@@ -1,745 +0,0 @@
//********** pngwriter.h **********************************************
// Author: Paul Blackburn
//
// Email: individual61@users.sourceforge.net
//
// Version: 0.5.4 (19 / II / 2009)
//
// Description: Library that allows plotting a 48 bit
// PNG image pixel by pixel, which can
// then be opened with a graphics program.
//
// License: GNU General Public License
// Copyright 2002, 2003, 2004, 2005, 2006, 2007,
// 2008, 2009 Paul Blackburn
//
// Website: Main: http://pngwriter.sourceforge.net/
// Sourceforge.net: http://sourceforge.net/projects/pngwriter/
// Freshmeat.net: http://freshmeat.net/projects/pngwriter/
//
// Documentation: This header file is commented, but for a
// quick reference document, and support,
// take a look at the website.
//
//*************************************************************************
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* */
# ifndef PNGWRITER_H
# define PNGWRITER_H 1
# define PNGWRITER_VERSION 0.54
# include <png.h>
// REMEMBER TO ADD -DNO_FREETYPE TO YOUR COMPILATION FLAGS IF PNGwriter WAS
// COMPILED WITHOUT FREETYPE SUPPORT!!!
//
// RECUERDA AGREGAR -DNO_FREETYPE A TUS OPCIONES DE COMPILACION SI PNGwriter
// FUE COMPILADO SIN SOPORTE PARA FREETYPE!!!
//
# ifndef NO_FREETYPE
# include <ft2build.h>
# include FT_FREETYPE_H
# endif
# ifdef OLD_CPP // For compatibility with older compilers.
# include <iostream.h>
# include <math.h>
# include <wchar.h>
# include <string.h>
using namespace std ;
# endif // from ifdef OLD_CPP
# ifndef OLD_CPP // Default situation.
# include <iostream>
# include <cmath>
# include <cwchar>
# include <string>
# endif // from ifndef OLD_CPP
//png.h must be included before FreeType headers.
# include <stdlib.h>
# include <stdio.h>
# include <setjmp.h>
# define PNG_BYTES_TO_CHECK (4)
# define PNGWRITER_DEFAULT_COMPRESSION (6)
class pngwriter
{
private :
char * filename_ ;
char * textauthor_ ;
char * textdescription_ ;
char * texttitle_ ;
char * textsoftware_ ;
int height_ ;
int width_ ;
int backgroundcolour_ ;
int bit_depth_ ;
int rowbytes_ ;
int colortype_ ;
int compressionlevel_ ;
bool transformation_ ; // Required by Mikkel's patch
unsigned char * * graph_ ;
double filegamma_ ;
double screengamma_ ;
void circle_aux ( int xcentre , int ycentre , int x , int y , int red , int green , int blue ) ;
void circle_aux_blend ( int xcentre , int ycentre , int x , int y , double opacity , int red , int green , int blue ) ;
int check_if_png ( char * file_name , FILE * * fp ) ;
int read_png_info ( FILE * fp , png_structp * png_ptr , png_infop * info_ptr ) ;
int read_png_image ( FILE * fp , png_structp png_ptr , png_infop info_ptr ,
png_bytepp * image , png_uint_32 * width , png_uint_32 * height ) ;
void flood_fill_internal ( int xstart , int ystart , double start_red , double start_green , double start_blue , double fill_red , double fill_green , double fill_blue ) ;
void flood_fill_internal_blend ( int xstart , int ystart , double opacity , double start_red , double start_green , double start_blue , double fill_red , double fill_green , double fill_blue ) ;
# ifndef NO_FREETYPE
void my_draw_bitmap ( FT_Bitmap * bitmap , int x , int y , double red , double green , double blue ) ;
void my_draw_bitmap_blend ( FT_Bitmap * bitmap , int x , int y , double opacity , double red , double green , double blue ) ;
# endif
/* The algorithms HSVtoRGB and RGBtoHSV were found at http://www.cs.rit.edu/~ncs/
* which is a page that belongs to Nan C. Schaller, though
* these algorithms appear to be the work of Eugene Vishnevsky.
