Merge remote-tracking branch 'upstream/master' into temperture

This commit is contained in:
LordGrey
2023-02-20 08:46:18 +01:00
182 changed files with 6996 additions and 1787 deletions

View File

@@ -157,12 +157,7 @@ protected:
///
bool setHyperionInstance(quint8 inst);
///
/// @brief Get all contrable components and their state
///
std::map<hyperion::Components, bool> getAllComponents();
///
///
/// @brief Check if Hyperion ist enabled
/// @return True when enabled else false
///

View File

@@ -1,4 +1,3 @@
//#include <iostream>
#pragma once
// Utils includes
@@ -219,7 +218,6 @@ namespace hyperion
|| !isBlack(image((width - x), y))
|| !isBlack(image((width - x), (height - y))))
{
// std::cout << "y " << y << " lt " << int(isBlack(color1)) << " lb " << int(isBlack(color2)) << " rt " << int(isBlack(color3)) << " rb " << int(isBlack(color4)) << std::endl;
firstNonBlackYPixelIndex = y;
break;
}

View File

@@ -111,7 +111,7 @@ public:
// server port services
list << "jsonServer" << "protoServer" << "flatbufServer" << "forwarder" << "webConfig" << "network"
// capture
<< "framegrabber" << "grabberV4L2"
<< "framegrabber" << "grabberV4L2" << "grabberAudio"
// other
<< "logger" << "general";

View File

@@ -0,0 +1,196 @@
#ifndef AUDIOGRABBER_H
#define AUDIOGRABBER_H
#include <QObject>
#include <QColor>
#include <cmath>
// Hyperion-utils includes
#include <utils/ColorRgb.h>
#include <hyperion/Grabber.h>
#include <utils/Logger.h>
///
/// Base Audio Grabber Class
///
/// This class is extended by the windows audio grabber to provied DirectX9 access to the audio devices
/// This class is extended by the linux audio grabber to provide ALSA access to the audio devices
///
/// @brief The DirectX9 capture implementation
///
class AudioGrabber : public Grabber
{
Q_OBJECT
public:
///
/// Device properties
///
/// this structure holds the name, id, and inputs of the enumerated audio devices.
///
struct DeviceProperties
{
QString name = QString();
QString id = QString();
QMultiMap<QString, int> inputs = QMultiMap<QString, int>();
};
AudioGrabber();
~AudioGrabber() override;
///
/// Start audio capturing session
///
/// @returns true if successful
virtual bool start();
///
/// Stop audio capturing session
///
virtual void stop();
///
/// Restart the audio capturing session
///
void restart();
Logger* getLog();
///
/// Set Device
///
/// configures the audio device used by the grabber
///
/// @param[in] device identifier of audio device
void setDevice(const QString& device);
///
/// Set Configuration
///
/// sets the audio grabber's configuration parameters
///
/// @param[in] config object of configuration parameters
void setConfiguration(const QJsonObject& config);
///
/// Reset Multiplier
///
/// resets the calcualted audio multiplier so that it is recalculated
/// currently the multiplier is only reduced based on loudness.
///
/// TODO: also calculate a low signal and reset the multiplier
///
void resetMultiplier();
///
/// Discover
///
/// discovers audio devices in the system
///
/// @param[in] params discover parameters
/// @return array of audio devices
virtual QJsonArray discover(const QJsonObject& params);
signals:
void newFrame(const Image<ColorRgb>& image);
protected:
///
/// Process Audio Frame
///
/// this functions takes in an audio buffer and emits a visual representation of the audio data
///
/// @param[in] buffer The audio buffer to process
/// @param[in] length The length of audio data in the buffer
void processAudioFrame(int16_t* buffer, int length);
///
/// Audio device id / properties map
///
/// properties include information such as name, inputs, and etc...
///
QMap<QString, AudioGrabber::DeviceProperties> _deviceProperties;
///
/// Current device
///
QString _device;
///
/// Hot Color
///
/// the color of the leds when the signal is high or hot
///
QColor _hotColor;
///
/// Warn value
///
/// The maximum value of the warning color. above this threshold the signal is considered hot
///
int _warnValue;
///
/// Warn color
///
/// the color of the leds when the signal is in between the safe and warn value threshold
///
QColor _warnColor;
///
/// Save value
///
/// The maximum value of the safe color. above this threshold the signal enteres the warn zone.
/// below the signal is in the safe zone.
///
int _safeValue;
///
/// Safe color
///
/// the color of the leds when the signal is below the safe threshold
///
QColor _safeColor;
///
/// Multiplier
///
/// this value is used to multiply the input signal value. Some inputs may have a very low signal
/// and the multiplier is used to get the desired visualization.
///
/// When the multiplier is configured to 0, the multiplier is automatically configured based off of the average
/// signal amplitude and tolernace.
///
double _multiplier;
///
/// Tolerance
///
/// The tolerance is used to calculate what percentage of the top end part of the signal to ignore when
/// calculating the multiplier. This enables the effect to reach the hot zone with an auto configured multiplier
///
int _tolerance;
///
/// Dynamic Multiplier
///
/// This is the current value of the automatically configured multiplier.
///
double _dynamicMultiplier;
///
/// Started
///
/// true if the capturing session has started.
///
bool _started;
private:
///
/// @brief free the _screen pointer
///
void freeResources();
};
#endif // AUDIOGRABBER_H

View File

@@ -0,0 +1,91 @@
#ifndef AUDIOGRABBERLINUX_H
#define AUDIOGRABBERLINUX_H
#include <pthread.h>
#include <sched.h>
#include <alsa/asoundlib.h>
// Hyperion-utils includes
#include <grabber/AudioGrabber.h>
///
/// @brief The Linux Audio capture implementation
///
class AudioGrabberLinux : public AudioGrabber
{
public:
AudioGrabberLinux();
~AudioGrabberLinux() override;
///
/// Process audio buffer
///
void processAudioBuffer(snd_pcm_sframes_t frames);
///
/// Is Running Flag
///
std::atomic<bool> _isRunning;
///
/// Current capture device
///
snd_pcm_t * _captureDevice;
public slots:
///
/// Start audio capturing session
///
/// @returns true if successful
bool start() override;
///
/// Stop audio capturing session
///
void stop() override;
///
/// Discovery audio devices
///
QJsonArray discover(const QJsonObject& params) override;
private:
///
/// Refresh audio devices
///
void refreshDevices();
///
/// Configure current audio capture interface
///
bool configureCaptureInterface();
///
/// Get device name from path
///
QString getDeviceName(const QString& devicePath) const;
///
/// Current sample rate
///
unsigned int _sampleRate;
///
/// Audio capture thread
///
pthread_t _audioThread;
///
/// ALSA device configuration parameters
///
snd_pcm_hw_params_t * _captureDeviceConfig;
};
///
/// Audio processing thread function
///
static void* AudioThreadRunner(void* params);
#endif // AUDIOGRABBERLINUX_H

View File

@@ -0,0 +1,81 @@
#ifndef AUDIOGRABBERWINDOWS_H
#define AUDIOGRABBERWINDOWS_H
// Hyperion-utils includes
#include <grabber/AudioGrabber.h>
#include <DSound.h>
///
/// @brief The Windows Audio capture implementation
///
class AudioGrabberWindows : public AudioGrabber
{
public:
AudioGrabberWindows();
~AudioGrabberWindows() override;
public slots:
bool start() override;
void stop() override;
QJsonArray discover(const QJsonObject& params) override;
private:
void refreshDevices();
bool configureCaptureInterface();
QString getDeviceName(const QString& devicePath) const;
void processAudioBuffer();
LPDIRECTSOUNDCAPTURE8 recordingDevice;
LPDIRECTSOUNDCAPTUREBUFFER8 recordingBuffer;
HANDLE audioThread;
DWORD bufferCapturePosition;
DWORD bufferCaptureSize;
DWORD notificationSize;
static DWORD WINAPI AudioThreadRunner(LPVOID param);
HANDLE notificationEvent;
std::atomic<bool> isRunning{ false };
static BOOL CALLBACK DirectSoundEnumProcessor(LPGUID deviceIdGuid, LPCTSTR deviceDescStr,
LPCTSTR deviceModelStr, LPVOID context)
{
// Skip undefined audio devices
if (deviceIdGuid == NULL)
return TRUE;
QMap<QString, AudioGrabber::DeviceProperties>* devices = (QMap<QString, AudioGrabber::DeviceProperties>*)context;
AudioGrabber::DeviceProperties device;
// Process Device ID
LPOLESTR deviceIdStr;
HRESULT res = StringFromCLSID(*deviceIdGuid, &deviceIdStr);
if (FAILED(res))
{
Error(Logger::getInstance("AUDIOGRABBER"), "Failed to get CLSID-string for %s with error: 0x%08x: %s", deviceDescStr, res, std::system_category().message(res).c_str());
return FALSE;
}
QString deviceId = QString::fromWCharArray(deviceIdStr);
CoTaskMemFree(deviceIdStr);
// Process Device Information
QString deviceName = QString::fromLocal8Bit(deviceDescStr);
Debug(Logger::getInstance("AUDIOGRABBER"), "Found Audio Device: %s", deviceDescStr);
device.id = deviceId;
device.name = deviceName;
devices->insert(deviceId, device);
return TRUE;
}
};
#endif // AUDIOGRABBERWINDOWS_H

