
|
||||
}
|
||||
|
||||
ImageProcessor::ImageProcessor(const LedString& ledString, Hyperion* hyperion)
|
||||
@ -31,10 +88,12 @@ ImageProcessor::ImageProcessor(const LedString& ledString, Hyperion* hyperion)
|
||||
, _log(nullptr)
|
||||
, _ledString(ledString)
|
||||
, _borderProcessor(new BlackBorderProcessor(hyperion, this))
|
||||
, _imageToLeds(nullptr)
|
||||
, _imageToLedColors(nullptr)
|
||||
, _mappingType(0)
|
||||
, _userMappingType(0)
|
||||
, _hardMappingType(0)
|
||||
, _hardMappingType(-1)
|
||||
, _accuraryLevel(0)
|
||||
, _reducedPixelSetFactorFactor(1)
|
||||
, _hyperion(hyperion)
|
||||
{
|
||||
QString subComponent = hyperion->property("instance").toString();
|
||||
@ -48,7 +107,6 @@ ImageProcessor::ImageProcessor(const LedString& ledString, Hyperion* hyperion)
|
||||
|
||||
ImageProcessor::~ImageProcessor()
|
||||
{
|
||||
delete _imageToLeds;
|
||||
}
|
||||
|
||||
void ImageProcessor::handleSettingsUpdate(settings::type type, const QJsonDocument& config)
|
||||
@ -61,39 +119,40 @@ void ImageProcessor::handleSettingsUpdate(settings::type type, const QJsonDocume
|
||||
{
|
||||
setLedMappingType(newType);
|
||||
}
|
||||
|
||||
int reducedPixelSetFactorFactor = obj["reducedPixelSetFactorFactor"].toString().toInt();
|
||||
setReducedPixelSetFactorFactor(reducedPixelSetFactorFactor);
|
||||
|
||||
int accuracyLevel = obj["accuracyLevel"].toInt();
|
||||
setAccuracyLevel(accuracyLevel);
|
||||
}
|
||||
}
|
||||
|
||||
void ImageProcessor::setSize(unsigned width, unsigned height)
|
||||
void ImageProcessor::setSize(int width, int height)
|
||||
{
|
||||
// Check if the existing buffer-image is already the correct dimensions
|
||||
if (_imageToLeds && _imageToLeds->width() == width && _imageToLeds->height() == height)
|
||||
if (!_imageToLedColors.isNull() && _imageToLedColors->width() == width && _imageToLedColors->height() == height)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
// Clean up the old buffer and mapping
|
||||
delete _imageToLeds;
|
||||
|
||||
// Construct a new buffer and mapping
|
||||
_imageToLeds = (width>0 && height>0) ? (new ImageToLedsMap(width, height, 0, 0, _ledString.leds())) : nullptr;
|
||||
registerProcessingUnit(width, height, 0, 0);
|
||||
}
|
||||
|
||||
void ImageProcessor::setLedString(const LedString& ledString)
|
||||
{
|
||||
if ( _imageToLeds != nullptr)
|
||||
Debug(_log,"");
|
||||
if ( !_imageToLedColors.isNull() )
|
||||
{
|
||||
_ledString = ledString;
|
||||
|
||||
// get current width/height
|
||||
unsigned width = _imageToLeds->width();
|
||||
unsigned height = _imageToLeds->height();
|
||||
|
||||
// Clean up the old buffer and mapping
|
||||
delete _imageToLeds;
|
||||
int width = _imageToLedColors->width();
|
||||
int height = _imageToLedColors->height();
|
||||
|
||||
// Construct a new buffer and mapping
|
||||
_imageToLeds = new ImageToLedsMap(width, height, 0, 0, _ledString.leds());
|
||||
registerProcessingUnit(width, height, 0, 0);
|
||||
}
|
||||
}
|
||||
|
||||
@ -107,15 +166,55 @@ bool ImageProcessor::blackBorderDetectorEnabled() const
|
||||
return _borderProcessor->enabled();
|
||||
}
|
||||
|
||||
void ImageProcessor::setReducedPixelSetFactorFactor(int count)
|
||||
{
|
||||
int currentReducedPixelSetFactor= _reducedPixelSetFactorFactor;
|
||||
|
||||
