diff --git a/dependencies/LightberryHDUSBAPA1021.1.zip b/dependencies/LightberryHDUSBAPA1021.1.zip new file mode 100644 index 00000000..af1527ae Binary files /dev/null and b/dependencies/LightberryHDUSBAPA1021.1.zip differ diff --git a/dependencies/LightberryHDUSBAPA1021.1/LightberryHDUSBAPA1021.1.ino b/dependencies/LightberryHDUSBAPA1021.1/LightberryHDUSBAPA1021.1.ino new file mode 100644 index 00000000..603599c9 --- /dev/null +++ b/dependencies/LightberryHDUSBAPA1021.1/LightberryHDUSBAPA1021.1.ino @@ -0,0 +1,274 @@ +// Arduino "bridge" code between host computer and WS2801-based digital +// RGB LED pixels (e.g. Adafruit product ID #322). Intended for use +// with USB-native boards such as Teensy or Adafruit 32u4 Breakout; +// works on normal serial Arduinos, but throughput is severely limited. +// LED data is streamed, not buffered, making this suitable for larger +// installations (e.g. video wall, etc.) than could otherwise be held +// in the Arduino's limited RAM. + +// Some effort is put into avoiding buffer underruns (where the output +// side becomes starved of data). The WS2801 latch protocol, being +// delay-based, could be inadvertently triggered if the USB bus or CPU +// is swamped with other tasks. This code buffers incoming serial data +// and introduces intentional pauses if there's a threat of the buffer +// draining prematurely. The cost of this complexity is somewhat +// reduced throughput, the gain is that most visual glitches are +// avoided (though ultimately a function of the load on the USB bus and +// host CPU, and out of our control). + +// LED data and clock lines are connected to the Arduino's SPI output. +// On traditional Arduino boards, SPI data out is digital pin 11 and +// clock is digital pin 13. On both Teensy and the 32u4 Breakout, +// data out is pin B2, clock is B1. LEDs should be externally +// powered -- trying to run any more than just a few off the Arduino's +// 5V line is generally a Bad Idea. LED ground should also be +// connected to Arduino ground. + +// -------------------------------------------------------------------- +// This file is part of Adalight. + +// Adalight is free software: you can redistribute it and/or modify +// it under the terms of the GNU Lesser General Public License as +// published by the Free Software Foundation, either version 3 of +// the License, or (at your option) any later version. + +// Adalight is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU Lesser General Public License for more details. + +// You should have received a copy of the GNU Lesser General Public +// License along with Adalight. If not, see +// . +// -------------------------------------------------------------------- + +#include + +// LED pin for Adafruit 32u4 Breakout Board: +//#define LED_DDR DDRE +//#define LED_PORT PORTE +//#define LED_PIN _BV(PORTE6) +// LED pin for Teensy: +//#define LED_DDR DDRD +//#define LED_PORT PORTD +//#define LED_PIN _BV(PORTD6) +// LED pin for Arduino: +#define LED_DDR DDRB +#define LED_PORT PORTB +#define LED_PIN _BV(PORTB5) + +// A 'magic word' (along with LED count & checksum) precedes each block +// of LED data; this assists the microcontroller in syncing up with the +// host-side software and properly issuing the latch (host I/O is +// likely buffered, making usleep() unreliable for latch). You may see +// an initial glitchy frame or two until the two come into alignment. +// The magic word can be whatever sequence you like, but each character +// should be unique, and frequent pixel values like 0 and 255 are +// avoided -- fewer false positives. The