leddevice refactoring. code style and extension of baseclass to avoid dups (#174)

This commit is contained in:
redPanther 2016-08-14 10:46:44 +02:00 committed by GitHub
parent bc0c9c469f
commit 97181fa83c
63 changed files with 483 additions and 533 deletions

View File

@ -3,6 +3,8 @@
// STL incldues // STL incldues
#include <vector> #include <vector>
#include <QObject>
// Utility includes // Utility includes
#include <utils/ColorRgb.h> #include <utils/ColorRgb.h>
#include <utils/ColorRgbw.h> #include <utils/ColorRgbw.h>
@ -12,8 +14,10 @@
/// ///
/// Interface (pure virtual base class) for LedDevices. /// Interface (pure virtual base class) for LedDevices.
/// ///
class LedDevice class LedDevice : public QObject
{ {
Q_OBJECT
public: public:
LedDevice(); LedDevice();
/// ///
@ -41,5 +45,12 @@ public:
virtual int open(); virtual int open();
protected: protected:
/// The common Logger instance for all LedDevices
Logger * _log; Logger * _log;
int _ledCount;
/// The buffer containing the packed RGB values
std::vector<uint8_t> _ledBuffer;
}; };

View File

@ -6,8 +6,7 @@
using namespace hyperion; using namespace hyperion;
LinearColorSmoothing::LinearColorSmoothing( LedDevice * ledDevice, double ledUpdateFrequency_hz, int settlingTime_ms, unsigned updateDelay, bool continuousOutput) LinearColorSmoothing::LinearColorSmoothing( LedDevice * ledDevice, double ledUpdateFrequency_hz, int settlingTime_ms, unsigned updateDelay, bool continuousOutput)
: QObject() : LedDevice()
, LedDevice()
, _ledDevice(ledDevice) , _ledDevice(ledDevice)
, _updateInterval(1000 / ledUpdateFrequency_hz) , _updateInterval(1000 / ledUpdateFrequency_hz)
, _settlingTime(settlingTime_ms) , _settlingTime(settlingTime_ms)

View File

@ -15,7 +15,7 @@
/// ///
/// This class processes the requested led values and forwards them to the device after applying /// This class processes the requested led values and forwards them to the device after applying
/// a linear smoothing effect. This class can be handled as a generic LedDevice. /// a linear smoothing effect. This class can be handled as a generic LedDevice.
class LinearColorSmoothing : public QObject, public LedDevice class LinearColorSmoothing : public LedDevice
{ {
Q_OBJECT Q_OBJECT

View File

@ -14,6 +14,7 @@ include_directories(
# Group the headers that go through the MOC compiler # Group the headers that go through the MOC compiler
SET(Leddevice_QT_HEADERS SET(Leddevice_QT_HEADERS
${CURRENT_HEADER_DIR}/LedDevice.h
${CURRENT_SOURCE_DIR}/LedRs232Device.h ${CURRENT_SOURCE_DIR}/LedRs232Device.h
${CURRENT_SOURCE_DIR}/LedDeviceAdalight.h ${CURRENT_SOURCE_DIR}/LedDeviceAdalight.h
${CURRENT_SOURCE_DIR}/LedDeviceAdalightApa102.h ${CURRENT_SOURCE_DIR}/LedDeviceAdalightApa102.h
@ -25,7 +26,6 @@ SET(Leddevice_QT_HEADERS
) )
SET(Leddevice_HEADERS SET(Leddevice_HEADERS
${CURRENT_HEADER_DIR}/LedDevice.h
${CURRENT_HEADER_DIR}/LedDeviceFactory.h ${CURRENT_HEADER_DIR}/LedDeviceFactory.h
${CURRENT_SOURCE_DIR}/LedDeviceLightpack.h ${CURRENT_SOURCE_DIR}/LedDeviceLightpack.h

View File

@ -1,7 +1,11 @@
#include <leddevice/LedDevice.h> #include <leddevice/LedDevice.h>
LedDevice::LedDevice() LedDevice::LedDevice()
: _log(Logger::getInstance("LedDevice")) : QObject()
, _log(Logger::getInstance("LedDevice"))
, _ledCount(0)
, _ledBuffer(0)
{ {
} }