View File

@@ -0,0 +1,69 @@
#pragma once
#include <hyperion/GrabberWrapper.h>
#ifdef WIN32
#include <grabber/AudioGrabberWindows.h>
#endif
#ifdef __linux__
#include <grabber/AudioGrabberLinux.h>
#endif
///
/// Audio Grabber wrapper
///
class AudioWrapper : public GrabberWrapper
{
public:
// The AudioWrapper has no params...
///
/// Constructs the Audio grabber with a specified grab size and update rate.
///
/// @param[in] device Audio Device Identifier
/// @param[in] updateRate_Hz The audio grab rate [Hz]
///
AudioWrapper();
///
/// Destructor of this Audio grabber. Releases any claimed resources.
///
~AudioWrapper() override;
///
/// Settings update handler
///
void handleSettingsUpdate(settings::type type, const QJsonDocument& config) override;
public slots:
///
/// Performs a single frame grab and computes the led-colors
///
void action() override;
///
/// Start audio capturing session
///
/// @returns true if successful
bool start() override;
///
/// Stop audio capturing session
///
void stop() override;
private:
void newFrame(const Image<ColorRgb>& image);
/// The actual grabber
#ifdef WIN32
AudioGrabberWindows _grabber;
#endif
#ifdef __linux__
AudioGrabberLinux _grabber;
#endif
};

View File

@@ -4,12 +4,14 @@
enum class GrabberType {
SCREEN,
VIDEO,
AUDIO,
};
enum class GrabberTypeFilter {
ALL,
SCREEN,
VIDEO,
AUDIO,
};
#endif // GRABBERTYPE_H

View File

@@ -20,6 +20,7 @@ public:
void setSystemCaptureEnable(bool enable);
void setV4LCaptureEnable(bool enable);
void setAudioCaptureEnable(bool enable);
private slots:
///
@@ -48,11 +49,22 @@ private slots:
///
void handleV4lImage(const QString& name, const Image<ColorRgb> & image);
///
/// @brief forward audio image
/// @param image The image
///
void handleAudioImage(const QString& name, const Image<ColorRgb>& image);
///
/// @brief Is called from _v4lInactiveTimer to set source after specific time to inactive
///
void setV4lInactive();
///
/// @brief Is called from _audioInactiveTimer to set source after specific time to inactive
///
void setAudioInactive();
///
/// @brief Is called from _systemInactiveTimer to set source after specific time to inactive
///
@@ -73,4 +85,10 @@ private:
quint8 _v4lCaptPrio;
QString _v4lCaptName;
QTimer* _v4lInactiveTimer;
/// Reflect state of audio capture and prio
bool _audioCaptEnabled;
quint8 _audioCaptPrio;
QString _audioCaptName;
QTimer* _audioInactiveTimer;
};

View File

@@ -43,8 +43,10 @@ public:
static QMap<int, QString> GRABBER_SYS_CLIENTS;
static QMap<int, QString> GRABBER_V4L_CLIENTS;
static QMap<int, QString> GRABBER_AUDIO_CLIENTS;
static bool GLOBAL_GRABBER_SYS_ENABLE;
static bool GLOBAL_GRABBER_V4L_ENABLE;
static bool GLOBAL_GRABBER_AUDIO_ENABLE;
///
/// Starts the grabber which produces led values with the specified update rate
@@ -78,6 +80,8 @@ public:
void setSysGrabberState(bool sysGrabberState){ GLOBAL_GRABBER_SYS_ENABLE = sysGrabberState; }
bool getV4lGrabberState() const { return GLOBAL_GRABBER_V4L_ENABLE; }
void setV4lGrabberState(bool v4lGrabberState){ GLOBAL_GRABBER_V4L_ENABLE = v4lGrabberState; }
bool getAudioGrabberState() const { return GLOBAL_GRABBER_AUDIO_ENABLE; }
void setAudioGrabberState(bool audioGrabberState) { GLOBAL_GRABBER_AUDIO_ENABLE = audioGrabberState; }
static QStringList availableGrabbers(GrabberTypeFilter type = GrabberTypeFilter::ALL);
@@ -147,10 +151,7 @@ private slots:
void handleSourceRequest(hyperion::Components component, int hyperionInd, bool listen);
///
/// @brief Update Update capture rate
/// @param type interval between frames in milliseconds
///
void updateTimer(int interval);
protected:
@@ -168,6 +169,11 @@ protected:
///
virtual bool close() { return true; }
/// @brief Update Update capture rate
/// @param type interval between frames in milliseconds
///
void updateTimer(int interval);
QString _grabberName;

View File

@@ -471,6 +471,9 @@ signals:
/// Signal which is emitted, when a new V4l proto image should be forwarded
void forwardV4lProtoMessage(const QString&, const Image<ColorRgb>&);
/// Signal which is emitted, when a new Audio proto image should be forwarded
void forwardAudioProtoMessage(const QString&, const Image<ColorRgb>&);
#if defined(ENABLE_FLATBUF_SERVER) || defined(ENABLE_PROTOBUF_SERVER)
/// Signal which is emitted, when a new Flat-/Proto- Buffer image should be forwarded
void forwardBufferMessage(const QString&, const Image<ColorRgb>&);

