Created HueLamp class holding the color space as well as the original state and current color.

Former-commit-id: 129c34f6008a68bca6cafb63eb0c0ad6a37f5179
This commit is contained in:
Tim Niggemann 2014-07-15 09:55:58 +02:00
parent 9269b0a1e3
commit 67970fce08
2 changed files with 114 additions and 92 deletions

View File

@ -31,18 +31,22 @@ int LedDevicePhilipsHue::write(const std::vector<ColorRgb> & ledValues) {
switchOn((unsigned int) ledValues.size());
}
// Iterate through colors and set light states.
unsigned int lightId = 1;
unsigned int lightId = 0;
for (const ColorRgb& color : ledValues) {
// Find triangle.
CGTriangle triangle = triangles.at(lightId - 1);
// Get lamp.
HueLamp& lamp = lamps.at(lightId);
// Scale colors from [0, 255] to [0, 1] and convert to xy space.
CGPoint xy;
float b;
rgbToXYBrightness(color.red / 255.0f, color.green / 255.0f, color.blue / 255.0f, triangle, xy, b);
// Send adjust color command in JSON format.
put(getStateRoute(lightId), QString("{\"xy\": [%1, %2]}").arg(xy.x).arg(xy.y));
// Send brightness color command in JSON format.
put(getStateRoute(lightId), QString("{\"bri\": %1}").arg(qRound(b * 255.0f)));
ColorPoint xy;
rgbToXYBrightness(color.red / 255.0f, color.green / 255.0f, color.blue / 255.0f, lamp, xy);
// Write color if color has been changed.
if (xy != lamp.color) {
// Send adjust color command in JSON format.
put(getStateRoute(lightId), QString("{\"xy\": [%1, %2]}").arg(xy.x).arg(xy.y));
// Send brightness color command in JSON format.
put(getStateRoute(lightId), QString("{\"bri\": %1}").arg(qRound(xy.bri * 255.0f)));
// Remember written color.
lamp.color = xy;
}
// Next light id.
lightId++;
}
@ -98,31 +102,9 @@ QString LedDevicePhilipsHue::getRoute(unsigned int lightId) {
return QString("lights/%1").arg(lightId);
}
CGTriangle LedDevicePhilipsHue::getTriangle(QString modelId) {
const std::set<QString> HUE_BULBS_MODEL_IDS = { "LCT001", "LCT002", "LCT003" };
const std::set<QString> LIVING_COLORS_MODEL_IDS = { "LLC001", "LLC005", "LLC006", "LLC007", "LLC011", "LLC012",
"LLC013", "LST001" };
CGTriangle triangle;
if (HUE_BULBS_MODEL_IDS.find(modelId) != HUE_BULBS_MODEL_IDS.end()) {
triangle.red = {0.675f, 0.322f};
triangle.green = {0.4091f, 0.518f};
triangle.blue = {0.167f, 0.04f};
} else if (LIVING_COLORS_MODEL_IDS.find(modelId) != LIVING_COLORS_MODEL_IDS.end()) {
triangle.red = {0.703f, 0.296f};
triangle.green = {0.214f, 0.709f};
triangle.blue = {0.139f, 0.081f};
} else {
triangle.red = {1.0f, 0.0f};
triangle.green = {0.0f, 1.0f};
triangle.blue = {0.0f, 0.0f};
}
return triangle;
}
void LedDevicePhilipsHue::saveStates(unsigned int nLights) {
// Clear saved light states.
states.clear();
triangles.clear();
// Clear saved lamps.
lamps.clear();
// Use json parser to parse reponse.
Json::Reader reader;
Json::FastWriter writer;
@ -136,50 +118,48 @@ void LedDevicePhilipsHue::saveStates(unsigned int nLights) {
// Error occured, break loop.
break;
}
// Save state object values which are subject to change.
// Get state object values which are subject to change.
Json::Value state(Json::objectValue);
state["on"] = json["state"]["on"];
if (json["state"]["on"] == true) {
state["xy"] = json["state"]["xy"];
state["bri"] = json["state"]["bri"];
}
// Save state object.
states.push_back(QString(writer.write(state).c_str()).trimmed());
// Determine triangle.
// Determine the model id.
QString modelId = QString(writer.write(json["modelid"]).c_str()).trimmed().replace("\"", "");
triangles.push_back(getTriangle(modelId));
QString originalState = QString(writer.write(state).c_str()).trimmed();
// Save state object.
lamps.push_back(HueLamp(i + 1, originalState, modelId));
}
}
void LedDevicePhilipsHue::switchOn(unsigned int nLights) {
for (unsigned int i = 0; i < nLights; i++) {
put(getStateRoute(i + 1), "{\"on\": true}");
for (HueLamp lamp : lamps) {
put(getStateRoute(lamp.id), "{\"on\": true}");
}
}
void LedDevicePhilipsHue::restoreStates() {
unsigned int lightId = 1;
for (QString state : states) {
put(getStateRoute(lightId), state);
lightId++;
for (HueLamp lamp : lamps) {
put(getStateRoute(lamp.id), lamp.originalState);
}
// Clear saved light states.
states.clear();
triangles.clear();
lamps.clear();
}
bool LedDevicePhilipsHue::areStatesSaved() {
return !states.empty();
return !lamps.empty();
}
float LedDevicePhilipsHue::crossProduct(CGPoint p1, CGPoint p2) {
float LedDevicePhilipsHue::crossProduct(ColorPoint p1, ColorPoint p2) {
return p1.x * p2.y - p1.y * p2.x;
}
bool LedDevicePhilipsHue::isPointInLampsReach(CGTriangle triangle, CGPoint p) {
CGPoint v1 = { triangle.green.x - triangle.red.x, triangle.green.y - triangle.red.y };
CGPoint v2 = { triangle.blue.x - triangle.red.x, triangle.blue.y - triangle.red.y };
CGPoint q = { p.x - triangle.red.x, p.y - triangle.red.y };
bool LedDevicePhilipsHue::isPointInLampsReach(HueLamp lamp, ColorPoint p) {
ColorTriangle& triangle = lamp.colorSpace;
ColorPoint v1 = { triangle.green.x - triangle.red.x, triangle.green.y - triangle.red.y };
ColorPoint v2 = { triangle.blue.x - triangle.red.x, triangle.blue.y - triangle.red.y };