View File

@ -14,16 +14,15 @@
LedDeviceAPA102::LedDeviceAPA102(const std::string& outputDevice, const unsigned baudrate) LedDeviceAPA102::LedDeviceAPA102(const std::string& outputDevice, const unsigned baudrate)
: LedSpiDevice(outputDevice, baudrate, 500000) : LedSpiDevice(outputDevice, baudrate, 500000)
, _ledBuffer(0)
{ {
} }
int LedDeviceAPA102::write(const std::vector<ColorRgb> &ledValues) int LedDeviceAPA102::write(const std::vector<ColorRgb> &ledValues)
{ {
_mLedCount = ledValues.size(); _ledCount = ledValues.size();
const unsigned int startFrameSize = 4; const unsigned int startFrameSize = 4;
const unsigned int endFrameSize = std::max<unsigned int>(((_mLedCount + 15) / 16), 4); const unsigned int endFrameSize = std::max<unsigned int>(((_ledCount + 15) / 16), 4);
const unsigned int APAbufferSize = (_mLedCount * 4) + startFrameSize + endFrameSize; const unsigned int APAbufferSize = (_ledCount * 4) + startFrameSize + endFrameSize;
if(_ledBuffer.size() != APAbufferSize){ if(_ledBuffer.size() != APAbufferSize){
_ledBuffer.resize(APAbufferSize, 0xFF); _ledBuffer.resize(APAbufferSize, 0xFF);
@ -33,7 +32,7 @@ int LedDeviceAPA102::write(const std::vector<ColorRgb> &ledValues)
_ledBuffer[3] = 0x00; _ledBuffer[3] = 0x00;
} }
for (unsigned iLed=0; iLed < _mLedCount; ++iLed) { for (signed iLed=0; iLed < _ledCount; ++iLed) {
const ColorRgb& rgb = ledValues[iLed]; const ColorRgb& rgb = ledValues[iLed];
_ledBuffer[4+iLed*4] = 0xFF; _ledBuffer[4+iLed*4] = 0xFF;
_ledBuffer[4+iLed*4+1] = rgb.red; _ledBuffer[4+iLed*4+1] = rgb.red;
@ -46,5 +45,5 @@ int LedDeviceAPA102::write(const std::vector<ColorRgb> &ledValues)
int LedDeviceAPA102::switchOff() int LedDeviceAPA102::switchOff()
{ {
return write(std::vector<ColorRgb>(_mLedCount, ColorRgb{0,0,0})); return write(std::vector<ColorRgb>(_ledCount, ColorRgb{0,0,0}));
} }

View File

@ -33,11 +33,4 @@ public:
/// Switch the leds off /// Switch the leds off
virtual int switchOff(); virtual int switchOff();
private:
/// The buffer containing the packed RGB values
std::vector<uint8_t> _ledBuffer;
unsigned int _mLedCount;
}; };

View File

@ -11,10 +11,9 @@
// hyperion local includes // hyperion local includes
#include "LedDeviceAdalight.h" #include "LedDeviceAdalight.h"
LedDeviceAdalight::LedDeviceAdalight(const std::string& outputDevice, const unsigned baudrate, int delayAfterConnect_ms) : LedDeviceAdalight::LedDeviceAdalight(const std::string& outputDevice, const unsigned baudrate, int delayAfterConnect_ms)
LedRs232Device(outputDevice, baudrate, delayAfterConnect_ms), : LedRs232Device(outputDevice, baudrate, delayAfterConnect_ms)
_ledBuffer(0), , _timer()
_timer()
{ {
// setup the timer // setup the timer
_timer.setSingleShot(false); _timer.setSingleShot(false);

View File

@ -41,9 +41,6 @@ private slots:
void rewriteLeds(); void rewriteLeds();
protected: protected:
/// The buffer containing the packed RGB values
std::vector<uint8_t> _ledBuffer;
/// Timer object which makes sure that led data is written at a minimum rate /// Timer object which makes sure that led data is written at a minimum rate
/// The Adalight device will switch off when it does not receive data at least /// The Adalight device will switch off when it does not receive data at least
/// every 15 seconds /// every 15 seconds