View File

@@ -1,6 +1,7 @@
#pragma once
#include <QString>
#include <QSharedPointer>
// Utils includes
#include <utils/Image.h>
@@ -46,7 +47,7 @@ public:
/// @param[in] width The new width of the buffer-image
/// @param[in] height The new height of the buffer-image
///
void setSize(unsigned width, unsigned height);
void setSize(int width, int height);
///
/// @brief Update the led string (eg on settings change)
@@ -56,6 +57,19 @@ public:
/// Returns state of black border detector
bool blackBorderDetectorEnabled() const;
///
/// Factor to reduce the number of pixels evaluated during processing
///
/// @param[in] count Use every "count" pixel
void setReducedPixelSetFactorFactor(int count);
///
/// Set the accuracy used during processing
/// (only for selected types)
///
/// @param[in] level The accuracy level (0-4)
void setAccuracyLevel(int level);
/// Returns the current _userMappingType, this may not be the current applied type!
int getUserLedMappingType() const { return _userMappingType; }
@@ -98,30 +112,45 @@ public:
}
///
/// Processes the image to a list of led colors. This will update the size of the buffer-image
/// if required and call the image-to-leds mapping to determine the mean color per led.
/// Processes the image to a list of LED colors. This will update the size of the buffer-image
/// if required and call the image-to-LEDs mapping to determine the color per LED.
///
/// @param[in] image The image to translate to led values
/// @param[in] image The image to translate to LED values
///
/// @return The color value per led
/// @return The color value per LED
///
template <typename Pixel_T>
std::vector<ColorRgb> process(const Image<Pixel_T>& image)
{
std::vector<ColorRgb> colors;
if (image.width()>0 && image.height()>0)
{
// Ensure that the buffer-image is the proper size
setSize(image);
assert(!_imageToLedColors.isNull());
// Check black border detection
verifyBorder(image);
// Create a result vector and call the 'in place' function
switch (_mappingType)
{
case 1: colors = _imageToLeds->getUniLedColor(image); break;
default: colors = _imageToLeds->getMeanLedColor(image);
case 1:
colors = _imageToLedColors->getUniLedColor(image);
break;
case 2:
colors = _imageToLedColors->getMeanLedColorSqrt(image);
break;
case 3:
colors = _imageToLedColors->getDominantLedColor(image);
break;
case 4:
colors = _imageToLedColors->getDominantLedColorAdv(image);
break;
default:
colors = _imageToLedColors->getMeanLedColor(image);
}
}
else
@@ -136,8 +165,8 @@ public:
///
/// Determines the led colors of the image in the buffer.
///
/// @param[in] image The image to translate to led values
/// @param[out] ledColors The color value per led
/// @param[in] image The image to translate to LED values
/// @param[out] ledColors The color value per LED
///
template <typename Pixel_T>
void process(const Image<Pixel_T>& image, std::vector<ColorRgb>& ledColors)
@@ -153,8 +182,20 @@ public:
// Determine the mean or uni colors of each led (using the existing mapping)
switch (_mappingType)
{
case 1: _imageToLeds->getUniLedColor(image, ledColors); break;
default: _imageToLeds->getMeanLedColor(image, ledColors);
case 1:
_imageToLedColors->getUniLedColor(image, ledColors);
break;
case 2:
_imageToLedColors->getMeanLedColorSqrt(image, ledColors);
break;
case 3:
_imageToLedColors->getDominantLedColor(image, ledColors);
break;
case 4:
_imageToLedColors->getDominantLedColorAdv(image, ledColors);
break;
default:
_imageToLedColors->getMeanLedColor(image, ledColors);
}
}
else
@@ -164,9 +205,9 @@ public:
}
///
/// Get the hscan and vscan parameters for a single led
/// Get the hscan and vscan parameters for a single LED
///
/// @param[in] led Index of the led
/// @param[in] led Index of the LED
/// @param[out] hscanBegin begin of the hscan
/// @param[out] hscanEnd end of the hscan
/// @param[out] vscanBegin begin of the hscan
@@ -175,6 +216,13 @@ public:
bool getScanParameters(size_t led, double & hscanBegin, double & hscanEnd, double & vscanBegin, double & vscanEnd) const;
private:
void registerProcessingUnit(
int width,
int height,
int horizontalBorder,
int verticalBorder);
///
/// Performs black-border detection (if enabled) on the given image
///
@@ -183,34 +231,25 @@ private:
template <typename Pixel_T>
void verifyBorder(const Image<Pixel_T> & image)
{
if (!_borderProcessor->enabled() && ( _imageToLeds->horizontalBorder()!=0 || _imageToLeds->verticalBorder()!=0 ))
if (!_borderProcessor->enabled() && ( _imageToLedColors->horizontalBorder()!=0 || _imageToLedColors->verticalBorder()!=0 ))
{
Debug(_log, "Reset border");
_borderProcessor->process(image);
delete _imageToLeds;
_imageToLeds = new hyperion::ImageToLedsMap(image.width(), image.height(), 0, 0, _ledString.leds());
registerProcessingUnit(image.width(), image.height(), 0, 0);
}
if(_borderProcessor->enabled() && _borderProcessor->process(image))
{
const hyperion::BlackBorder border = _borderProcessor->getCurrentBorder();
// Clean up the old mapping
delete _imageToLeds;
if (border.unknown)
{
// Construct a new buffer and mapping
_imageToLeds = new hyperion::ImageToLedsMap(image.width(), image.height(), 0, 0, _ledString.leds());
registerProcessingUnit(image.width(), image.height(), 0, 0);
}
else
{
// Construct a new buffer and mapping
_imageToLeds = new hyperion::ImageToLedsMap(image.width(), image.height(), border.horizontalSize, border.verticalSize, _ledString.leds());
registerProcessingUnit(image.width(), image.height(), border.horizontalSize, border.verticalSize);
}
//Debug(Logger::getInstance("BLACKBORDER"), "CURRENT BORDER TYPE: unknown=%d hor.size=%d vert.size=%d",
// border.unknown, border.horizontalSize, border.verticalSize );
}
}
@@ -218,6 +257,7 @@ private slots:
void handleSettingsUpdate(settings::type type, const QJsonDocument& config);
private:
Logger * _log;
/// The Led-string specification
LedString _ledString;
@@ -226,15 +266,18 @@ private:
hyperion::BlackBorderProcessor * _borderProcessor;
/// The mapping of image-pixels to LEDs
hyperion::ImageToLedsMap* _imageToLeds;
QSharedPointer<hyperion::ImageToLedsMap> _imageToLedColors;
/// Type of image 2 led mapping
/// Type of image to LED mapping
int _mappingType;
/// Type of last requested user type
int _userMappingType;
/// Type of last requested hard type
int _hardMappingType;
int _accuraryLevel;
int _reducedPixelSetFactorFactor;
/// Hyperion instance pointer
Hyperion* _hyperion;
};