_reducedPixelSetFactorFactor = count;
|
||||
Debug(_log, "Set reduced pixel set factor to %d", _reducedPixelSetFactorFactor);
|
||||
|
||||
if (currentReducedPixelSetFactor != _reducedPixelSetFactorFactor && !_imageToLedColors.isNull())
|
||||
{
|
||||
int width = _imageToLedColors->width();
|
||||
int height = _imageToLedColors->height();
|
||||
|
||||
// Construct a new buffer and mapping
|
||||
registerProcessingUnit(width, height, 0, 0);
|
||||
}
|
||||
}
|
||||
|
||||
void ImageProcessor::setAccuracyLevel(int level)
|
||||
{
|
||||
_accuraryLevel = level;
|
||||
Debug(_log, "Set processing accuracy level to %d", _accuraryLevel);
|
||||
|
||||
if (!_imageToLedColors.isNull())
|
||||
{
|
||||
_imageToLedColors->setAccuracyLevel(_accuraryLevel);
|
||||
}
|
||||
}
|
||||
|
||||
void ImageProcessor::setLedMappingType(int mapType)
|
||||
{
|
||||
int currentMappingType = _mappingType;
|
||||
|
||||
// if the _hardMappingType is >-1 we aren't allowed to overwrite it
|
||||
_userMappingType = mapType;
|
||||
Debug(_log, "set user led mapping to %s", QSTRING_CSTR(mappingTypeToStr(mapType)));
|
||||
|
||||
Debug(_log, "Set user LED mapping to %s", QSTRING_CSTR(mappingTypeToStr(mapType)));
|
||||
|
||||
if(_hardMappingType == -1)
|
||||
{
|
||||
_mappingType = mapType;
|
||||
}
|
||||
|
||||
if (currentMappingType != _mappingType && !_imageToLedColors.isNull())
|
||||
{
|
||||
int width = _imageToLedColors->width();
|
||||
int height = _imageToLedColors->height();
|
||||
|
||||
registerProcessingUnit(width, height, 0, 0);
|
||||
}
|
||||
}
|
||||
|
||||
void ImageProcessor::setHardLedMappingType(int mapType)
|
||||
|
@ -3,17 +3,26 @@
|
||||
using namespace hyperion;
|
||||
|
||||
ImageToLedsMap::ImageToLedsMap(
|
||||
unsigned width,
|
||||
unsigned height,
|
||||
unsigned horizontalBorder,
|
||||
unsigned verticalBorder,
|
||||
const std::vector<Led>& leds)
|
||||
: _width(width)
|
||||
Logger* log,
|
||||
int width,
|
||||
int height,
|
||||
int horizontalBorder,
|
||||
int verticalBorder,
|
||||
const std::vector<Led>& leds,
|
||||
int reducedPixelSetFactor,
|
||||
int accuracyLevel)
|
||||
: _log(log)
|
||||
, _width(width)
|
||||
, _height(height)
|
||||
, _horizontalBorder(horizontalBorder)
|
||||
, _verticalBorder(verticalBorder)
|
||||
, _nextPixelCount(reducedPixelSetFactor)
|
||||
, _clusterCount()
|
||||
, _colorsMap()
|
||||
{
|
||||
_nextPixelCount = reducedPixelSetFactor + 1;
|
||||
setAccuracyLevel(accuracyLevel);
|
||||
|
||||
// Sanity check of the size of the borders (and width and height)
|
||||
Q_ASSERT(_width > 2*_verticalBorder);
|
||||
Q_ASSERT(_height > 2*_horizontalBorder);
|
||||
@ -23,10 +32,14 @@ ImageToLedsMap::ImageToLedsMap(
|
||||
// Reserve enough space in the map for the leds
|
||||
_colorsMap.reserve(leds.size());
|
||||
|
||||
const unsigned xOffset = _verticalBorder;
|
||||
const unsigned actualWidth = _width - 2 * _verticalBorder;
|
||||
const unsigned yOffset = _horizontalBorder;
|
||||
const unsigned actualHeight = _height - 2 * _horizontalBorder;
|
||||
const int xOffset = _verticalBorder;
|
||||
const int actualWidth = _width - 2 * _verticalBorder;
|
||||
const int yOffset = _horizontalBorder;
|
||||
const int actualHeight = _height - 2 * _horizontalBorder;
|
||||
|
||||
size_t totalCount = 0;
|
||||