ColorPoint q = { p.x - triangle.red.x, p.y - triangle.red.y };
float s = crossProduct(q, v2) / crossProduct(v1, v2);
float t = crossProduct(v1, q) / crossProduct(v1, v2);
if ((s >= 0.0f) && (t >= 0.0f) && (s + t <= 1.0f)) {
@ -189,9 +169,9 @@ bool LedDevicePhilipsHue::isPointInLampsReach(CGTriangle triangle, CGPoint p) {
}
}
CGPoint LedDevicePhilipsHue::getClosestPointToPoint(CGPoint A, CGPoint B, CGPoint P) {
CGPoint AP = { P.x - A.x, P.y - A.y };
CGPoint AB = { B.x - A.x, B.y - A.y };
ColorPoint LedDevicePhilipsHue::getClosestPointToPoint(ColorPoint a, ColorPoint b, ColorPoint p) {
ColorPoint AP = { p.x - a.x, p.y - a.y };
ColorPoint AB = { b.x - a.x, b.y - a.y };
float ab2 = AB.x * AB.x + AB.y * AB.y;
float ap_ab = AP.x * AB.x + AP.y * AB.y;
float t = ap_ab / ab2;
@ -200,20 +180,19 @@ CGPoint LedDevicePhilipsHue::getClosestPointToPoint(CGPoint A, CGPoint B, CGPoin
} else if (t > 1.0f) {
t = 1.0f;
}
return {A.x + AB.x * t, A.y + AB.y * t};
return {a.x + AB.x * t, a.y + AB.y * t};
}
float LedDevicePhilipsHue::getDistanceBetweenTwoPoints(CGPoint one, CGPoint two) {
float LedDevicePhilipsHue::getDistanceBetweenTwoPoints(ColorPoint p1, ColorPoint p2) {
// Horizontal difference.
float dx = one.x - two.x;
float dx = p1.x - p2.x;
// Vertical difference.
float dy = one.y - two.y;
float dist = sqrt(dx * dx + dy * dy);
return dist;
float dy = p1.y - p2.y;
// Absolute value.
return sqrt(dx * dx + dy * dy);
}
void LedDevicePhilipsHue::rgbToXYBrightness(float red, float green, float blue, CGTriangle triangle, CGPoint& xyPoint,
float& brightness) {
void LedDevicePhilipsHue::rgbToXYBrightness(float red, float green, float blue, HueLamp lamp, ColorPoint& xy) {
// Apply gamma correction.
float r = (red > 0.04045f) ? powf((red + 0.055f) / (1.0f + 0.055f), 2.4f) : (red / 12.92f);
float g = (green > 0.04045f) ? powf((green + 0.055f) / (1.0f + 0.055f), 2.4f) : (green / 12.92f);
@ -231,20 +210,20 @@ void LedDevicePhilipsHue::rgbToXYBrightness(float red, float green, float blue,
if (isnan(cy)) {
cy = 0.0f;
}
xyPoint.x = cx;
xyPoint.y = cy;
// Check if the given XY value is within the colourreach of our lamps.
if (!isPointInLampsReach(triangle, xyPoint)) {
// It seems the colour is out of reach let's find the closes colour we can produce with our lamp and send this XY value out.
CGPoint pAB = getClosestPointToPoint(triangle.red, triangle.green, xyPoint);
CGPoint pAC = getClosestPointToPoint(triangle.blue, triangle.red, xyPoint);
CGPoint pBC = getClosestPointToPoint(triangle.green, triangle.blue, xyPoint);
xy.x = cx;
xy.y = cy;
// Check if the given XY value is within the color reach of our lamps.
if (!isPointInLampsReach(lamp, xy)) {
// It seems the color is out of reach let's find the closes colour we can produce with our lamp and send this XY value out.
ColorPoint pAB = getClosestPointToPoint(lamp.colorSpace.red, lamp.colorSpace.green, xy);
ColorPoint pAC = getClosestPointToPoint(lamp.colorSpace.blue, lamp.colorSpace.red, xy);
ColorPoint pBC = getClosestPointToPoint(lamp.colorSpace.green, lamp.colorSpace.blue, xy);
// Get the distances per point and see which point is closer to our Point.
float dAB = getDistanceBetweenTwoPoints(xyPoint, pAB);
float dAC = getDistanceBetweenTwoPoints(xyPoint, pAC);
float dBC = getDistanceBetweenTwoPoints(xyPoint, pBC);
float dAB = getDistanceBetweenTwoPoints(xy, pAB);
float dAC = getDistanceBetweenTwoPoints(xy, pAC);
float dBC = getDistanceBetweenTwoPoints(xy, pBC);
float lowest = dAB;
CGPoint closestPoint = pAB;
ColorPoint closestPoint = pAB;
if (dAC < lowest) {
lowest = dAC;
closestPoint = pAC;
@ -254,9 +233,41 @@ void LedDevicePhilipsHue::rgbToXYBrightness(float red, float green, float blue,
closestPoint = pBC;
}
// Change the xy value to a value which is within the reach of the lamp.
xyPoint.x = closestPoint.x;
xyPoint.y = closestPoint.y;
xy.x = closestPoint.x;
xy.y = closestPoint.y;
}
// Brightness is simply Y in the XYZ space.
brightness = Y;
xy.bri = Y;
}
HueLamp::HueLamp(unsigned int id, QString originalState, QString modelId) :
id(id), originalState(originalState) {
/// Hue system model ids.
const std::set<QString> HUE_BULBS_MODEL_IDS = { "LCT001", "LCT002", "LCT003" };
const std::set<QString> LIVING_COLORS_MODEL_IDS = { "LLC001", "LLC005", "LLC006", "LLC007", "LLC011", "LLC012",
"LLC013", "LST001" };
/// Find id in the sets and set the appropiate color space.
if (HUE_BULBS_MODEL_IDS.find(modelId) != HUE_BULBS_MODEL_IDS.end()) {
colorSpace.red = {0.675f, 0.322f};
colorSpace.green = {0.4091f, 0.518f};
colorSpace.blue = {0.167f, 0.04f};
} else if (LIVING_COLORS_MODEL_IDS.find(modelId) != LIVING_COLORS_MODEL_IDS.end()) {
colorSpace.red = {0.703f, 0.296f};
colorSpace.green = {0.214f, 0.709f};
colorSpace.blue = {0.139f, 0.081f};
} else {
colorSpace.red = {1.0f, 0.0f};
colorSpace.green = {0.0f, 1.0f};
colorSpace.blue = {0.0f, 0.0f};
}
/// Initialize color with black
color = {0.0f, 0.0f, 0.0f};
}
bool operator ==(ColorPoint p1, ColorPoint p2) {
return (p1.x == p2.x) && (p1.y == p2.y) && (p1.bri == p2.bri);
}
bool operator !=(ColorPoint p1, ColorPoint p2) {
return !(p1 == p2);
}