View File

@@ -1,72 +1,90 @@
#pragma once
#ifndef IMAGETOLEDSMAP_H
#define IMAGETOLEDSMAP_H
// STL includes
#include <cassert>
#include <memory>
#include <sstream>
#include <cmath>
// hyperion-utils includes
#include <utils/Image.h>
#include <utils/Logger.h>
#include <utils/ColorRgbScalar.h>
#include <utils/ColorSys.h>
// hyperion includes
#include <hyperion/LedString.h>
namespace hyperion
{
///
/// The ImageToLedsMap holds a mapping of indices into an image to leds. It can be used to
/// calculate the average (or mean) color per led for a specific region.
/// The ImageToLedsMap holds a mapping of indices into an image to LEDs. It can be used to
/// calculate the average (aka mean) or dominant color per LED for a given region.
///
class ImageToLedsMap
class ImageToLedsMap : public QObject
{
Q_OBJECT
public:
///
/// Constructs an mapping from the absolute indices in an image to each led based on the border
/// definition given in the list of leds. The map holds absolute indices to any given image,
/// Constructs an mapping from the absolute indices in an image to each LED based on the border
/// definition given in the list of LEDs. The map holds absolute indices to any given image,
/// provided that it is row-oriented.
/// The mapping is created purely on size (width and height). The given borders are excluded
/// from indexing.
///
/// @param[in] log Logger
/// @param[in] width The width of the indexed image
/// @param[in] height The width of the indexed image
/// @param[in] horizontalBorder The size of the horizontal border (0=no border)
/// @param[in] verticalBorder The size of the vertical border (0=no border)
/// @param[in] leds The list with led specifications
/// @param[in] reducedProcessingFactor Factor to reduce the number of pixels evaluated during processing
/// @param[in] accuraryLevel The accuracy used during processing (only for selected types)
///
ImageToLedsMap(
const unsigned width,
const unsigned height,
const unsigned horizontalBorder,
const unsigned verticalBorder,
const std::vector<Led> & leds);
Logger* log,
int width,
int height,
int horizontalBorder,
int verticalBorder,
const std::vector<Led> & leds,
int reducedProcessingFactor = 0,
int accuraryLevel = 0);
///
/// Returns the width of the indexed image
///
/// @return The width of the indexed image [pixels]
///
unsigned width() const;
int width() const;
///
/// Returns the height of the indexed image
///
/// @return The height of the indexed image [pixels]
///
unsigned height() const;
int height() const;
unsigned horizontalBorder() const { return _horizontalBorder; }
unsigned verticalBorder() const { return _verticalBorder; }
int horizontalBorder() const { return _horizontalBorder; }
int verticalBorder() const { return _verticalBorder; }
///
/// Determines the mean color for each led using the mapping the image given
/// Set the accuracy used during processing
/// (only for selected types)
///
/// @param[in] level The accuracy level (0-4)
void setAccuracyLevel (int level);
///
/// Determines the mean color for each LED using the LED area mapping given
/// at construction.
///
/// @param[in] image The image from which to extract the led colors
///
/// @return ledColors The vector containing the output
/// @return The vector containing the output
///
template <typename Pixel_T>
std::vector<ColorRgb> getMeanLedColor(const Image<Pixel_T> & image) const
@@ -77,20 +95,18 @@ namespace hyperion
}
///
/// Determines the mean color for each led using the mapping the image given
/// Determines the mean color for each LED using the LED area mapping given
/// at construction.
///
/// @param[in] image The image from which to extract the led colors
/// @param[in] image The image from which to extract the LED colors
/// @param[out] ledColors The vector containing the output
///
template <typename Pixel_T>
void getMeanLedColor(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
{
// Sanity check for the number of leds
//assert(_colorsMap.size() == ledColors.size());
if(_colorsMap.size() != ledColors.size())
{
Debug(Logger::getInstance("HYPERION"), "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
return;
}
@@ -104,12 +120,52 @@ namespace hyperion
}
///
/// Determines the uni color for each led using the mapping the image given
/// Determines the mean color squared for each LED using the LED area mapping given
/// at construction.
///
/// @param[in] image The image from which to extract the led colors
///
/// @return ledColors The vector containing the output
/// @return The vector containing the output
///
template <typename Pixel_T>
std::vector<ColorRgb> getMeanLedColorSqrt(const Image<Pixel_T> & image) const
{
std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
getMeanLedColorSqrt(image, colors);
return colors;
}
///
/// Determines the mean color squared for each LED using the LED area mapping given
/// at construction.
///
/// @param[in] image The image from which to extract the LED colors
/// @param[out] ledColors The vector containing the output
///
template <typename Pixel_T>
void getMeanLedColorSqrt(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
{
if(_colorsMap.size() != ledColors.size())
{
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
return;
}
// Iterate each led and compute the mean
auto led = ledColors.begin();
for (auto colors = _colorsMap.begin(); colors != _colorsMap.end(); ++colors, ++led)
{
const ColorRgb color = calcMeanColorSqrt(image, *colors);
*led = color;
}
}
///
/// Determines the mean color of the image and assigns it to all LEDs
///
/// @param[in] image The image from which to extract the led color
///
/// @return The vector containing the output
///
template <typename Pixel_T>
std::vector<ColorRgb> getUniLedColor(const Image<Pixel_T> & image) const
@@ -120,57 +176,145 @@ namespace hyperion
}
///
/// Determines the uni color for each led using the mapping the image given
/// at construction.
/// Determines the mean color of the image and assigns it to all LEDs
///
/// @param[in] image The image from which to extract the led colors
/// @param[in] image The image from which to extract the LED colors
/// @param[out] ledColors The vector containing the output
///
template <typename Pixel_T>
void getUniLedColor(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
{
// Sanity check for the number of leds
// assert(_colorsMap.size() == ledColors.size());
if(_colorsMap.size() != ledColors.size())
{
Debug(Logger::getInstance("HYPERION"), "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
return;
}
// calculate uni color
const ColorRgb color = calcMeanColor(image);
//Update all LEDs with same color
std::fill(ledColors.begin(),ledColors.end(), color);
}
private:
/// The width of the indexed image
const unsigned _width;
/// The height of the indexed image
const unsigned _height;
const unsigned _horizontalBorder;
const unsigned _verticalBorder;
/// The absolute indices into the image for each led
std::vector<std::vector<int32_t>> _colorsMap;
///
/// Determines the dominant color for each LED using the LED area mapping given
/// at construction.
///
/// @param[in] image The image from which to extract the LED color
///
/// @return The vector containing the output
///
template <typename Pixel_T>
std::vector<ColorRgb> getDominantLedColor(const Image<Pixel_T> & image) const
{
std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
getDominantLedColor(image, colors);
return colors;
}
///
/// Calculates the 'mean color' of the given list. This is the mean over each color-channel
/// Determines the dominant color for each LED using the LED area mapping given
/// at construction.
///
/// @param[in] image The image from which to extract the LED colors
/// @param[out] ledColors The vector containing the output
///
template <typename Pixel_T>
void getDominantLedColor(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
{
// Sanity check for the number of LEDs
if(_colorsMap.size() != ledColors.size())
{
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
return;
}
// Iterate each led and compute the dominant color
auto led = ledColors.begin();
for (auto colors = _colorsMap.begin(); colors != _colorsMap.end(); ++colors, ++led)
{
const ColorRgb color = calculateDominantColor(image, *colors);
*led = color;
}
}
///
/// Determines the dominant color using a k-means algorithm for each LED using the LED area mapping given
/// at construction.
///
/// @param[in] image The image from which to extract the LED color
///
/// @return The vector containing the output
///
template <typename Pixel_T>
std::vector<ColorRgb> getDominantLedColorAdv(const Image<Pixel_T> & image) const
{
std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
getDominantLedColorAdv(image, colors);
return colors;
}
///
/// Determines the dominant color using a k-means algorithm for each LED using the LED area mapping given
/// at construction.
///
/// @param[in] image The image from which to extract the LED colors
/// @param[out] ledColors The vector containing the output
///
template <typename Pixel_T>
void getDominantLedColorAdv(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
{
// Sanity check for the number of LEDs
if(_colorsMap.size() != ledColors.size())
{
Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
return;
}
// Iterate each led and compute the dominant color
auto led = ledColors.begin();
for (auto colors = _colorsMap.begin(); colors != _colorsMap.end(); ++colors, ++led)
{
const ColorRgb color = calculateDominantColorAdv(image, *colors);
*led = color;
}
}
private:
Logger* _log;
/// The width of the indexed image
const int _width;
/// The height of the indexed image
const int _height;
const int _horizontalBorder;
const int _verticalBorder;
/// Evaluate every "count" pixel
int _nextPixelCount;
/// Number of clusters used during dominant color advanced processing (k-means)
int _clusterCount;
/// The absolute indices into the image for each led
std::vector<std::vector<int>> _colorsMap;
///
/// Calculates the 'mean color' over the given image. This is the mean over each color-channel
/// (red, green, blue)
///
/// @param[in] image The image a section from which an average color must be computed