* */
void HSVtoRGB ( double * r , double * g , double * b , double h , double s , double v ) ;
void RGBtoHSV ( float r , float g , float b , float * h , float * s , float * v ) ;
/* drwatop(), drawbottom() and filledtriangle() were contributed by Gurkan Sengun
* ( <gurkan@linuks.mine.nu>, http://www.linuks.mine.nu/ )
* */
void drawtop ( long x1 , long y1 , long x2 , long y2 , long x3 , int red , int green , int blue ) ;
void drawbottom ( long x1 , long y1 , long x2 , long x3 , long y3 , int red , int green , int blue ) ;
void drawbottom_blend ( long x1 , long y1 , long x2 , long x3 , long y3 , double opacity , int red , int green , int blue ) ;
void drawtop_blend ( long x1 , long y1 , long x2 , long y2 , long x3 , double opacity , int red , int green , int blue ) ;
public :
/* General Notes
* It is important to remember that all functions that accept an argument of type "const char *" will also
* accept "char *", this is done so you can have a changing filename (to make many PNG images in series
* with a different name, for example), and to allow you to use string type objects which can be easily
* turned into const char * (if theString is an object of type string, then it can be used as a const char *
* by saying theString.c_str()).
* It is also important to remember that whenever a function has a colour coeffiecient as its argument,
* that argument can be either an int from 0 to 65535 or a double from 0.0 to 1.0.
* It is important to make sure that you are calling the function with the type that you want.
* Remember that 1 is an int, while 1.0 is a double, and will thus determine what version of the function
* will be used. Similarly, do not make the mistake of calling for example plot(x, y, 0.0, 0.0, 65535),
* because
* there is no plot(int, int, double, double, int).
* Also, please note that plot() and read() (and the functions that use them internally)
* are protected against entering, for example, a colour coefficient that is over 65535
* or over 1.0. Similarly, they are protected against negative coefficients. read() will return 0
* when called outside the image range. This is actually useful as zero-padding should you need it.
* */
/* Compilation
* A typical compilation would look like this:
*
* g++ my_program.cc -o my_program freetype-config --cflags \
* -I/usr/local/include -L/usr/local/lib -lpng -lpngwriter -lz -lfreetype
*
* If you did not compile PNGwriter with FreeType support, then remove the
* FreeType-related flags and add -DNO_FREETYPE above.
* */
/* Constructor
* The constructor requires the width and the height of the image, the background colour for the
* image and the filename of the file (a pointer or simple "myfile.png"). The background colour
* can only be initialized to a shade of grey (once the object has been created you can do whatever
* you want, though), because generally one wants either a white (65535 or 1.0) or a black (0 or 0.0)
* background to start with.
* The default constructor creates a PNGwriter instance that is 250x250, white background,
* and filename "out.png".
* Tip: The filename can be given as easily as:
* pngwriter mypng(300, 300, 0.0, "myfile.png");
* Tip: If you are going to create a PNGwriter instance for reading in a file that already exists,
* then width and height can be 1 pixel, and the size will be automatically adjusted once you use
* readfromfile().
* */
pngwriter ( ) ;
pngwriter ( const pngwriter & rhs ) ;
pngwriter ( int width , int height , int backgroundcolour , char * filename ) ;
pngwriter ( int width , int height , double backgroundcolour , char * filename ) ;
pngwriter ( int width , int height , int backgroundcolour , const char * filename ) ;
pngwriter ( int width , int height , double backgroundcolour , const char * filename ) ;
/* Destructor
* */
~ pngwriter ( ) ;
/* Assignment Operator
* */
pngwriter & operator = ( const pngwriter & rhs ) ;
/* Plot
* With this function a pixel at coordinates (x, y) can be set to the desired colour.
* The pixels are numbered starting from (1, 1) and go to (width, height).
* As with most functions in PNGwriter, it has been overloaded to accept either int arguments
* for the colour coefficients, or those of type double. If they are of type int,
* they go from 0 to 65535. If they are of type double, they go from 0.0 to 1.0.
* Tip: To plot using red, then specify plot(x, y, 1.0, 0.0, 0.0). To make pink,
* just add a constant value to all three coefficients, like this:
* plot(x, y, 1.0, 0.4, 0.4).
* Tip: If nothing is being plotted to your PNG file, make sure that you remember
* to close() the instance before your program is finished, and that the x and y position
* is actually within the bounds of your image. If either is not, then PNGwriter will
* not complain-- it is up to you to check for this!
* Tip: If you try to plot with a colour coefficient out of range, a maximum or minimum
* coefficient will be assumed, according to the given coefficient. For example, attempting
* to plot plot(x, y, 1.0,-0.2,3.7) will set the green coefficient to 0 and the red coefficient
* to 1.0.