View File

@ -12,13 +12,27 @@
// Leddevice includes
#include <leddevice/LedDevice.h>
struct CGPoint {
struct ColorPoint {
float x;
float y;
float bri;
};
struct CGTriangle {
CGPoint red, green, blue;
bool operator==(ColorPoint p1, ColorPoint p2);
bool operator!=(ColorPoint p1, ColorPoint p2);
struct ColorTriangle {
ColorPoint red, green, blue;
};
class HueLamp {
public:
unsigned int id;
ColorPoint color;
ColorTriangle colorSpace;
QString originalState;
HueLamp(unsigned int id, QString originalState, QString modelId);
};
/**
@ -63,10 +77,8 @@ private slots:
void restoreStates();
private:
/// Array to save the light states.
std::vector<QString> states;
/// Color triangles.
std::vector<CGTriangle> triangles;
/// Array to save the lamps.
std::vector<HueLamp> lamps;
/// Ip address of the bridge
QString host;
/// User name for the API ("newdeveloper")
@ -141,12 +153,11 @@ private:
///
/// @param brightness converted brightness component
///
void rgbToXYBrightness(float red, float green, float blue, CGTriangle triangle, CGPoint& xyPoint, float& brightness);
void rgbToXYBrightness(float red, float green, float blue, HueLamp lamp, ColorPoint& xy);
CGTriangle getTriangle(QString modelId);
float crossProduct(CGPoint p1, CGPoint p2);
bool isPointInLampsReach(CGTriangle triangle, CGPoint p);
CGPoint getClosestPointToPoint(CGPoint a, CGPoint b, CGPoint p);
float getDistanceBetweenTwoPoints(CGPoint one, CGPoint two);
float crossProduct(ColorPoint p1, ColorPoint p2);
bool isPointInLampsReach(HueLamp lamp, ColorPoint p);
ColorPoint getClosestPointToPoint(ColorPoint a, ColorPoint b, ColorPoint p);
float getDistanceBetweenTwoPoints(ColorPoint one, ColorPoint two);
};