/// @param[in] colors The list with colors
/// @param[in] pixels The list of pixel indices for the given image to be evaluated///
///
/// @return The mean of the given list of colors (or black when empty)
///
template <typename Pixel_T>
ColorRgb calcMeanColor(const Image<Pixel_T> & image, const std::vector<int32_t> & colors) const
ColorRgb calcMeanColor(const Image<Pixel_T> & image, const std::vector<int32_t> & pixels) const
{
const auto colorVecSize = colors.size();
if (colorVecSize == 0)
const auto pixelNum = pixels.size();
if (pixelNum == 0)
{
return ColorRgb::BLACK;
}
@@ -179,20 +323,20 @@ namespace hyperion
uint_fast32_t cummRed = 0;
uint_fast32_t cummGreen = 0;
uint_fast32_t cummBlue = 0;
const auto& imgData = image.memptr();
for (const unsigned colorOffset : colors)
const auto& imgData = image.memptr();
for (const int pixelOffset : pixels)
{
const auto& pixel = imgData[colorOffset];
const auto& pixel = imgData[pixelOffset];
cummRed += pixel.red;
cummGreen += pixel.green;
cummBlue += pixel.blue;
}
// Compute the average of each color channel
const uint8_t avgRed = uint8_t(cummRed/colorVecSize);
const uint8_t avgGreen = uint8_t(cummGreen/colorVecSize);
const uint8_t avgBlue = uint8_t(cummBlue/colorVecSize);
const uint8_t avgRed = uint8_t(cummRed/pixelNum);
const uint8_t avgGreen = uint8_t(cummGreen/pixelNum);
const uint8_t avgBlue = uint8_t(cummBlue/pixelNum);
// Return the computed color
return {avgRed, avgGreen, avgBlue};
@@ -213,11 +357,11 @@ namespace hyperion
uint_fast32_t cummRed = 0;
uint_fast32_t cummGreen = 0;
uint_fast32_t cummBlue = 0;
const unsigned imageSize = image.width() * image.height();
const unsigned pixelNum = image.width() * image.height();
const auto& imgData = image.memptr();
for (unsigned idx=0; idx<imageSize; idx++)
for (unsigned idx=0; idx<pixelNum; idx++)
{
const auto& pixel = imgData[idx];
cummRed += pixel.red;
@@ -226,13 +370,289 @@ namespace hyperion
}
// Compute the average of each color channel
const uint8_t avgRed = uint8_t(cummRed/imageSize);
const uint8_t avgGreen = uint8_t(cummGreen/imageSize);
const uint8_t avgBlue = uint8_t(cummBlue/imageSize);
const uint8_t avgRed = uint8_t(cummRed/pixelNum);
const uint8_t avgGreen = uint8_t(cummGreen/pixelNum);
const uint8_t avgBlue = uint8_t(cummBlue/pixelNum);
// Return the computed color
return {avgRed, avgGreen, avgBlue};
}
///
/// Calculates the 'mean color' squared over the given image. This is the mean over each color-channel
/// (red, green, blue)
///
/// @param[in] image The image a section from which an average color must be computed
/// @param[in] pixels The list of pixel indices for the given image to be evaluated
///
/// @return The mean of the given list of colors (or black when empty)
///
template <typename Pixel_T>
ColorRgb calcMeanColorSqrt(const Image<Pixel_T> & image, const std::vector<int32_t> & pixels) const
{
const auto pixelNum = pixels.size();
if (pixelNum == 0)
{
return ColorRgb::BLACK;
}
// Accumulate the squared sum of each separate color channel
uint_fast32_t cummRed = 0;
uint_fast32_t cummGreen = 0;
uint_fast32_t cummBlue = 0;
const auto& imgData = image.memptr();
for (const int colorOffset : pixels)
{
const auto& pixel = imgData[colorOffset];
cummRed += pixel.red * pixel.red;
cummGreen += pixel.green * pixel.green;
cummBlue += pixel.blue * pixel.blue;
}
// Compute the average of each color channel
const uint8_t avgRed = uint8_t(std::min(std::lround(sqrt(static_cast<double>(cummRed/pixelNum))), 255L));
const uint8_t avgGreen = uint8_t(std::min(std::lround(sqrt(static_cast<double>(cummGreen/pixelNum))), 255L));
const uint8_t avgBlue = uint8_t(std::min(std::lround(sqrt(static_cast<double>(cummBlue/pixelNum))), 255L));
// Return the computed color
return {avgRed, avgGreen, avgBlue};
}
///
/// Calculates the 'mean color' squared over the given image. This is the mean over each color-channel
/// (red, green, blue)
///
/// @param[in] image The image a section from which an average color must be computed
///
/// @return The mean of the given list of colors (or black when empty)
///
template <typename Pixel_T>
ColorRgb calcMeanColorSqrt(const Image<Pixel_T> & image) const
{
// Accumulate the squared sum of each separate color channel
uint_fast32_t cummRed = 0;
uint_fast32_t cummGreen = 0;
uint_fast32_t cummBlue = 0;
const unsigned pixelNum = image.width() * image.height();
const auto& imgData = image.memptr();
for (int idx=0; idx<pixelNum; ++idx)
{
const auto& pixel = imgData[idx];
cummRed += pixel.red * pixel.red;
cummGreen += pixel.green * pixel.green;
cummBlue += pixel.blue * pixel.blue;
}
// Compute the average of each color channel
const uint8_t avgRed = uint8_t(std::lround(sqrt(static_cast<double>(cummRed/pixelNum))));
const uint8_t avgGreen = uint8_t(std::lround(sqrt(static_cast<double>(cummGreen/pixelNum))));
const uint8_t avgBlue = uint8_t(std::lround(sqrt(static_cast<double>(cummBlue/pixelNum))));
// Return the computed color
return {avgRed, avgGreen, avgBlue};
}
///
/// Calculates the 'dominant color' of an image area defined by a list of pixel indices
///
/// @param[in] image The image for which a dominant color is to be computed
/// @param[in] pixels The list of pixel indices for the given image to be evaluated
///
/// @return The image area's dominant color or black, if no pixel indices provided
///
template <typename Pixel_T>
ColorRgb calculateDominantColor(const Image<Pixel_T> & image, const std::vector<int> & pixels) const
{
ColorRgb dominantColor {ColorRgb::BLACK};
const auto pixelNum = pixels.size();
if (pixelNum > 0)
{
const auto& imgData = image.memptr();
QMap<QRgb,int> colorDistributionMap;
int count = 0;
for (const int pixelOffset : pixels)
{
QRgb color = imgData[pixelOffset].rgb();
if (colorDistributionMap.contains(color)) {
colorDistributionMap[color] = colorDistributionMap[color] + 1;
}
else {
colorDistributionMap[color] = 1;
}
int colorsFound = colorDistributionMap[color];
if (colorsFound > count) {
dominantColor.setRgb(color);
count = colorsFound;
}
}
}
return dominantColor;
}
///
/// Calculates the 'dominant color' of an image
///
/// @param[in] image The image for which a dominant color is to be computed
///
/// @return The image's dominant color
///
template <typename Pixel_T>
ColorRgb calculateDominantColor(const Image<Pixel_T> & image) const
{
const unsigned pixelNum = image.width() * image.height();
std::vector<int> pixels(pixelNum);
std::iota(pixels.begin(), pixels.end(), 0);
return calculateDominantColor(image, pixels);
}
template <typename Pixel_T>
struct ColorCluster {
ColorCluster():count(0) {}
ColorCluster(Pixel_T color):count(0),color(color) {}
Pixel_T color;
Pixel_T newColor;
int count;
};
const ColorRgb DEFAULT_CLUSTER_COLORS[5] {
{ColorRgb::BLACK},
{ColorRgb::GREEN},
{ColorRgb::WHITE},
{ColorRgb::RED},
{ColorRgb::YELLOW}
};
///
/// Calculates the 'dominant color' of an image area defined by a list of pixel indices
/// using a k-means algorithm (https://robocraft.ru/computervision/1063)
///
/// @param[in] image The image for which a dominant color is to be computed
/// @param[in] pixels The list of pixel indices for the given image to be evaluated
///
/// @return The image area's dominant color or black, if no pixel indices provided
///
template <typename Pixel_T>
ColorRgb calculateDominantColorAdv(const Image<Pixel_T> & image, const std::vector<int> & pixels) const
{
ColorRgb dominantColor {ColorRgb::BLACK};
const auto pixelNum = pixels.size();
if (pixelNum > 0)
{
// initial cluster with different colors
auto clusters = std::unique_ptr< ColorCluster<ColorRgbScalar> >(new ColorCluster<ColorRgbScalar>[_clusterCount]);
for(int k = 0; k < _clusterCount; ++k)
{
clusters.get()[k].newColor = DEFAULT_CLUSTER_COLORS[k];
}
// k-means
double min_rgb_euclidean {0};
double old_rgb_euclidean {0};
while(1)
{
for(int k = 0; k < _clusterCount; ++k)
{
clusters.get()[k].count = 0;
clusters.get()[k].color = clusters.get()[k].newColor;
clusters.get()[k].newColor.setRgb(ColorRgb::BLACK);
}
const auto& imgData = image.memptr();
for (const int pixelOffset : pixels)
{
const auto& pixel = imgData[pixelOffset];
min_rgb_euclidean = 255 * 255 * 255;
int clusterIndex = -1;
for(int k = 0; k < _clusterCount; ++k)
{
double euclid = ColorSys::rgb_euclidean(ColorRgbScalar(pixel), clusters.get()[k].color);
if( euclid < min_rgb_euclidean ) {
min_rgb_euclidean = euclid;
clusterIndex = k;
}
}
clusters.get()[clusterIndex].count++;
clusters.get()[clusterIndex].newColor += ColorRgbScalar(pixel);
}
min_rgb_euclidean = 0;
for(int k = 0; k < _clusterCount; ++k)
{
if (clusters.get()[k].count > 0)
{
// new color
clusters.get()[k].newColor /= clusters.get()[k].count;
double ecli = ColorSys::rgb_euclidean(clusters.get()[k].newColor, clusters.get()[k].color);
if(ecli > min_rgb_euclidean)
{
min_rgb_euclidean = ecli;
}
}
}
if( fabs(min_rgb_euclidean - old_rgb_euclidean) < 1)
{
break;
}
old_rgb_euclidean = min_rgb_euclidean;
}
int colorsFoundMax = 0;
int dominantClusterIdx {0};
for(int clusterIdx=0; clusterIdx < _clusterCount; ++clusterIdx){
int colorsFoundinCluster = clusters.get()[clusterIdx].count;
if (colorsFoundinCluster > colorsFoundMax) {
colorsFoundMax = colorsFoundinCluster;
dominantClusterIdx = clusterIdx;
}
}
dominantColor.red = static_cast<uint8_t>(clusters.get()[dominantClusterIdx].newColor.red);
dominantColor.green = static_cast<uint8_t>(clusters.get()[dominantClusterIdx].newColor.green);
dominantColor.blue = static_cast<uint8_t>(clusters.get()[dominantClusterIdx].newColor.blue);
}
return dominantColor;
}
///
/// Calculates the 'dominant color' of an image area defined by a list of pixel indices
/// using a k-means algorithm (https://robocraft.ru/computervision/1063)
///
/// @param[in] image The image for which a dominant color is to be computed
///
/// @return The image's dominant color
///
template <typename Pixel_T>
ColorRgb calculateDominantColorAdv(const Image<Pixel_T> & image) const
{
const unsigned pixelNum = image.width() * image.height();
std::vector<int> pixels(pixelNum);
std::iota(pixels.begin(), pixels.end(), 0);
return calculateDominantColorAdv(image, pixels);
}
};
} // end namespace hyperion
#endif // IMAGETOLEDSMAP_H