host software will need to +// generate a compatible header: immediately following the magic word +// are three bytes: a 16-bit count of the number of LEDs (high byte +// first) followed by a simple checksum value (high byte XOR low byte +// XOR 0x55). LED data follows, 3 bytes per LED, in order R, G, B, +// where 0 = off and 255 = max brightness. + +static const uint8_t magic[] = {'A', 'd', 'a'}; +#define MAGICSIZE sizeof(magic) +#define HEADERSIZE (MAGICSIZE + 3) + +#define MODE_HEADER 0 +#define MODE_HOLD 1 +#define MODE_DATA 2 + +#define DATA_LED A5 +#define SPI_LED A3 + +// If no serial data is received for a while, the LEDs are shut off +// automatically. This avoids the annoying "stuck pixel" look when +// quitting LED display programs on the host computer. +static const unsigned long serialTimeout = 15000; // 15 seconds + +void setup() +{ + // Dirty trick: the circular buffer for serial data is 256 bytes, + // and the "in" and "out" indices are unsigned 8-bit types -- this + // much simplifies the cases where in/out need to "wrap around" the + // beginning/end of the buffer. Otherwise there'd be a ton of bit- + // masking and/or conditional code every time one of these indices + // needs to change, slowing things down tremendously. + uint8_t + buffer[256], + indexIn = 0, + indexOut = 0, + mode = MODE_HEADER, + hi, lo, chk, i, spiFlag; + int16_t + bytesBuffered = 0, + hold = 0, + c; + int32_t + bytesRemaining; + unsigned long + startTime, + lastByteTime, + lastAckTime, + t; + bool + data_in_led = false, + spi_out_led = false; + + LED_DDR |= LED_PIN; // Enable output for LED + LED_PORT &= ~LED_PIN; // LED off + pinMode(DATA_LED, OUTPUT); //data in led + pinMode(SPI_LED, OUTPUT); //data out led + + Serial.begin(115200); // Teensy/32u4 disregards baud rate; is OK! + + SPI.begin(); + SPI.setBitOrder(MSBFIRST); + SPI.setDataMode(SPI_MODE0); + SPI.setClockDivider(SPI_CLOCK_DIV8); // 2Mhz + + // Issue test pattern to LEDs on startup. This helps verify that + // wiring between the Arduino and LEDs is correct. Not knowing the + // actual number of LEDs connected, this sets all of them (well, up + // to the first 25,000, so as not to be TOO time consuming) to red, + // green, blue, then off. Once you're confident everything is working + // end-to-end, it's OK to comment this out and reprogram the Arduino. + uint8_t testcolor[] = { 0, 0, 0, 255, 0, 0 }; + for (char n = 3; n >= 0; n--) { + for (int i = 0; i < 4; i++) { //Start Frame + for (SPDR = 0x00; !(SPSR & _BV(SPIF)); ); + } + for (c = 0; c < 25000; c++) { + for (SPDR = 0xFF; !(SPSR & _BV(SPIF)); ); //Brightness byte + for (i = 0; i < 3; i++) { + for (SPDR = testcolor[n + i]; !(SPSR & _BV(SPIF)); ); //BGR + } + } + for (int i = 0; i < 4; i++) { //Stop Frame + for (SPDR = 0xFF; !(SPSR & _BV(SPIF)); ); + } + + delay(1); // One millisecond pause = latch + } + digitalWrite(SPI_LED, spi_out_led = !spi_out_led); + + Serial.print("Ada\n"); // Send ACK string to host + + startTime = micros(); + lastByteTime = lastAckTime = millis(); + + // loop() is avoided as even that small bit of function overhead + // has a measurable impact on this code's overall throughput. + + for (;;) { + digitalWrite(DATA_LED, LOW); + digitalWrite(SPI_LED, LOW); + // Implementation is a simple finite-state machine. + // Regardless of mode, check for serial input each time: + t = millis(); + if ((bytesBuffered < 256) && ((c = Serial.read()) >= 0)) { + buffer[indexIn++] = c; + bytesBuffered++; + lastByteTime = lastAckTime = t; // Reset timeout counters + } else { + // No data received. If this persists, send an ACK packet + // to host once every second to alert it to our presence. + if ((t - lastAckTime) > 1000) { + Serial.print("Ada\n"); // Send ACK string to host + lastAckTime = t; // Reset counter + } + // If no data received for an extended time, turn off all LEDs. + if ((t - lastByteTime) > serialTimeout) { + for (i = 0; i < 4; i++) { //Start Frame + for (SPDR = 0x00; !