View File

@ -11,28 +11,20 @@
// hyperion local includes // hyperion local includes
#include "LedDeviceAdalightApa102.h" #include "LedDeviceAdalightApa102.h"
LedDeviceAdalightApa102::LedDeviceAdalightApa102(const std::string& outputDevice, const unsigned baudrate, int delayAfterConnect_ms) : LedDeviceAdalightApa102::LedDeviceAdalightApa102(const std::string& outputDevice, const unsigned baudrate, int delayAfterConnect_ms)
LedRs232Device(outputDevice, baudrate, delayAfterConnect_ms), : LedDeviceAdalight(outputDevice, baudrate, delayAfterConnect_ms)
_ledBuffer(0),
_timer()
{ {
// setup the timer
_timer.setSingleShot(false);
_timer.setInterval(5000);
connect(&_timer, SIGNAL(timeout()), this, SLOT(rewriteLeds()));
// start the timer
_timer.start();
} }
//comparing to ws2801 adalight, the following changes were needed: //comparing to ws2801 adalight, the following changes were needed:
// 1- differnt data frame (4 bytes instead of 3) // 1- differnt data frame (4 bytes instead of 3)
// 2 - in order to accomodate point 1 above, number of leds sent to adalight is increased by 1/3rd // 2 - in order to accomodate point 1 above, number of leds sent to adalight is increased by 1/3rd
int LedDeviceAdalightApa102::write(const std::vector<ColorRgb> & ledValues) int LedDeviceAdalightApa102::write(const std::vector<ColorRgb> & ledValues)
{ {
ledCount = ledValues.size(); _ledCount = ledValues.size();
const unsigned int startFrameSize = 4; const unsigned int startFrameSize = 4;
const unsigned int endFrameSize = std::max<unsigned int>(((ledCount + 15) / 16), 4); const unsigned int endFrameSize = std::max<unsigned int>(((_ledCount + 15) / 16), 4);
const unsigned int mLedCount = (ledCount * 4) + startFrameSize + endFrameSize; const unsigned int mLedCount = (_ledCount * 4) + startFrameSize + endFrameSize;
if(_ledBuffer.size() != mLedCount+6){ if(_ledBuffer.size() != mLedCount+6){
_ledBuffer.resize(mLedCount+6, 0x00); _ledBuffer.resize(mLedCount+6, 0x00);
_ledBuffer[0] = 'A'; _ledBuffer[0] = 'A';
@ -43,7 +35,7 @@ int LedDeviceAdalightApa102::write(const std::vector<ColorRgb> & ledValues)
_ledBuffer[5] = _ledBuffer[3] ^ _ledBuffer[4] ^ 0x55; // Checksum _ledBuffer[5] = _ledBuffer[3] ^ _ledBuffer[4] ^ 0x55; // Checksum
} }
for (unsigned iLed=1; iLed<=ledCount; iLed++) { for (signed iLed=1; iLed<=_ledCount; iLed++) {
const ColorRgb& rgb = ledValues[iLed-1]; const ColorRgb& rgb = ledValues[iLed-1];
_ledBuffer[iLed*4+6] = 0xFF; _ledBuffer[iLed*4+6] = 0xFF;
_ledBuffer[iLed*4+1+6] = rgb.red; _ledBuffer[iLed*4+1+6] = rgb.red;
@ -60,7 +52,7 @@ int LedDeviceAdalightApa102::write(const std::vector<ColorRgb> & ledValues)
int LedDeviceAdalightApa102::switchOff() int LedDeviceAdalightApa102::switchOff()
{ {
for (unsigned iLed=1; iLed<=ledCount; iLed++) { for (signed iLed=1; iLed<=_ledCount; iLed++) {
_ledBuffer[iLed*4+6] = 0xFF; _ledBuffer[iLed*4+6] = 0xFF;
_ledBuffer[iLed*4+1+6] = 0x00; _ledBuffer[iLed*4+1+6] = 0x00;
_ledBuffer[iLed*4+2+6] = 0x00; _ledBuffer[iLed*4+2+6] = 0x00;
@ -74,9 +66,3 @@ int LedDeviceAdalightApa102::switchOff()
return writeBytes(_ledBuffer.size(), _ledBuffer.data()); return writeBytes(_ledBuffer.size(), _ledBuffer.data());
} }
void LedDeviceAdalightApa102::rewriteLeds()
{
writeBytes(_ledBuffer.size(), _ledBuffer.data());
}