View File

@@ -289,6 +289,9 @@ private:
int _currentConfigId;
bool _enabled;
//The system enable state, to restore smoothing state after effect with smoothing ran
bool _enabledSystemCfg;
/// The type of smoothing to perform
SmoothingType _smoothingType;

View File

@@ -438,7 +438,10 @@ protected:
uint _ledRGBWCount;
/// Does the device allow restoring the original state?
bool _isRestoreOrigState;
bool _isRestoreOrigState;
/// Does the device should be kept on after streaming
bool _isStayOnAfterStreaming;
/// Device, lights state before streaming via hyperion
QJsonObject _orignalStateValues;
@@ -460,6 +463,9 @@ protected:
/// Is the device in error state and stopped?
bool _isDeviceInError;
/// Is the device in error state, but is retries might resolve the situation?
bool _isDeviceRecoverable;
/// Timestamp of last write
QDateTime _lastWriteTime;
@@ -476,8 +482,9 @@ protected slots:
/// @brief Set device in error state
///
/// @param[in] errorMsg The error message to be logged
/// @param[in] isRecoverable If False, no further retries will be done
///
virtual void setInError( const QString& errorMsg);
virtual void setInError( const QString& errorMsg, bool isRecoverable=true);
private:

View File

@@ -19,6 +19,7 @@
// Utility includes
#include <utils/Logger.h>
#include <utils/WeakConnect.h>
namespace {
constexpr std::chrono::milliseconds DEFAULT_DISCOVER_TIMEOUT{ 500 };
@@ -103,61 +104,6 @@ private slots:
void onServiceRemoved(const QMdnsEngine::Service& service);
private:
// template <typename Func1, typename Func2, typename std::enable_if_t<std::is_member_pointer<Func2>::value, int> = 0>
// static inline QMetaObject::Connection weakConnect(typename QtPrivate::FunctionPointer<Func1>::Object* sender,
// Func1 signal,
// typename QtPrivate::FunctionPointer<Func2>::Object* receiver,
// Func2 slot)
// {
// QMetaObject::Connection conn_normal = QObject::connect(sender, signal, receiver, slot);
// QMetaObject::Connection* conn_delete = new QMetaObject::Connection();
// *conn_delete = QObject::connect(sender, signal, [conn_normal, conn_delete]() {
// QObject::disconnect(conn_normal);
// QObject::disconnect(*conn_delete);
// delete conn_delete;
// });
// return conn_normal;
// }
template <typename Func1, typename Func2, typename std::enable_if_t<!std::is_member_pointer<Func2>::value, int> = 0>
static inline QMetaObject::Connection weakConnect(typename QtPrivate::FunctionPointer<Func1>::Object* sender,
Func1 signal,
Func2 slot)
{
QMetaObject::Connection conn_normal = QObject::connect(sender, signal, slot);
QMetaObject::Connection* conn_delete = new QMetaObject::Connection();
*conn_delete = QObject::connect(sender, signal, [conn_normal, conn_delete]() {
QObject::disconnect(conn_normal);
QObject::disconnect(*conn_delete);
delete conn_delete;
});
return conn_normal;
}
// template <typename Func1, typename Func2, typename std::enable_if_t<!std::is_member_pointer<Func2>::value, int> = 0>
// static inline QMetaObject::Connection weakConnect(typename QtPrivate::FunctionPointer<Func1>::Object* sender,
// Func1 signal,
// typename QtPrivate::FunctionPointer<Func2>::Object* receiver,
// Func2 slot)
// {
// Q_UNUSED(receiver);
// QMetaObject::Connection conn_normal = QObject::connect(sender, signal, slot);
// QMetaObject::Connection* conn_delete = new QMetaObject::Connection();
// *conn_delete = QObject::connect(sender, signal, [conn_normal, conn_delete]() {
// QObject::disconnect(conn_normal);
// QObject::disconnect(*conn_delete);
// delete conn_delete;
// });
// return conn_normal;
// }
/// The logger instance for mDNS-Service
Logger* _log;

View File

@@ -6,6 +6,7 @@
#include <QString>
#include <QTextStream>
#include <QRgb>
///
/// Plain-Old-Data structure containing the red-green-blue color specification. Size of the
@@ -52,6 +53,18 @@ struct ColorRgb
return a;
}
QRgb rgb() const
{
return qRgb(red,green,blue);
}
void setRgb(QRgb rgb)
{
red = static_cast<uint8_t>(qRed(rgb));
green = static_cast<uint8_t>(qGreen(rgb));
blue = static_cast<uint8_t>(qBlue(rgb));
}
QString toQString() const
{
return QString("(%1,%2,%3)").arg(red).arg(green).arg(blue);

View File

@@ -0,0 +1,203 @@
#ifndef COLORRGBSCALAR_H
#define COLORRGBSCALAR_H
// STL includes
#include <cstdint>
#include <iostream>
#include <QString>
#include <QTextStream>
#include <QRgb>
#include <utils/ColorRgb.h>
///
/// Plain-Old-Data structure containing the red-green-blue color specification. Size of the
/// structure is exactly 3 times int for easy writing to led-device
///
struct ColorRgbScalar
{
/// The red color channel
int red;
/// The green color channel
int green;
/// The blue color channel
int blue;
/// 'Black' RgbColor (0, 0, 0)
static const ColorRgbScalar BLACK;
/// 'Red' RgbColor (255, 0, 0)
static const ColorRgbScalar RED;
/// 'Green' RgbColor (0, 255, 0)
static const ColorRgbScalar GREEN;
/// 'Blue' RgbColor (0, 0, 255)
static const ColorRgbScalar BLUE;
/// 'Yellow' RgbColor (255, 255, 0)
static const ColorRgbScalar YELLOW;
/// 'White' RgbColor (255, 255, 255)
static const ColorRgbScalar WHITE;
ColorRgbScalar() = default;
ColorRgbScalar(int _red, int _green,int _blue):
red(_red),
green(_green),
blue(_blue)
{
}
ColorRgbScalar(ColorRgb rgb):
red(rgb.red),
green(rgb.green),
blue(rgb.blue)
{
}
ColorRgbScalar operator-(const ColorRgbScalar& b) const
{
ColorRgbScalar a(*this);
a.red -= b.red;
a.green -= b.green;
a.blue -= b.blue;
return a;
}
void setRgb(QRgb rgb)
{
red = qRed(rgb);
green = qGreen(rgb);
blue = qBlue(rgb);
}
void setRgb(ColorRgb rgb)
{
red = rgb.red;
green = rgb.green;
blue = rgb.blue;
}
QString toQString() const
{
return QString("(%1,%2,%3)").arg(red).arg(green).arg(blue);
}
};
/// Assert to ensure that the size of the structure is 'only' 3 times int
static_assert(sizeof(ColorRgbScalar) == 3 * sizeof(int), "Incorrect size of ColorRgbInt");
///
/// Stream operator to write ColorRgbInt to an outputstream (format "'{'[red]','[green]','[blue]'}'")
///
/// @param os The output stream
/// @param color The color to write
/// @return The output stream (with the color written to it)
///
inline std::ostream& operator<<(std::ostream& os, const ColorRgbScalar& color)
{
os << "{"
<< static_cast<unsigned>(color.red) << ","
<< static_cast<unsigned>(color.green) << ","
<< static_cast<unsigned>(color.blue)
<< "}";
return os;
}
///
/// Stream operator to write ColorRgbInt to a QTextStream (format "'{'[red]','[green]','[blue]'}'")
///
/// @param os The output stream
/// @param color The color to write
/// @return The output stream (with the color written to it)
///
inline QTextStream& operator<<(QTextStream &os, const ColorRgbScalar& color)
{
os << "{"
<< static_cast<unsigned>(color.red) << ","
<< static_cast<unsigned>(color.green) << ","
<< static_cast<unsigned>(color.blue)
<< "}";
return os;
}
/// Compare operator to check if a color is 'equal' to another color
inline bool operator==(const ColorRgbScalar & lhs, const ColorRgbScalar & rhs)
{
return lhs.red == rhs.red &&
lhs.green == rhs.green &&
lhs.blue == rhs.blue;
}
/// Compare operator to check if a color is 'smaller' than another color
inline bool operator<(const ColorRgbScalar & lhs, const ColorRgbScalar & rhs)
{
return lhs.red < rhs.red &&
lhs.green < rhs.green &&
lhs.blue < rhs.blue;
}
/// Compare operator to check if a color is 'not equal' to another color
inline bool operator!=(const ColorRgbScalar & lhs, const ColorRgbScalar & rhs)
{
return !(lhs == rhs);
}
/// Compare operator to check if a color is 'smaller' than or 'equal' to another color
inline bool operator<=(const ColorRgbScalar & lhs, const ColorRgbScalar & rhs)
{
return lhs.red <= rhs.red &&
lhs.green <= rhs.green &&
lhs.blue <= rhs.blue;
}
/// Compare operator to check if a color is 'greater' to another color
inline bool operator>(const ColorRgbScalar & lhs, const ColorRgbScalar & rhs)
{
return lhs.red > rhs.red &&
lhs.green > rhs.green &&
lhs.blue > rhs.blue;
}
/// Compare operator to check if a color is 'greater' than or 'equal' to another color
inline bool operator>=(const ColorRgbScalar & lhs, const ColorRgbScalar & rhs)
{
return lhs.red >= rhs.red &&
lhs.green >= rhs.green &&
lhs.blue >= rhs.blue;
}
inline ColorRgbScalar& operator+=(ColorRgbScalar& lhs, const ColorRgbScalar& rhs)
{
lhs.red += rhs.red;
lhs.green += rhs.green;
lhs.blue += rhs.blue;
return lhs;
}
inline ColorRgbScalar operator+(ColorRgbScalar lhs, const ColorRgbScalar rhs)
{
lhs += rhs;
return lhs;
}
inline ColorRgbScalar& operator/=(ColorRgbScalar& lhs, int count)
{
if (count > 0)
{
lhs.red /= count;
lhs.green /= count;
lhs.blue /= count;
}
return lhs;
}
inline ColorRgbScalar operator/(ColorRgbScalar lhs, int count)
{
lhs /= count;
return lhs;
}
#endif // COLORRGBSCALAR_H