* */
void plot ( int x , int y , int red , int green , int blue ) ;
void plot ( int x , int y , double red , double green , double blue ) ;
/* Plot HSV
* With this function a pixel at coordinates (x, y) can be set to the desired colour,
* but with the colour coefficients given in the Hue, Saturation, Value colourspace.
* This has the advantage that one can determine the colour that will be plotted with
* only one parameter, the Hue. The colour coefficients must go from 0 to 65535 and
* be of type int, or be of type double and go from 0.0 to 1.0.
* */
void plotHSV ( int x , int y , double hue , double saturation , double value ) ;
void plotHSV ( int x , int y , int hue , int saturation , int value ) ;
/* Read
* With this function we find out what colour the pixel (x, y) is. If "colour" is 1,
* it will return the red coefficient, if it is set to 2, the green one, and if
* it set to 3, the blue colour coefficient will be returned,
* and this returned value will be of type int and be between 0 and 65535.
* Note that if you call read() on a pixel outside the image range, the value returned
* will be 0.
* */
int read ( int x , int y , int colour ) ;
/* Read, Average
* Same as the above, only that the average of the three colour coefficients is returned.
*/
int read ( int x , int y ) ;
/* dRead
* With this function we find out what colour the pixel (x, y) is. If "colour" is 1,
* it will return the red coefficient, if it is set to 2, the green one, and if
* it set to 3, the blue colour coefficient will be returned,
* and this returned value will be of type double and be between 0.0 and 1.0.
* Note that if you call dread() outside the image range, the value returned will be 0.0
* */
double dread ( int x , int y , int colour ) ;
/* dRead, Average
* Same as the above, only that the average of the three colour coefficients is returned.
*/
double dread ( int x , int y ) ;
/* Read HSV
* With this function we find out what colour the pixel (x, y) is, but in the Hue,
* Saturation, Value colourspace. If "colour" is 1,
* it will return the Hue coefficient, if it is set to 2, the Saturation one, and if
* it set to 3, the Value colour coefficient will be returned, and this returned
* value will be of type int and be between 0 and 65535. Important: If you attempt
* to read the Hue of a pixel that is a shade of grey, the value returned will be
* nonsensical or even NaN. This is just the way the RGB -> HSV algorithm works:
* the Hue of grey is not defined. You might want to check whether the pixel
* you are reading is grey before attempting a readHSV().
* Tip: This is especially useful for categorizing sections of the image according
* to their colour.
* */
int readHSV ( int x , int y , int colour ) ;
/* dRead HSV
* With this function we find out what colour the pixel (x, y) is, but in the Hue,
* Saturation, Value colourspace. If "colour" is 1,
* it will return the Hue coefficient, if it is set to 2, the Saturation one, and if
* it set to 3, the Value colour coefficient will be returned,
* and this returned value will be of type double and be between 0.0 and 1.0.
* */
double dreadHSV ( int x , int y , int colour ) ;
/* Clear
* The whole image is set to black.
* */
void clear ( void ) ;
/* Close
* Close the instance of the class, and write the image to disk.
* Tip: If you do not call this function before your program ends, no image
* will be written to disk.
* */
void close ( void ) ;
/* Rename
* To rename the file once an instance of pngwriter has been created.
* Useful for assigning names to files based upon their content.
* Tip: This is as easy as calling pngwriter_rename("newname.png")
* If the argument is a long unsigned int, for example 77, the filename will be changed to
* 0000000077.png
* Tip: Use this to create sequences of images for movie generation.
* */
void pngwriter_rename ( char * newname ) ;
void pngwriter_rename ( const char * newname ) ;
void pngwriter_rename ( long unsigned int index ) ;
/* Figures
* These functions draw basic shapes. Available in both int and double versions.
* The line functions use the fast Bresenham algorithm. Despite the name,
* the square functions draw rectangles. The circle functions use a fast
* integer math algorithm. The filled circle functions make use of sqrt().