View File

@ -3,16 +3,13 @@
// STL includes // STL includes
#include <string> #include <string>
// Qt includes // hyperion include
#include <QTimer> #include "LedDeviceAdalight.h"
// hyperion incluse
#include "LedRs232Device.h"
/// ///
/// Implementation of the LedDevice interface for writing to an Adalight led device for APA102. /// Implementation of the LedDevice interface for writing to an Adalight led device for APA102.
/// ///
class LedDeviceAdalightApa102 : public LedRs232Device class LedDeviceAdalightApa102 : public LedDeviceAdalight
{ {
Q_OBJECT Q_OBJECT
@ -32,19 +29,7 @@ public:
/// @return Zero on succes else negative /// @return Zero on succes else negative
/// ///
virtual int write(const std::vector<ColorRgb> & ledValues); virtual int write(const std::vector<ColorRgb> & ledValues);
/// Switch the leds off
virtual int switchOff(); virtual int switchOff();
private slots:
/// Write the last data to the leds again
void rewriteLeds();
private:
/// The buffer containing the packed RGB values
std::vector<uint8_t> _ledBuffer;
unsigned int ledCount;
/// Timer object which makes sure that led data is written at a minimum rate
/// The Adalight device will switch off when it does not receive data at least
/// every 15 seconds
QTimer _timer;
}; };

View File

@ -1,15 +1,10 @@
// STL includes
#include <cstring>
#include <iostream>
// hyperion local includes // hyperion local includes
#include "LedDeviceAtmo.h" #include "LedDeviceAtmo.h"
LedDeviceAtmo::LedDeviceAtmo(const std::string& outputDevice, const unsigned baudrate) : LedDeviceAtmo::LedDeviceAtmo(const std::string& outputDevice, const unsigned baudrate)
LedRs232Device(outputDevice, baudrate), : LedRs232Device(outputDevice, baudrate)
_ledBuffer(4 + 5*3) // 4-byte header, 5 RGB values
{ {
_ledBuffer.resize(4 + 5*3); // 4-byte header, 5 RGB values
_ledBuffer[0] = 0xFF; // Startbyte _ledBuffer[0] = 0xFF; // Startbyte
_ledBuffer[1] = 0x00; // StartChannel(Low) _ledBuffer[1] = 0x00; // StartChannel(Low)
_ledBuffer[2] = 0x00; // StartChannel(High) _ledBuffer[2] = 0x00; // StartChannel(High)

View File

@ -31,8 +31,4 @@ public:
/// Switch the leds off /// Switch the leds off
virtual int switchOff(); virtual int switchOff();
private:
/// The buffer containing the packed RGB values
std::vector<uint8_t> _ledBuffer;
}; };