size_t totalCapacity = 0;
|
||||
int ledCounter = 0;
|
||||
|
||||
for (const Led& led : leds)
|
||||
{
|
||||
@ -38,10 +51,10 @@ ImageToLedsMap::ImageToLedsMap(
|
||||
}
|
||||
|
||||
// Compute the index boundaries for this led
|
||||
unsigned minX_idx = xOffset + unsigned(qRound(actualWidth * led.minX_frac));
|
||||
unsigned maxX_idx = xOffset + unsigned(qRound(actualWidth * led.maxX_frac));
|
||||
unsigned minY_idx = yOffset + unsigned(qRound(actualHeight * led.minY_frac));
|
||||
unsigned maxY_idx = yOffset + unsigned(qRound(actualHeight * led.maxY_frac));
|
||||
int minX_idx = xOffset + int32_t(qRound(actualWidth * led.minX_frac));
|
||||
int maxX_idx = xOffset + int32_t(qRound(actualWidth * led.maxX_frac));
|
||||
int minY_idx = yOffset + int32_t(qRound(actualHeight * led.minY_frac));
|
||||
int maxY_idx = yOffset + int32_t(qRound(actualHeight * led.maxY_frac));
|
||||
|
||||
// make sure that the area is at least a single led large
|
||||
minX_idx = qMin(minX_idx, xOffset + actualWidth - 1);
|
||||
@ -56,31 +69,70 @@ ImageToLedsMap::ImageToLedsMap(
|
||||
}
|
||||
|
||||
// Add all the indices in the above defined rectangle to the indices for this led
|
||||
const auto maxYLedCount = qMin(maxY_idx, yOffset+actualHeight);
|
||||
const auto maxXLedCount = qMin(maxX_idx, xOffset+actualWidth);
|
||||
const int maxYLedCount = qMin(maxY_idx, yOffset+actualHeight);
|
||||
const int maxXLedCount = qMin(maxX_idx, xOffset+actualWidth);
|
||||
|
||||
std::vector<int32_t> ledColors;
|
||||
ledColors.reserve((size_t) maxXLedCount*maxYLedCount);
|
||||
const int realYLedCount = qAbs(maxYLedCount - minY_idx);
|
||||
const int realXLedCount = qAbs(maxXLedCount - minX_idx);
|
||||
|
||||
for (unsigned y = minY_idx; y < maxYLedCount; ++y)
|
||||
bool skipPixelProcessing {false};
|
||||
if (_nextPixelCount > 1)
|
||||
{
|
||||
for (unsigned x = minX_idx; x < maxXLedCount; ++x)
|
||||
skipPixelProcessing = true;
|
||||
}
|
||||
|
||||
size_t totalSize = static_cast<size_t>(realYLedCount * realXLedCount);
|
||||
|
||||
if (!skipPixelProcessing && totalSize > 1600)
|
||||
{
|
||||
skipPixelProcessing = true;
|
||||
_nextPixelCount = 2;
|
||||
Warning(_log, "Mapping LED/light [%d]. The current mapping area contains %d pixels which is huge. Therefore every %d pixels will be skipped. You can enable reduced processing to hide that warning.", ledCounter, totalSize, _nextPixelCount);
|
||||
}
|
||||
|
||||
std::vector<int> ledColors;
|
||||
ledColors.reserve(totalSize);
|
||||
|
||||
for (int y = minY_idx; y < maxYLedCount; y += _nextPixelCount)
|
||||
{
|
||||
for (int x = minX_idx; x < maxXLedCount; x += _nextPixelCount)
|
||||
{
|
||||
ledColors.push_back(y*width + x);
|
||||
ledColors.push_back( y * width + x);
|
||||
}
|
||||
}
|
||||
|
||||
// Add the constructed vector to the map
|
||||
_colorsMap.push_back(ledColors);
|
||||
|
||||
totalCount += ledColors.size();
|
||||
totalCapacity += ledColors.capacity();
|
||||
|
||||
ledCounter++;
|
||||
}
|
||||
Debug(_log, "Total index number is: %d (memory: %d). Reduced pixel set factor: %d, Accuracy level: %d, Image size: %d x %d, LED areas: %d",
|
||||
totalCount, totalCapacity, reducedPixelSetFactor, accuracyLevel, width, height, leds.size());
|
||||
|
||||
}
|
||||
|
||||
unsigned ImageToLedsMap::width() const