View File

@@ -30,11 +30,11 @@ struct ColorRgba
static const ColorRgba WHITE;
};
/// Assert to ensure that the size of the structure is 'only' 3 bytes
/// Assert to ensure that the size of the structure is 'only' 4 bytes
static_assert(sizeof(ColorRgba) == 4, "Incorrect size of ColorARGB");
///
/// Stream operator to write ColorRgb to an outputstream (format "'{'[alpha]', '[red]','[green]','[blue]'}'")
/// Stream operator to write ColorRgba to an outputstream (format "'{'[alpha]', '[red]','[green]','[blue]'}'")
///
/// @param os The output stream
/// @param color The color to write

View File

@@ -105,6 +105,19 @@ public:
/// @note See https://bottosson.github.io/posts/colorpicker/#okhsv
///
static void okhsv2rgb(double hue, double saturation, double value, uint8_t & red, uint8_t & green, uint8_t & blue);
template <typename Pixel_T>
static double rgb_euclidean(Pixel_T p1, Pixel_T p2)
{
double val = sqrt(
(p1.red - p2.red) * (p1.red - p2.red) +
(p1.green - p2.green) * (p1.green - p2.green) +
(p1.blue - p2.blue) * (p1.blue - p2.blue)
);
return val;
}
};
#endif // COLORSYS_H

View File

@@ -23,6 +23,7 @@ enum Components
#endif
COMP_GRABBER,
COMP_V4L,
COMP_AUDIO,
COMP_COLOR,
COMP_IMAGE,
COMP_EFFECT,
@@ -50,6 +51,7 @@ inline const char* componentToString(Components c)
#endif
case COMP_GRABBER: return "Framegrabber";
case COMP_V4L: return "V4L capture device";
case COMP_AUDIO: return "Audio capture device";
case COMP_COLOR: return "Solid color";
case COMP_EFFECT: return "Effect";
case COMP_IMAGE: return "Image";
@@ -79,6 +81,7 @@ inline const char* componentToIdString(Components c)
#endif
case COMP_GRABBER: return "GRABBER";
case COMP_V4L: return "V4L";
case COMP_AUDIO: return "AUDIO";
case COMP_COLOR: return "COLOR";
case COMP_EFFECT: return "EFFECT";
case COMP_IMAGE: return "IMAGE";
@@ -107,6 +110,7 @@ inline Components stringToComponent(const QString& component)
#endif
if (cmp == "GRABBER") return COMP_GRABBER;
if (cmp == "V4L") return COMP_V4L;
if (cmp == "AUDIO") return COMP_AUDIO;
if (cmp == "COLOR") return COMP_COLOR;
if (cmp == "EFFECT") return COMP_EFFECT;
if (cmp == "IMAGE") return COMP_IMAGE;

View File

@@ -56,6 +56,13 @@ signals:
void setBufferImage(const QString& name, const Image<ColorRgb>& image);
#endif
///
/// @brief PIPE audioCapture images from audioCapture over HyperionDaemon to Hyperion class
/// @param name The name of the audio capture (path) that is currently active
/// @param image The prepared image
///
void setAudioImage(const QString& name, const Image<ColorRgb>& image);
///
/// @brief PIPE the register command for a new global input over HyperionDaemon to Hyperion class
/// @param[in] priority The priority of the channel

View File

@@ -51,7 +51,7 @@ namespace NetUtils {
{
if ((port <= 0 || port > MAX_PORT) && port != -1)
{
Error(log, "Invalid port [%d] for host: (%s)! - Port must be in range [0 - %d]", port, QSTRING_CSTR(host), MAX_PORT);
Error(log, "Invalid port [%d] for host: (%s)! - Port must be in range [1 - %d]", port, QSTRING_CSTR(host), MAX_PORT);
return false;
}
return true;
@@ -122,7 +122,7 @@ namespace NetUtils {
{
if (hostAddress.setAddress(hostname))
{
//Debug(log, "IP-address (%s) not required to be resolved.", QSTRING_CSTR(hostAddress.toString()));
// An IP-address is not required to be resolved
isHostAddressOK = true;
}
else

View File

@@ -44,7 +44,7 @@ public:
int getBacklightThreshold() const;
/// @param backlightThreshold New lower brightness
void setBacklightThreshold(int backlightThreshold);
void setBacklightThreshold(double backlightThreshold);
/// @return The current state
bool getBacklightColored() const;

View File

@@ -0,0 +1,63 @@
#ifndef WEAKCONNECT_H
#define WEAKCONNECT_H
#include <type_traits>
// Qt includes
#include <QObject>
template <typename Func1, typename Func2, typename std::enable_if_t<std::is_member_pointer<Func2>::value, int> = 0>
static inline QMetaObject::Connection weakConnect(typename QtPrivate::FunctionPointer<Func1>::Object* sender,
Func1 signal,
typename QtPrivate::FunctionPointer<Func2>::Object* receiver,
Func2 slot)
{
QMetaObject::Connection conn_normal = QObject::connect(sender, signal, receiver, slot);
QMetaObject::Connection* conn_delete = new QMetaObject::Connection();
*conn_delete = QObject::connect(sender, signal, [conn_normal, conn_delete]() {
QObject::disconnect(conn_normal);
QObject::disconnect(*conn_delete);
delete conn_delete;
});
return conn_normal;
}
template <typename Func1, typename Func2, typename std::enable_if_t<!std::is_member_pointer<Func2>::value, int> = 0>
static inline QMetaObject::Connection weakConnect(typename QtPrivate::FunctionPointer<Func1>::Object* sender,
Func1 signal,
Func2 slot)
{
QMetaObject::Connection conn_normal = QObject::connect(sender, signal, slot);
QMetaObject::Connection* conn_delete = new QMetaObject::Connection();
*conn_delete = QObject::connect(sender, signal, [conn_normal, conn_delete]() {
QObject::disconnect(conn_normal);
QObject::disconnect(*conn_delete);
delete conn_delete;
});
return conn_normal;
}
template <typename Func1, typename Func2, typename std::enable_if_t<!std::is_member_pointer<Func2>::value, int> = 0>
static inline QMetaObject::Connection weakConnect(typename QtPrivate::FunctionPointer<Func1>::Object* sender,
Func1 signal,
typename QtPrivate::FunctionPointer<Func2>::Object* receiver,
Func2 slot)
{
Q_UNUSED(receiver);
QMetaObject::Connection conn_normal = QObject::connect(sender, signal, slot);
QMetaObject::Connection* conn_delete = new QMetaObject::Connection();
*conn_delete = QObject::connect(sender, signal, [conn_normal, conn_delete]() {
QObject::disconnect(conn_normal);
QObject::disconnect(*conn_delete);
delete conn_delete;
});
return conn_normal;
}
#endif // WEAKCONNECT_H