* */
void line ( int xfrom , int yfrom , int xto , int yto , int red , int green , int blue ) ;
void line ( int xfrom , int yfrom , int xto , int yto , double red , double green , double blue ) ;
void triangle ( int x1 , int y1 , int x2 , int y2 , int x3 , int y3 , int red , int green , int blue ) ;
void triangle ( int x1 , int y1 , int x2 , int y2 , int x3 , int y3 , double red , double green , double blue ) ;
void square ( int xfrom , int yfrom , int xto , int yto , int red , int green , int blue ) ;
void square ( int xfrom , int yfrom , int xto , int yto , double red , double green , double blue ) ;
void filledsquare ( int xfrom , int yfrom , int xto , int yto , int red , int green , int blue ) ;
void filledsquare ( int xfrom , int yfrom , int xto , int yto , double red , double green , double blue ) ;
void circle ( int xcentre , int ycentre , int radius , int red , int green , int blue ) ;
void circle ( int xcentre , int ycentre , int radius , double red , double green , double blue ) ;
void filledcircle ( int xcentre , int ycentre , int radius , int red , int green , int blue ) ;
void filledcircle ( int xcentre , int ycentre , int radius , double red , double green , double blue ) ;
/* Read From File
* Open the existing PNG image, and copy it into this instance of the class. It is important to mention
* that PNG variants are supported. Very generally speaking, most PNG files can now be read (as of version 0.5.4),
* but if they have an alpha channel it will be completely stripped. If the PNG file uses GIF-style transparency
* (where one colour is chosen to be transparent), PNGwriter will not read the image properly, but will not
* complain. Also, if any ancillary chunks are included in the PNG file (chroma, filter, etc.), it will render
* with a slightly different tonality. For the vast majority of PNGs, this should not be an issue. Note:
* If you read an 8-bit PNG, the internal representation of that instance of PNGwriter will be 8-bit (PNG
* files of less than 8 bits will be upscaled to 8 bits). To convert it to 16-bit, just loop over all pixels,
* reading them into a new instance of PNGwriter. New instances of PNGwriter are 16-bit by default.
* */
void readfromfile ( char * name ) ;
void readfromfile ( const char * name ) ;
/* Get Height
* When you open a PNG with readfromfile() you can find out its height with this function.
* */
int getheight ( void ) ;
/* Get Width
* When you open a PNG with readfromfile() you can find out its width with this function.
* */
int getwidth ( void ) ;
/* Set Compression Level
* Set the compression level that will be used for the image. -1 is to use the default,
* 0 is none, 9 is best compression.
* Remember that this will affect how long it will take to close() the image. A value of 2 or 3
* is good enough for regular use, but for storage or transmission you might want to take the time
* to set it at 9.
* */
void setcompressionlevel ( int level ) ;
/* Get Bit Depth
* When you open a PNG with readfromfile() you can find out its bit depth with this function.
* Mostly for troubleshooting uses.
* */
int getbitdepth ( void ) ;
/* Get Colour Type
* When you open a PNG with readfromfile() you can find out its colour type (libpng categorizes
* different styles of image data with this number).
* Mostly for troubleshooting uses.
* */
int getcolortype ( void ) ;
/* Set Gamma Coeff
* Set the image's gamma (file gamma) coefficient. This is experimental, but use it if your image's colours seem too bright
* or too dark. The default value of 0.5 should be fine. The standard disclaimer about Mac and PC gamma
* settings applies.
* */
void setgamma ( double gamma ) ;
/* Get Gamma Coeff
* Get the image's gamma coefficient. This is experimental.
* */
double getgamma ( void ) ;
/* Bezier Curve
* (After Frenchman Pierre BŽzier from Regie Renault)
* A collection of formulae for describing curved lines
* and surfaces, first used in 1972 to model automobile surfaces.
* (from the The Free On-line Dictionary of Computing)
* See http://www.moshplant.com/direct-or/bezier/ for one of many
* available descriptions of bezier curves.
* There are four points used to define the curve: the two endpoints
* of the curve are called the anchor points, while the other points,
* which define the actual curvature, are called handles or control points.
* Moving the handles lets you modify the shape of the curve.
* */
void bezier ( int startPtX , int startPtY ,
int startControlX , int startControlY ,
int endPtX , int endPtY ,
int endControlX , int endControlY ,
double red , double green , double blue ) ;
void bezier ( int startPtX , int startPtY ,
int startControlX , int startControlY ,
int endPtX , int endPtY ,
int endControlX , int endControlY ,
int red , int green , int blue ) ;
/* Set Text
* Sets the text information in the PNG header. If it is not called, the default is used.
*/
void settext ( char * title , char * author , char * description , char * software ) ;
void settext ( const char * title , const char * author , const char * description , const char * software ) ;
/* Version Number
* Returns the PNGwriter version number.