View File

@ -22,22 +22,30 @@ LedDeviceAtmoOrb::LedDeviceAtmoOrb(
int skipSmoothingDiff, int skipSmoothingDiff,
int port, int port,
int numLeds, int numLeds,
std::vector<unsigned int> orbIds) : std::vector<unsigned int> orbIds)
multicastGroup(output.c_str()), useOrbSmoothing(useOrbSmoothing), transitiontime(transitiontime), skipSmoothingDiff(skipSmoothingDiff), : LedDevice()
multiCastGroupPort(port), numLeds(numLeds), orbIds(orbIds) , _multicastGroup(output.c_str())
, _useOrbSmoothing(useOrbSmoothing)
, _transitiontime(transitiontime)
, _skipSmoothingDiff(skipSmoothingDiff)
, _multiCastGroupPort(port)
, _numLeds(numLeds)
, _orbIds(orbIds)
{ {
manager = new QNetworkAccessManager(); _manager = new QNetworkAccessManager();
groupAddress = QHostAddress(multicastGroup); _groupAddress = QHostAddress(_multicastGroup);
udpSocket = new QUdpSocket(this); _udpSocket = new QUdpSocket(this);
udpSocket->bind(QHostAddress::Any, multiCastGroupPort, QUdpSocket::ShareAddress | QUdpSocket::ReuseAddressHint); _udpSocket->bind(QHostAddress::Any, _multiCastGroupPort, QUdpSocket::ShareAddress | QUdpSocket::ReuseAddressHint);
joinedMulticastgroup = udpSocket->joinMulticastGroup(groupAddress); joinedMulticastgroup = _udpSocket->joinMulticastGroup(_groupAddress);
} }
int LedDeviceAtmoOrb::write(const std::vector <ColorRgb> &ledValues) { int LedDeviceAtmoOrb::write(const std::vector <ColorRgb> &ledValues)
{
// If not in multicast group return // If not in multicast group return
if (!joinedMulticastgroup) { if (!joinedMulticastgroup)
{
return 0; return 0;
} }
@ -47,9 +55,9 @@ int LedDeviceAtmoOrb::write(const std::vector <ColorRgb> &ledValues) {
// 2 = use lamp smoothing and validate by Orb ID // 2 = use lamp smoothing and validate by Orb ID
// 4 = validate by Orb ID // 4 = validate by Orb ID
// When setting useOrbSmoothing = true it's recommended to disable Hyperion's own smoothing as it will conflict (double smoothing) // When setting _useOrbSmoothing = true it's recommended to disable Hyperion's own smoothing as it will conflict (double smoothing)
int commandType = 4; int commandType = 4;
if(useOrbSmoothing) if(_useOrbSmoothing)
{ {
commandType = 2; commandType = 2;
} }
@ -58,36 +66,42 @@ int LedDeviceAtmoOrb::write(const std::vector <ColorRgb> &ledValues) {
// Start off with idx 1 as 0 is reserved for controlling all orbs at once // Start off with idx 1 as 0 is reserved for controlling all orbs at once
unsigned int idx = 1; unsigned int idx = 1;
for (const ColorRgb &color : ledValues) { for (const ColorRgb &color : ledValues)
{
// Retrieve last send colors // Retrieve last send colors
int lastRed = lastColorRedMap[idx]; int lastRed = lastColorRedMap[idx];
int lastGreen = lastColorGreenMap[idx]; int lastGreen = lastColorGreenMap[idx];
int lastBlue = lastColorBlueMap[idx]; int lastBlue = lastColorBlueMap[idx];
// If color difference is higher than skipSmoothingDiff than we skip Orb smoothing (if enabled) and send it right away // If color difference is higher than _skipSmoothingDiff than we skip Orb smoothing (if enabled) and send it right away
if ((skipSmoothingDiff != 0 && useOrbSmoothing) && (abs(color.red - lastRed) >= skipSmoothingDiff || abs(color.blue - lastBlue) >= skipSmoothingDiff || if ((_skipSmoothingDiff != 0 && _useOrbSmoothing) && (abs(color.red - lastRed) >= _skipSmoothingDiff || abs(color.blue - lastBlue) >= _skipSmoothingDiff ||
abs(color.green - lastGreen) >= skipSmoothingDiff)) abs(color.green - lastGreen) >= _skipSmoothingDiff))
{ {
// Skip Orb smoothing when using (command type 4) // Skip Orb smoothing when using (command type 4)
for (unsigned int i = 0; i < orbIds.size(); i++) { for (unsigned int i = 0; i < _orbIds.size(); i++)
if (orbIds[i] == idx) { {
if (_orbIds[i] == idx)
{
setColor(idx, color, 4); setColor(idx, color, 4);
} }
} }
} }
else { else
{
// Send color // Send color
for (unsigned int i = 0; i < orbIds.size(); i++) { for (unsigned int i = 0; i < _orbIds.size(); i++)
if (orbIds[i] == idx) { {
if (_orbIds[i] == idx)
{
setColor(idx, color, commandType); setColor(idx, color, commandType);
} }
} }
} }
// Store last colors send for light id // Store last colors send for light id
lastColorRedMap[idx] = color.red; lastColorRedMap[idx] = color.red;
lastColorGreenMap[idx] = color.green; lastColorGreenMap[idx] = color.green;
lastColorBlueMap[idx] = color.blue; lastColorBlueMap[idx] = color.blue;
// Next light id. // Next light id.
idx++; idx++;
@ -96,9 +110,10 @@ int LedDeviceAtmoOrb::write(const std::vector <ColorRgb> &ledValues) {
return 0; return 0;
} }
void LedDeviceAtmoOrb::setColor(unsigned int orbId, const ColorRgb &color, int commandType) { void LedDeviceAtmoOrb::setColor(unsigned int orbId, const ColorRgb &color, int commandType)
{
QByteArray bytes; QByteArray bytes;
bytes.resize(5 + numLeds * 3); bytes.resize(5 + _numLeds * 3);
bytes.fill('\0'); bytes.fill('\0');
// Command identifier: C0FFEE // Command identifier: C0FFEE
@ -120,16 +135,17 @@ void LedDeviceAtmoOrb::setColor(unsigned int orbId, const ColorRgb &color, int c
sendCommand(bytes); sendCommand(bytes);
} }
void LedDeviceAtmoOrb::sendCommand(const QByteArray &bytes) { void LedDeviceAtmoOrb::sendCommand(const QByteArray &bytes)
{
QByteArray datagram = bytes; QByteArray datagram = bytes;
udpSocket->writeDatagram(datagram.data(), datagram.size(), _udpSocket->writeDatagram(datagram.data(), datagram.size(), _groupAddress, _multiCastGroupPort);
groupAddress, multiCastGroupPort);
} }
int LedDeviceAtmoOrb::switchOff() { int LedDeviceAtmoOrb::switchOff() {
for (unsigned int i = 0; i < orbIds.size(); i++) { for (unsigned int i = 0; i < _orbIds.size(); i++)
{
QByteArray bytes; QByteArray bytes;
bytes.resize(5 + numLeds * 3); bytes.resize(5 + _numLeds * 3);
bytes.fill('\0'); bytes.fill('\0');
// Command identifier: C0FFEE // Command identifier: C0FFEE
@ -141,7 +157,7 @@ int LedDeviceAtmoOrb::switchOff() {
bytes[3] = 1; bytes[3] = 1;
// Orb ID // Orb ID
bytes[4] = orbIds[i]; bytes[4] = _orbIds[i];
// RED / GREEN / BLUE // RED / GREEN / BLUE
bytes[5] = 0; bytes[5] = 0;
@ -153,6 +169,7 @@ int LedDeviceAtmoOrb::switchOff() {
return 0; return 0;
} }
LedDeviceAtmoOrb::~LedDeviceAtmoOrb() { LedDeviceAtmoOrb::~LedDeviceAtmoOrb()
delete manager; {
delete _manager;
} }