(SPSR & _BV(SPIF)); ); + } + for (c = 0; c < 25000; c++) { + for (SPDR = 0xFF; !(SPSR & _BV(SPIF)); ); //Brightness Byte + for (i = 0; i < 3; i++) { + for (SPDR = 0x00; !(SPSR & _BV(SPIF)); ); //BGR + } + } + for (i = 0; i < 4; i++) { //Stop Frame + for (SPDR = 0xFF; !(SPSR & _BV(SPIF)); ); + } + delay(1); // One millisecond pause = latch + lastByteTime = t; // Reset counter + } + } + + switch (mode) { + + case MODE_HEADER: + + // In header-seeking mode. Is there enough data to check? + if (bytesBuffered >= HEADERSIZE) { + // Indeed. Check for a 'magic word' match. + for (i = 0; (i < MAGICSIZE) && (buffer[indexOut++] == magic[i++]);); + if (i == MAGICSIZE) { + // Magic word matches. Now how about the checksum? + hi = buffer[indexOut++]; + lo = buffer[indexOut++]; + chk = buffer[indexOut++]; + if (chk == (hi ^ lo ^ 0x55)) { + // Checksum looks valid. Get 16-bit LED count, add 1 + // (# LEDs is always > 0) and multiply by 3 for R,G,B. + bytesRemaining = 4L * (256L * (long)hi + (long)lo) + 4L + (256L * (long)hi + (long)lo + 15) / 16; + bytesBuffered -= 3; + spiFlag = 0; // No data out yet + mode = MODE_HOLD; // Proceed to latch wait mode + digitalWrite(DATA_LED, data_in_led = !data_in_led); + } else { + // Checksum didn't match; search resumes after magic word. + indexOut -= 3; // Rewind + } + } // else no header match. Resume at first mismatched byte. + bytesBuffered -= i; + } + break; + + case MODE_HOLD: + + // Ostensibly "waiting for the latch from the prior frame + // to complete" mode, but may also revert to this mode when + // underrun prevention necessitates a delay. + + if ((micros() - startTime) < hold) break; // Still holding; keep buffering + + // Latch/delay complete. Advance to data-issuing mode... + LED_PORT &= ~LED_PIN; // LED off + mode = MODE_DATA; // ...and fall through (no break): + + case MODE_DATA: + digitalWrite(SPI_LED, spi_out_led = !spi_out_led); + while (spiFlag && !(SPSR & _BV(SPIF))); // Wait for prior byte + if (bytesRemaining > 0) { + if (bytesBuffered > 0) { + SPDR = buffer[indexOut++]; // Issue next byte + bytesBuffered--; + bytesRemaining--; + spiFlag = 1; + } + // If serial buffer is threatening to underrun, start + // introducing progressively longer pauses to allow more + // data to arrive (up to a point). + if ((bytesBuffered < 32) && (bytesRemaining > bytesBuffered)) { + startTime = micros(); + hold = 100 + (32 - bytesBuffered) * 10; + mode = MODE_HOLD; + } + } else { + // End of data -- issue latch: + startTime = micros(); + hold = 1000; // Latch duration = 1000 uS + LED_PORT |= LED_PIN; // LED on + mode = MODE_HEADER; // Begin next header search + } + } // end switch + } // end for(;;) +} + +void loop() +{ + // Not used. See note in setup() function. +} diff --git a/libsrc/leddevice/LedDeviceAdalightApa102.cpp b/libsrc/leddevice/LedDeviceAdalightApa102.cpp index 07732080..9cbd3603 100644 --- a/libsrc/leddevice/LedDeviceAdalightApa102.cpp +++ b/libsrc/leddevice/LedDeviceAdalightApa102.cpp @@ -3,7 +3,6 @@ #include #include #include -#include // Linux includes #include @@ -13,30 +12,38 @@ #include "LedDeviceAdalightApa102.h" LedDeviceAdalightApa102::LedDeviceAdalightApa102(const std::string& outputDevice, const unsigned baudrate, int