*/
static double version ( void ) ;
/* Write PNG
* Writes the PNG image to disk. You can still change the PNGwriter instance after this.
* Tip: This is exactly the same as close(), but easier to remember.
* Tip: To make a sequence of images using only one instance of PNGwriter, alter the image, change its name,
* write_png(), then alter the image, change its name, write_png(), etc.
*/
void write_png ( void ) ;
/* Plot Text
* Uses the Freetype2 library to set text in the image. face_path is the file path to a
* TrueType font file (.ttf) (FreeType2 can also handle other types). fontsize specifices the approximate
* height of the rendered font in pixels. x_start and y_start specify the placement of the
* lower, left corner of the text string. angle is the text angle in radians. text is the text to be rendered.
* The colour coordinates can be doubles from 0.0 to 1.0 or ints from 0 to 65535.
* Tip: PNGwriter installs a few fonts in /usr/local/share/pngwriter/fonts to get you started.
* Tip: Remember to add -DNO_FREETYPE to your compilation flags if PNGwriter was compiled without FreeType support.
* */
void plot_text ( char * face_path , int fontsize , int x_start , int y_start , double angle , char * text , double red , double green , double blue ) ;
void plot_text ( char * face_path , int fontsize , int x_start , int y_start , double angle , char * text , int red , int green , int blue ) ;
/* Plot UTF-8 Text
* Same as the above, but the text to be plotted is encoded in UTF-8. Why would you want this? To be able to plot
* all characters available in a large TrueType font, for example: for rendering Japenese, Chinese and other
* languages not restricted to the standard 128 character ASCII space.
* Tip: The quickest way to get a string into UTF-8 is to write it in an adequate text editor, and save it as a file
* in UTF-8 encoding, which can then be read in in binary mode.
* */
void plot_text_utf8 ( char * face_path , int fontsize , int x_start , int y_start , double angle , char * text , double red , double green , double blue ) ;
void plot_text_utf8 ( char * face_path , int fontsize , int x_start , int y_start , double angle , char * text , int red , int green , int blue ) ;
/* Bilinear Interpolation of Image
* Given a floating point coordinate (x from 0.0 to width, y from 0.0 to height),
* this function will return the interpolated colour intensity specified by
* colour (where red = 1, green = 2, blue = 3).
* bilinear_interpolate_read() returns an int from 0 to 65535, and
* bilinear_interpolate_dread() returns a double from 0.0 to 1.0.
* Tip: Especially useful for enlarging an image.
* */
int bilinear_interpolation_read ( double x , double y , int colour ) ;
double bilinear_interpolation_dread ( double x , double y , int colour ) ;
/* Plot Blend
* Plots the colour given by red, green blue, but blended with the existing pixel
* value at that position. opacity is a double that goes from 0.0 to 1.0.
* 0.0 will not change the pixel at all, and 1.0 will plot the given colour.
* Anything in between will be a blend of both pixel levels. Please note: This is neither
* alpha channel nor PNG transparency chunk support. This merely blends the plotted pixels.
* */
void plot_blend ( int x , int y , double opacity , int red , int green , int blue ) ;
void plot_blend ( int x , int y , double opacity , double red , double green , double blue ) ;
/* Invert
* Inverts the image in RGB colourspace.
* */
void invert ( void ) ;
/* Resize Image
* Resizes the PNGwriter instance. Note: All image data is set to black (this is
* a resizing, not a scaling, of the image).
* */
void resize ( int width , int height ) ;
/* Boundary Fill
* All pixels adjacent to the start pixel will be filled with the fill colour, until the boundary colour is encountered.
* For example, calling boundary_fill() with the boundary colour set to red, on a pixel somewhere inside a red circle,
* will fill the entire circle with the desired fill colour. If, on the other hand, the circle is not the boundary colour,
* the rest of the image will be filled.
* The colour components are either doubles from 0.0 to 1.0 or ints from 0 to 65535.
* */
void boundary_fill ( int xstart , int ystart , double boundary_red , double boundary_green , double boundary_blue , double fill_red , double fill_green , double fill_blue ) ;
void boundary_fill ( int xstart , int ystart , int boundary_red , int boundary_green , int boundary_blue , int fill_red , int fill_green , int fill_blue ) ;
/* Flood Fill
* All pixels adjacent to the start pixel will be filled with the fill colour, if they are the same colour as the
* start pixel. For example, calling flood_fill() somewhere in the interior of a solid blue rectangle will colour
* the entire rectangle the fill colour. The colour components are either doubles from 0.0 to 1.0 or ints from 0 to 65535.