View File

@@ -16,14 +16,12 @@
#include <effectengine/Effect.h>
#endif
#include <QDebug>
///
/// @brief Provide utility methods for Hyperion class
///
namespace hyperion {
void handleInitialEffect(Hyperion* hyperion, const QJsonObject& FGEffectConfig)
static void handleInitialEffect(Hyperion* hyperion, const QJsonObject& FGEffectConfig)
{
#define FGCONFIG_ARRAY fgColorConfig.toArray()
@@ -67,12 +65,12 @@ namespace hyperion {
#undef FGCONFIG_ARRAY
}
ColorOrder createColorOrder(const QJsonObject &deviceConfig)
static ColorOrder createColorOrder(const QJsonObject &deviceConfig)
{
return stringToColorOrder(deviceConfig["colorOrder"].toString("rgb"));
}
RgbTransform createRgbTransform(const QJsonObject& colorConfig)
static RgbTransform createRgbTransform(const QJsonObject& colorConfig)
{
const double backlightThreshold = colorConfig["backlightThreshold"].toDouble(0.0);
const bool backlightColored = colorConfig["backlightColored"].toBool(false);
@@ -85,7 +83,7 @@ namespace hyperion {
return RgbTransform(gammaR, gammaG, gammaB, backlightThreshold, backlightColored, static_cast<uint8_t>(brightness), static_cast<uint8_t>(brightnessComp));
}
OkhsvTransform createOkhsvTransform(const QJsonObject& colorConfig)
static OkhsvTransform createOkhsvTransform(const QJsonObject& colorConfig)
{
const double saturationGain = colorConfig["saturationGain"].toDouble(1.0);
const double brightnessGain = colorConfig["brightnessGain"].toDouble(1.0);
@@ -93,7 +91,7 @@ namespace hyperion {
return OkhsvTransform(saturationGain, brightnessGain);
}
RgbChannelAdjustment createRgbChannelAdjustment(const QJsonObject& colorConfig, const QString& channelName, int defaultR, int defaultG, int defaultB)
static RgbChannelAdjustment createRgbChannelAdjustment(const QJsonObject& colorConfig, const QString& channelName, int defaultR, int defaultG, int defaultB)
{
const QJsonArray& channelConfig = colorConfig[channelName].toArray();
return RgbChannelAdjustment(
@@ -104,7 +102,7 @@ namespace hyperion {
);
}
RgbChannelCorrection* createRgbChannelCorrection(const QJsonObject& colorConfig)
static RgbChannelCorrection* createRgbChannelCorrection(const QJsonObject& colorConfig)
{
int varR = colorConfig["red"].toInt(255);
int varG = colorConfig["green"].toInt(255);
@@ -114,7 +112,7 @@ namespace hyperion {
return correction;
}
ColorCorrection * createColorCorrection(const QJsonObject& correctionConfig)
static ColorCorrection * createColorCorrection(const QJsonObject& correctionConfig)
{
const QString id = correctionConfig["id"].toString("default");
@@ -130,7 +128,7 @@ namespace hyperion {
return correction;
}
ColorAdjustment* createColorAdjustment(const QJsonObject & adjustmentConfig)
static ColorAdjustment* createColorAdjustment(const QJsonObject & adjustmentConfig)
{
const QString id = adjustmentConfig["id"].toString("default");
@@ -150,7 +148,7 @@ namespace hyperion {
return adjustment;
}
MultiColorAdjustment * createLedColorsAdjustment(int ledCnt, const QJsonObject & colorConfig)
static MultiColorAdjustment * createLedColorsAdjustment(int ledCnt, const QJsonObject & colorConfig)
{
// Create the result, the transforms are added to this
MultiColorAdjustment * adjustment = new MultiColorAdjustment(ledCnt);
@@ -170,13 +168,12 @@ namespace hyperion {
{
// Special case for indices '*' => all leds
adjustment->setAdjustmentForLed(colorAdjustment->_id, 0, ledCnt-1);
//Info(Logger::getInstance("HYPERION"), "ColorAdjustment '%s' => [0-%d]", QSTRING_CSTR(colorAdjustment->_id), ledCnt-1);
continue;
}
if (!overallExp.match(ledIndicesStr).hasMatch())
{
//Error(Logger::getInstance("HYPERION"), "Given led indices %d not correct format: %s", i, QSTRING_CSTR(ledIndicesStr));
// Given LED indices are not correctly formatted
continue;
}
@@ -203,13 +200,12 @@ namespace hyperion {
ss << index;
}
}
//Info(Logger::getInstance("HYPERION"), "ColorAdjustment '%s' => [%s]", QSTRING_CSTR(colorAdjustment->_id), ss.str().c_str());
}
return adjustment;
}
MultiColorCorrection * createLedColorsTemperature(int ledCnt, const QJsonObject & colorConfig)
static MultiColorCorrection * createLedColorsTemperature(int ledCnt, const QJsonObject & colorConfig)
{
// Create the result, the corrections are added to this
MultiColorCorrection * correction = new MultiColorCorrection(ledCnt);
@@ -226,9 +222,6 @@ namespace hyperion {
int temperature = config["temperature"].toInt();
ColorRgb rgb = getRgbFromTemperature(temperature);
qDebug() << "createLedColorsTemperature: adjustment[temperture]: " << temperature << "-> " << rgb.toQString();
QJsonObject correctionConfig {
{"red", rgb.red},
{"green", rgb.green},
@@ -287,7 +280,7 @@ namespace hyperion {
* @param deviceOrder The default RGB channel ordering
* @return The constructed ledstring
*/
LedString createLedString(const QJsonArray& ledConfigArray, const ColorOrder deviceOrder)
static LedString createLedString(const QJsonArray& ledConfigArray, const ColorOrder deviceOrder)
{
LedString ledString;
const QString deviceOrderStr = colorOrderToString(deviceOrder);
@@ -318,7 +311,7 @@ namespace hyperion {
return ledString;
}
QSize getLedLayoutGridSize(const QJsonArray& ledConfigArray)
static QSize getLedLayoutGridSize(const QJsonArray& ledConfigArray)
{
std::vector<int> midPointsX;
std::vector<int> midPointsY;

View File

@@ -57,7 +57,9 @@ public:
break;
}
case QJsonValue::Object:
ret = getDefaultValue(value.toObject().find("default").value());
{
ret = getDefaultValue(value.toObject().value("default"));
}
break;
case QJsonValue::Bool:
return value.toBool() ? "True" : "False";
@@ -174,9 +176,9 @@ private:
if (!path.isEmpty())
{
QJsonObject obj;
modifyValue(subValue, obj, path, newValue, property);
subValue = obj;
QJsonObject tempObj;
modifyValue(subValue, tempObj, path, newValue, property);
subValue = tempObj;
}
else if (newValue != QJsonValue::Null)
subValue = newValue;

View File

@@ -19,6 +19,7 @@ namespace settings {
SYSTEMCAPTURE,
GENERAL,
V4L2,
AUDIO,
JSONSERVER,
LEDCONFIG,
LEDS,
@@ -52,6 +53,7 @@ namespace settings {
case SYSTEMCAPTURE: return "framegrabber";
case GENERAL: return "general";
case V4L2: return "grabberV4L2";
case AUDIO: return "grabberAudio";
case JSONSERVER: return "jsonServer";
case LEDCONFIG: return "ledConfig";
case LEDS: return "leds";
@@ -84,6 +86,7 @@ namespace settings {
else if (type == "framegrabber") return SYSTEMCAPTURE;
else if (type == "general") return GENERAL;
else if (type == "grabberV4L2") return V4L2;
else if (type == "grabberAudio") return AUDIO;
else if (type == "jsonServer") return JSONSERVER;
else if (type == "ledConfig") return LEDCONFIG;
else if (type == "leds") return LEDS;