delayAfterConnect_ms) : - LedDeviceAdalight(outputDevice, baudrate, delayAfterConnect_ms), + LedRs232Device(outputDevice, baudrate, delayAfterConnect_ms), _ledBuffer(0), _timer() { + // setup the timer + _timer.setSingleShot(false); + _timer.setInterval(5000); + connect(&_timer, SIGNAL(timeout()), this, SLOT(rewriteLeds())); + + // start the timer + _timer.start(); } //comparing to ws2801 adalight, the following changes were needed: // 1- differnt data frame (4 bytes instead of 3) // 2 - in order to accomodate point 1 above, number of leds sent to adalight is increased by 1/3rd int LedDeviceAdalightApa102::write(const std::vector & ledValues) { + ledCount = ledValues.size(); const unsigned int startFrameSize = 4; - const unsigned int endFrameSize = std::max(((ledValues.size() + 15) / 16), 4); - const unsigned int mLedCount = (ledValues.size() * 4) + startFrameSize + endFrameSize; - if(_ledBuffer.size() != mLedCount){ - _ledBuffer.resize(mLedCount, 0xFF); + const unsigned int endFrameSize = std::max(((ledCount + 15) / 16), 4); + const unsigned int mLedCount = (ledCount * 4) + startFrameSize + endFrameSize; + if(_ledBuffer.size() != mLedCount+6){ + _ledBuffer.resize(mLedCount+6, 0x00); _ledBuffer[0] = 'A'; _ledBuffer[1] = 'd'; _ledBuffer[2] = 'a'; - _ledBuffer[3] = (((unsigned int)(ledValues.size() * 1.33) - 1) >> 8) & 0xFF; // LED count high byte - _ledBuffer[4] = ((unsigned int)(ledValues.size() * 1.33) - 1) & 0xFF; // LED count low byte + _ledBuffer[3] = (((unsigned int)(ledValues.size())) >> 8) & 0xFF; // LED count high byte + _ledBuffer[4] = ((unsigned int)(ledValues.size())) & 0xFF; // LED count low byte _ledBuffer[5] = _ledBuffer[3] ^ _ledBuffer[4] ^ 0x55; // Checksum } - - for (unsigned iLed=1; iLed<=ledValues.size(); iLed++) { + + for (unsigned iLed=1; iLed<=ledCount; iLed++) { const ColorRgb& rgb = ledValues[iLed-1]; _ledBuffer[iLed*4+6] = 0xFF; _ledBuffer[iLed*4+1+6] = rgb.red; @@ -51,4 +58,25 @@ int LedDeviceAdalightApa102::write(const std::vector & ledValues) return writeBytes(_ledBuffer.size(), _ledBuffer.data()); } +int LedDeviceAdalightApa102::switchOff() +{ + for (unsigned iLed=1; iLed<=ledCount; iLed++) { + _ledBuffer[iLed*4+6] = 0xFF; + _ledBuffer[iLed*4+1+6] = 0x00; + _ledBuffer[iLed*4+2+6] = 0x00; + _ledBuffer[iLed*4+3+6] = 0x00; + } + + // restart the timer + _timer.start(); + + // write data + return writeBytes(_ledBuffer.size(), _ledBuffer.data()); + +} + +void LedDeviceAdalightApa102::rewriteLeds() +{ + writeBytes(_ledBuffer.size(), _ledBuffer.data()); +} diff --git a/libsrc/leddevice/LedDeviceAdalightApa102.h b/libsrc/leddevice/LedDeviceAdalightApa102.h index a0a7c89c..eef37662 100644 --- a/libsrc/leddevice/LedDeviceAdalightApa102.h +++ b/libsrc/leddevice/LedDeviceAdalightApa102.h @@ -7,12 +7,12 @@ #include // hyperion incluse -#include "LedDeviceAdalight.h" +#include "LedRs232Device.h" /// /// Implementation of the LedDevice interface for writing to an Adalight led device for APA102. /// -class LedDeviceAdalightApa102 : public LedDeviceAdalight +class LedDeviceAdalightApa102 : public LedRs232Device { Q_OBJECT @@ -32,13 +32,17 @@ public: /// @return Zero on succes else negative /// virtual int write(const std::vector & ledValues); + virtual int switchOff(); - +private slots: + /// Write the last data to the leds again + void rewriteLeds(); + private: /// The buffer containing the packed RGB values std::vector _ledBuffer; - + unsigned int ledCount; /// Timer object which makes sure that led data is written at a minimum rate /// The Adalight device will switch off when it does not receive data at least /// every 15 seconds