* */
void flood_fill ( int xstart , int ystart , double fill_red , double fill_green , double fill_blue ) ;
void flood_fill ( int xstart , int ystart , int fill_red , int fill_green , int fill_blue ) ;
/* Polygon
* This function takes an array of integer values containing the coordinates of the vertexes of a polygon.
* Note that if you want a closed polygon, you must repeat the first point's coordinates for the last point.
* It also requires the number of points contained in the array. For example, if you wish to plot a triangle,
* the array will contain 6 elements, and the number of points is 3. Be very careful about this; if you specify the wrong number
* of points, your program will either segfault or produce points at nonsensical coordinates.
* The colour components are either doubles from 0.0 to 1.0 or ints from 0 to 65535.
* */
void polygon ( int * points , int number_of_points , double red , double green , double blue ) ;
void polygon ( int * points , int number_of_points , int red , int green , int blue ) ;
/* Plot CMYK
* Plot a point in the Cyan, Magenta, Yellow, Black colourspace. Please note that this colourspace is
* lossy, i.e. it cannot reproduce all colours on screen that RGB can. The difference, however, is
* barely noticeable. The algorithm used is a standard one. The colour components are either
* doubles from 0.0 to 1.0 or ints from 0 to 65535.
* */
void plotCMYK ( int x , int y , double cyan , double magenta , double yellow , double black ) ;
void plotCMYK ( int x , int y , int cyan , int magenta , int yellow , int black ) ;
/* Read CMYK, Double version
* Get a pixel in the Cyan, Magenta, Yellow, Black colourspace. if 'colour' is 1, the Cyan component will be returned
* as a double from 0.0 to 1.0. If 'colour is 2, the Magenta colour component will be returned, and so on, up to 4.
* */
double dreadCMYK ( int x , int y , int colour ) ;
/* Read CMYK
* Same as the above, but the colour components returned are an int from 0 to 65535.
* */
int readCMYK ( int x , int y , int colour ) ;
/* Scale Proportional
* Scale the image using bilinear interpolation. If k is greater than 1.0, the image will be enlarged.
* If k is less than 1.0, the image will be shrunk. Negative or null values of k are not allowed.
* The image will be resized and the previous content will be replaced by the scaled image.
* Tip: use getheight() and getwidth() to find out the new width and height of the scaled image.
* Note: After scaling, all images will have a bit depth of 16, even if the original image had
* a bit depth of 8.
* */
void scale_k ( double k ) ;
/* Scale Non-Proportional
* Scale the image using bilinear interpolation, with different horizontal and vertical scale factors.
* */
void scale_kxky ( double kx , double ky ) ;
/* Scale To Target Width and Height
* Scale the image in such a way as to meet the target width and height.
* Tip: if you want to keep the image proportional, scale_k() might be more appropriate.
* */
void scale_wh ( int finalwidth , int finalheight ) ;
/* Blended Functions
* All these functions are identical to their non-blended types. They take an extra argument, opacity, which is
* a double from 0.0 to 1.0 and represents how much of the original pixel value is retained when plotting the
* new pixel. In other words, if opacity is 0.7, then after plotting, the new pixel will be 30% of the
* original colour the pixel was, and 70% of the new colour, whatever that may be. As usual, each function
* is available in int or double versions. Please note: This is neither alpha channel nor PNG transparency chunk support. This merely blends the plotted pixels.
