Implemented the Ldp6803 device.

Former-commit-id: e38f7d697fbf137d89bfefb1503848a771f51dad
This commit is contained in:
T. van der Zwan 2013-11-02 05:51:41 +00:00
parent f158236910
commit 518ca910b7
9 changed files with 104 additions and 95 deletions

View File

@ -10,8 +10,9 @@
#include <hyperion/LedDevice.h>
#include <hyperion/ImageProcessorFactory.h>
#include "LedDeviceWs2801.h"
#include "LedDeviceLdp6803.h"
#include "LedDeviceTest.h"
#include "LedDeviceWs2801.h"
#include "LinearColorSmoothing.h"
@ -36,9 +37,20 @@ LedDevice* Hyperion::createDevice(const Json::Value& deviceConfig)
device = deviceWs2801;
}
else if (type == "ldp6803")
{
const std::string output = deviceConfig["output"].asString();
const unsigned rate = deviceConfig["rate"].asInt();
LedDeviceLdp6803* deviceLdp6803 = new LedDeviceLdp6803(output, rate);
deviceLdp6803->open();
device = deviceLdp6803;
}
else if (type == "test")
{
device = new LedDeviceTest();
const std::string output = deviceConfig["output"].asString();
device = new LedDeviceTest(output);
}
else
{

View File

@ -10,80 +10,48 @@
// hyperion local includes
#include "LedDeviceLdp6803.h"
LedDeviceLDP6803::LedDeviceLDP6803(const std::string& outputDevice, const unsigned baudrate) :
LedDeviceLdp6803::LedDeviceLdp6803(const std::string& outputDevice, const unsigned baudrate) :
LedSpiDevice(outputDevice, baudrate),
mLedCount(0)
_ledBuffer(0)
{
latchTime.tv_sec = 0;
latchTime.tv_nsec = 500000;
// empty
}
int LedDeviceLDP6803::write(const std::vector<RgbColor> &ledValues)
int LedDeviceLdp6803::write(const std::vector<RgbColor> &ledValues)
{
mLedCount = ledValues.size();
// Define buffer sizes based on number of leds
// buffsize for actual buffer to be sent via SPI pins
// tempbuffsize for RGB data processing.
// buffsize = 4 zero bytes + 2 bytes per LED
// tempbuffsize will hold RGB values, so 3 bytes per LED
int buffsize = (mLedCount * 2) + 4;
int tempbuffsize = mLedCount *3;
int i,r,g,b,d,count;
uint8_t m_buff[buffsize];
const uint8_t *temp_buff;//[tempbuffsize];
if (mFid < 0)
// Reconfigure if the current connfiguration does not match the required configuration
if (ledValues.size() != _ledBuffer.size())
{
// Initialise the buffer with all 'black' values
_ledBuffer.resize(ledValues.size() + 2, 0x80);
_ledBuffer[0] = 0;
_ledBuffer[1] = 0;
}
// Copy the colors from the RgbColor vector to the Ldp6803Rgb vector
for (unsigned iLed=0; iLed<ledValues.size(); ++iLed)
{
const RgbColor& rgb = ledValues[iLed];
const char packedRed = rgb.red & 0xf8;
const char packedGreen = rgb.green & 0xf8;
const char packedBlue = rgb.blue & 0xf8;
const unsigned short packedRgb = 0x80 | (packedRed << 7) | (packedGreen << 2) | (packedBlue >> 3);
_ledBuffer[iLed + 2] = packedRgb;
}
// Write the data
const unsigned bufCnt = _ledBuffer.size() * sizeof(short);
const char * bufPtr = reinterpret_cast<const char *>(_ledBuffer.data());
if (latch(bufCnt, bufPtr, 0) < 0)
{
std::cerr << "Can not write to device which is open." << std::endl;
return -1;
}
temp_buff = reinterpret_cast<const uint8_t*>(ledValues.data());
// set first 4 bytes to zero
m_buff[0]=0;
m_buff[1]=0;
m_buff[2]=0;
m_buff[3]=0;
// Set counter
count=4;
// Now process RGB values: 0-255 to be
// converted to 0-31, with bits combined
// to match hardware protocol
for (i=0 ; i < tempbuffsize ; i+=3) {
r = temp_buff[i] >> 3;
g = temp_buff[i+1] >> 3;
b = temp_buff[i+2] >> 3;
d = (r * 1024) + (g * 32) + b + 32768;
m_buff[count] = d >> 8;
m_buff[count+1] = d & 0x00FF;
count += 2;
}
spi.tx_buf = __u64(m_buff);
spi.len = buffsize;
int retVal = ioctl(mFid, SPI_IOC_MESSAGE(1), &spi);
if (retVal == 0)
{
// Sleep to latch the leds (only if write succesfull)
nanosleep(&latchTime, NULL);
}
return retVal;
return 0;
}
int LedDeviceLDP6803::switchOff()
int LedDeviceLdp6803::switchOff()
{
return write(std::vector<RgbColor>(mLedCount, RgbColor::BLACK));
return write(std::vector<RgbColor>(_ledBuffer.size(), RgbColor::BLACK));
}