|
||||
int ImageToLedsMap::width() const
|
||||
{
|
||||
return _width;
|
||||
}
|
||||
|
||||
unsigned ImageToLedsMap::height() const
|
||||
int ImageToLedsMap::height() const
|
||||
{
|
||||
return _height;
|
||||
}
|
||||
|
||||
void ImageToLedsMap::setAccuracyLevel (int accuracyLevel)
|
||||
{
|
||||
if (accuracyLevel > 4 )
|
||||
{
|
||||
Warning(_log, "Accuracy level %d is too high, it will be set to 4", accuracyLevel);
|
||||
accuracyLevel = 4;
|
||||
}
|
||||
//Set cluster number for dominant color advanced
|
||||
_clusterCount = accuracyLevel + 1;
|
||||
|
||||
}
|
||||
|
||||
|
@ -9,20 +9,44 @@
|
||||
"type" : "string",
|
||||
"required" : true,
|
||||
"title" : "edt_conf_color_imageToLedMappingType_title",
|
||||
"enum" : ["multicolor_mean", "unicolor_mean"],
|
||||
"enum" : ["multicolor_mean", "unicolor_mean", "multicolor_mean_squared", "dominant_color", "dominant_color_advanced"],
|
||||
"default" : "multicolor_mean",
|
||||
"options" : {
|
||||
"enum_titles" : ["edt_conf_enum_multicolor_mean", "edt_conf_enum_unicolor_mean"]
|
||||
"enum_titles" : ["edt_conf_enum_multicolor_mean", "edt_conf_enum_unicolor_mean", "edt_conf_enum_multicolor_mean_squared", "edt_conf_enum_dominant_color", "edt_conf_enum_dominant_color_advanced"]
|
||||
},
|
||||
"propertyOrder" : 1
|
||||
},
|
||||
"accuracyLevel": {
|
||||
"type": "integer",
|
||||
"title": "edt_conf_color_accuracyLevel_title",
|
||||
"minimum": 1,
|
||||
"maximum": 4,
|
||||
"default": 2,
|
||||
"propertyOrder": 2,
|
||||
"options": {
|
||||
"dependencies": {
|
||||
"imageToLedMappingType": "dominant_color_advanced"
|
||||
}
|
||||
}
|
||||
},
|
||||
"reducedPixelSetFactorFactor": {
|
||||
"type": "string",
|
||||
"title": "edt_conf_color_reducedPixelSetFactorFactor_title",
|
||||
"default": 0,
|
||||
"enum" : ["0", "1", "2", "3"],
|
||||
"default" : "0",
|
||||
"options" : {
|
||||
"enum_titles" : ["edt_conf_enum_disabled", "edt_conf_enum_low", "edt_conf_enum_medium", "edt_conf_enum_high"]
|
||||
},
|
||||
"propertyOrder": 3
|
||||
},
|
||||
"channelAdjustment" :
|
||||
{
|
||||
"type" : "array",
|
||||
"title" : "edt_conf_color_channelAdjustment_header_title",
|
||||
"minItems": 1,
|
||||
"required" : true,
|
||||
"propertyOrder" : 3,
|
||||
"propertyOrder" : 4,
|
||||
"items" :
|
||||
{
|
||||
"type" : "object",
|
||||
|
@ -2,6 +2,7 @@
|
||||
// Utils includes
|
||||
#include <utils/Image.h>
|
||||
#include <utils/jsonschema/QJsonFactory.h>
|
||||
#include <utils/Logger.h>
|
||||
|
||||
// Hyperion includes
|
||||
#include <utils/hyperion.h>
|
||||
@ -9,6 +10,9 @@
|
||||
|
||||
int main()
|
||||
{
|
||||
Logger* log = Logger::getInstance("TestImageLedsMap");
|
||||
Logger::setLogLevel(Logger::DEBUG);
|
||||
|
||||
const QString schemaFile = ":/hyperion-schema";
|
||||
const QString configFile = ":/hyperion_default.config";
|
||||
|
||||
@ -25,7 +29,7 @@ int main()
|
||||
const ColorRgb testColor = {64, 123, 12};
|
||||
|
||||
Image<ColorRgb> image(64, 64, testColor);
|
||||
hyperion::ImageToLedsMap map(64, 64, 0, 0, ledString.leds());
|
||||
hyperion::ImageToLedsMap map(log, 64, 64, 0, 0, ledString.leds());
|
||||
|
||||
std::vector<ColorRgb> ledColors(ledString.leds().size());
|
||||
map.getMeanLedColor(image, ledColors);
|
||||
|
Loading…
x
Reference in New Issue
Block a user