* */
// Start Blended Functions
void plotHSV_blend ( int x , int y , double opacity , double hue , double saturation , double value ) ;
void plotHSV_blend ( int x , int y , double opacity , int hue , int saturation , int value ) ;
void line_blend ( int xfrom , int yfrom , int xto , int yto , double opacity , int red , int green , int blue ) ;
void line_blend ( int xfrom , int yfrom , int xto , int yto , double opacity , double red , double green , double blue ) ;
void square_blend ( int xfrom , int yfrom , int xto , int yto , double opacity , int red , int green , int blue ) ;
void square_blend ( int xfrom , int yfrom , int xto , int yto , double opacity , double red , double green , double blue ) ;
void filledsquare_blend ( int xfrom , int yfrom , int xto , int yto , double opacity , int red , int green , int blue ) ;
void filledsquare_blend ( int xfrom , int yfrom , int xto , int yto , double opacity , double red , double green , double blue ) ;
void circle_blend ( int xcentre , int ycentre , int radius , double opacity , int red , int green , int blue ) ;
void circle_blend ( int xcentre , int ycentre , int radius , double opacity , double red , double green , double blue ) ;
void filledcircle_blend ( int xcentre , int ycentre , int radius , double opacity , int red , int green , int blue ) ;
void filledcircle_blend ( int xcentre , int ycentre , int radius , double opacity , double red , double green , double blue ) ;
void bezier_blend ( int startPtX , int startPtY ,
int startControlX , int startControlY ,
int endPtX , int endPtY ,
int endControlX , int endControlY ,
double opacity ,
double red , double green , double blue ) ;
void bezier_blend ( int startPtX , int startPtY ,
int startControlX , int startControlY ,
int endPtX , int endPtY ,
int endControlX , int endControlY ,
double opacity ,
int red , int green , int blue ) ;
void plot_text_blend ( char * face_path , int fontsize , int x_start , int y_start , double angle , char * text , double opacity , double red , double green , double blue ) ;
void plot_text_blend ( char * face_path , int fontsize , int x_start , int y_start , double angle , char * text , double opacity , int red , int green , int blue ) ;
void plot_text_utf8_blend ( char * face_path , int fontsize , int x_start , int y_start , double angle , char * text , double opacity , double red , double green , double blue ) ;
void plot_text_utf8_blend ( char * face_path , int fontsize , int x_start , int y_start , double angle , char * text , double opacity , int red , int green , int blue ) ;
void boundary_fill_blend ( int xstart , int ystart , double opacity , double boundary_red , double boundary_green , double boundary_blue , double fill_red , double fill_green , double fill_blue ) ;
void boundary_fill_blend ( int xstart , int ystart , double opacity , int boundary_red , int boundary_green , int boundary_blue , int fill_red , int fill_green , int fill_blue ) ;
void flood_fill_blend ( int xstart , int ystart , double opacity , double fill_red , double fill_green , double fill_blue ) ;
void flood_fill_blend ( int xstart , int ystart , double opacity , int fill_red , int fill_green , int fill_blue ) ;
void polygon_blend ( int * points , int number_of_points , double opacity , double red , double green , double blue ) ;
void polygon_blend ( int * points , int number_of_points , double opacity , int red , int green , int blue ) ;
void plotCMYK_blend ( int x , int y , double opacity , double cyan , double magenta , double yellow , double black ) ;
void plotCMYK_blend ( int x , int y , double opacity , int cyan , int magenta , int yellow , int black ) ;
// End of Blended Functions
/* Laplacian
* This function applies a discrete laplacian to the image, multiplied by a constant factor.
* The kernel used in this case is:
* 1.0 1.0 1.0
* 1.0 -8.0 1.0
* 1.0 1.0 1.0
* Basically, this works as an edge detector. The current pixel is assigned the sum of all neighbouring
* pixels, multiplied by the corresponding kernel element. For example, imagine a pixel and its 8 neighbours:
* 1.0 1.0 0.0 0.0
* 1.0 ->1.0<- 0.0 0.0
* 1.0 1.0 0.0 0.0
* This represents a border between white and black, black is on the right. Applying the laplacian to
* the pixel specified above pixel gives:
* 1.0*1.0 + 1.0*1.0 + 0.0*1.0 +
* 1.0*1.0 + 1.0*-8.0 + 0.0*1.0 +
* 1.0*1.0 + 1.0*1.0 + 0.0*1.0 = -3.0
* Applying this to the pixel to the right of the pixel considered previously, we get a sum of 3.0.
* That is, after passing over an edge, we get a high value for the pixel adjacent to the edge. Since
* PNGwriter limits the colour components if they are off-scale, and the result of the laplacian
* may be negative, a scale factor and an offset value are included. This might be useful for
* keeping things within range or for bringing out more detail in the edge detection. The
* final pixel value will be given by:
* final value = laplacian(original pixel)*k + offset
* Tip: Try a value of 1.0 for k to start with, and then experiment with other values.
* */
void laplacian ( double k , double offset ) ;
/* Filled Triangle
* Draws the triangle specified by the three pairs of points in the colour specified
* by the colour coefficients. The colour components are either doubles from 0.0 to
* 1.0 or ints from 0 to 65535.