View File

@ -6,7 +6,15 @@
///
/// Implementation of the LedDevice interface for writing to LDP6803 led device.
///
class LedDeviceLDP6803 : public LedSpiDevice
/// 00000000 00000000 00000000 00000000 1XXXXXYY YYYZZZZZ 1XXXXXYY YYYZZZZZ ...
/// |---------------------------------| |---------------| |---------------|
/// 32 zeros to start the frame Led1 Led2 ...
///
/// For each led, the first bit is always 1, and then you have 5 bits each for red, green and blue
/// (X, Y and Z in the above illustration) making 16 bits per led. Total bits = 32 + (16 x number of
/// leds)
///
class LedDeviceLdp6803 : public LedSpiDevice
{
public:
///
@ -15,7 +23,7 @@ public:
/// @param[in] outputDevice The name of the output device (eg '/etc/SpiDev.0.0')
/// @param[in] baudrate The used baudrate for writing to the output device
///
LedDeviceLDP6803(const std::string& outputDevice, const unsigned baudrate);
LedDeviceLdp6803(const std::string& outputDevice, const unsigned baudrate);
///
/// Writes the led color values to the led-device
@ -29,9 +37,5 @@ public:
virtual int switchOff();
private:
/// The 'latch' time for latching the shifted-value into the leds
timespec latchTime;
/// the number of leds (needed when switching off)
size_t mLedCount;
std::vector<unsigned short> _ledBuffer;
};

View File

@ -2,8 +2,8 @@
// Local-Hyperion includes
#include "LedDeviceTest.h"
LedDeviceTest::LedDeviceTest() :
_ofs("/home/pi/LedDevice.out")
LedDeviceTest::LedDeviceTest(const std::string& output) :
_ofs(output.empty()?"/home/pi/LedDevice.out":output.c_str())
{
// empty
}

View File

@ -16,7 +16,7 @@ public:
///
/// Constructs the test-device, which opens an output stream to the file
///
LedDeviceTest();
LedDeviceTest(const std::string& output);
///
/// Destructor of this test-device

View File

@ -15,31 +15,17 @@ LedDeviceWs2801::LedDeviceWs2801(const std::string& outputDevice, const unsigned
LedSpiDevice(outputDevice, baudrate),
mLedCount(0)
{
latchTime.tv_sec = 0;
latchTime.tv_nsec = 500000;
// empty
}
int LedDeviceWs2801::write(const std::vector<RgbColor> &ledValues)
{
mLedCount = ledValues.size();
if (mFid < 0)
{
std::cerr << "Can not write to device which is open." << std::endl;
return -1;
}
spi.tx_buf = (__u64)ledValues.data();
spi.len = ledValues.size() * sizeof(RgbColor);
int retVal = ioctl(mFid, SPI_IOC_MESSAGE(1), &spi);
if (retVal == 0)
{
// Sleep to latch the leds (only if write succesfull)
nanosleep(&latchTime, NULL);
}
const unsigned dataLen = ledValues.size() * sizeof(RgbColor);
const char * dataPtr = reinterpret_cast<const char *>(ledValues.data());
const int retVal = latch(dataLen, dataPtr, 500000);
return retVal;
}

View File

@ -33,8 +33,6 @@ public:
virtual int switchOff();
private:
/// The 'latch' time for latching the shifted-value into the leds
timespec latchTime;
/// the number of leds (needed when switching off)
size_t mLedCount;

View File

@ -55,3 +55,31 @@ int LedSpiDevice::open()
return 0;
}
int LedSpiDevice::latch(const unsigned len, const char * vec, const int latchTime_ns)
{
if (mFid < 0)
{
return -1;
}
spi.tx_buf = __u64(vec);
spi.len = __u32(len);
int retVal = ioctl(mFid, SPI_IOC_MESSAGE(1), &spi);
if (retVal == 0 && latchTime_ns > 0)
{
// The 'latch' time for latching the shifted-value into the leds
timespec latchTime;
latchTime.tv_sec = 0;
latchTime.tv_nsec = latchTime_ns;
// Sleep to latch the leds (only if write succesfull)
nanosleep(&latchTime, NULL);
}
return retVal;
}

View File

@ -32,13 +32,26 @@ public:
///
int open();
protected:
/**
* Writes the given bytes/bits to the SPI-device and sleeps the latch time to ensure that the
* values are latched.
*
* @param[in[ len The length of the data
* @param[in] vec The data
* @param[in] latchTime_ns The latch-time to latch in the values across the SPI-device (negative
* means no latch required) [ns]
*
* @return Zero on succes else negative
*/
int latch(const unsigned len, const char * vec, const int latchTime_ns);
private:
/// The name of the output device
const std::string mDeviceName;
/// The used baudrate of the output device
const int mBaudRate_Hz;
protected:
/// The File Identifier of the opened output device (or -1 if not opened)
int mFid;
/// The transfer structure for writing to the spi-device