* */
void filledtriangle ( int x1 , int y1 , int x2 , int y2 , int x3 , int y3 , int red , int green , int blue ) ;
void filledtriangle ( int x1 , int y1 , int x2 , int y2 , int x3 , int y3 , double red , double green , double blue ) ;
/* Filled Triangle, Blended
* Draws the triangle specified by the three pairs of points in the colour specified
* by the colour coefficients, and blended with the background. See the description for Blended Functions.
* The colour components are either doubles from 0.0 to 1.0 or ints from 0 to 65535.
* */
void filledtriangle_blend ( int x1 , int y1 , int x2 , int y2 , int x3 , int y3 , double opacity , int red , int green , int blue ) ;
void filledtriangle_blend ( int x1 , int y1 , int x2 , int y2 , int x3 , int y3 , double opacity , double red , double green , double blue ) ;
/* Arrow, Filled Arrow
* Plots an arrow from (x1, y1) to (x2, y2) with the arrowhead at the second point, given the size in pixels
* and the angle in radians of the arrowhead. The plotted arrow consists of one main line, and two smaller
* lines originating from the second point. Filled Arrow plots the same, but the arrowhead is a solid triangle.
* Tip: An angle of 10 to 30 degrees looks OK.
* */
void arrow ( int x1 , int y1 , int x2 , int y2 , int size , double head_angle , double red , double green , double blue ) ;
void arrow ( int x1 , int y1 , int x2 , int y2 , int size , double head_angle , int red , int green , int blue ) ;
void filledarrow ( int x1 , int y1 , int x2 , int y2 , int size , double head_angle , double red , double green , double blue ) ;
void filledarrow ( int x1 , int y1 , int x2 , int y2 , int size , double head_angle , int red , int green , int blue ) ;
/* Cross, Maltese Cross
* Plots a simple cross at x, y, with the specified height and width, and in the specified colour.
* Maltese cross plots a cross, as before, but adds bars at the end of each arm of the cross.
* The size of these bars is specified with x_bar_height and y_bar_width.
* The cross will look something like this:
*
* ----- <-- ( y_bar_width)
* |
* |
* |-------| <-- ( x_bar_height )
* |
* |
* -----
* */
void cross ( int x , int y , int xwidth , int yheight , double red , double green , double blue ) ;
void cross ( int x , int y , int xwidth , int yheight , int red , int green , int blue ) ;
void maltesecross ( int x , int y , int xwidth , int yheight , int x_bar_height , int y_bar_width , double red , double green , double blue ) ;
void maltesecross ( int x , int y , int xwidth , int yheight , int x_bar_height , int y_bar_width , int red , int green , int blue ) ;
/* Diamond and filled diamond
* Plots a diamond shape, given the x, y position, the width and height, and the colour.
* Filled diamond plots a filled diamond.
* */
void filleddiamond ( int x , int y , int width , int height , int red , int green , int blue ) ;
void diamond ( int x , int y , int width , int height , int red , int green , int blue ) ;
void filleddiamond ( int x , int y , int width , int height , double red , double green , double blue ) ;
void diamond ( int x , int y , int width , int height , double red , double green , double blue ) ;
/* Get Text Width, Get Text Width UTF8
* Returns the approximate width, in pixels, of the specified *unrotated* text. It is calculated by adding
* each letter's width and kerning value (as specified in the TTF file). Note that this will not
* give the position of the farthest pixel, but it will give a pretty good idea of what area the
* text will occupy. Tip: The text, when plotted unrotated, will fit approximately in a box with its lower left corner at
* (x_start, y_start) and upper right at (x_start + width, y_start + size), where width is given by get_text_width()
* and size is the specified size of the text to be plotted. Tip: Text plotted at position
* (x_start, y_start), rotated with a given 'angle', and of a given 'size'
* whose width is 'width', will fit approximately inside a rectangle whose corners are at
* 1 (x_start, y_start)
* 2 (x_start + width*cos(angle), y_start + width*sin(angle))
* 3 (x_start + width*cos(angle) - size*sin(angle), y_start + width*sin(angle) + size*cos(angle))
* 4 (x_start - size*sin(angle), y_start + size*cos(angle))
* */
int get_text_width ( char * face_path , int fontsize , char * text ) ;
int get_text_width_utf8 ( char * face_path , int fontsize , char * text ) ;
} ;
# endif