View File

@ -32,7 +32,8 @@ public:
* *
* @author RickDB (github) * @author RickDB (github)
*/ */
class LedDeviceAtmoOrb : public QObject, public LedDevice { class LedDeviceAtmoOrb : public LedDevice
{
Q_OBJECT Q_OBJECT
public: public:
// Last send color map // Last send color map
@ -47,22 +48,16 @@ public:
/// Constructs the device. /// Constructs the device.
/// ///
/// @param output is the multicast address of Orbs /// @param output is the multicast address of Orbs
///
/// @param transitiontime is optional and not used at the moment /// @param transitiontime is optional and not used at the moment
///
/// @param useOrbSmoothing use Orbs own (external) smoothing algorithm (default: false) /// @param useOrbSmoothing use Orbs own (external) smoothing algorithm (default: false)
///
/// @param skipSmoothingDiff minimal color (0-255) difference to override smoothing so that if current and previously received colors are higher than set dif we override smoothing /// @param skipSmoothingDiff minimal color (0-255) difference to override smoothing so that if current and previously received colors are higher than set dif we override smoothing
///
/// @param port is the multicast port. /// @param port is the multicast port.
///
/// @param numLeds is the total amount of leds per Orb /// @param numLeds is the total amount of leds per Orb
///
/// @param array containing orb ids /// @param array containing orb ids
/// ///
LedDeviceAtmoOrb(const std::string &output, bool useOrbSmoothing = LedDeviceAtmoOrb(const std::string &output, bool useOrbSmoothing =
false, int transitiontime = 0, int skipSmoothingDiff = 0, int port = 49692, int numLeds = 24, false, int transitiontime = 0, int skipSmoothingDiff = 0, int port = 49692, int numLeds = 24,
std::vector<unsigned int> orbIds = std::vector < unsigned int>()); std::vector<unsigned int> orbIds = std::vector<unsigned int>());
/// ///
/// Destructor of this device /// Destructor of this device
@ -73,7 +68,6 @@ public:
/// Sends the given led-color values to the Orbs /// Sends the given led-color values to the Orbs
/// ///
/// @param ledValues The color-value per led /// @param ledValues The color-value per led
///
/// @return Zero on success else negative /// @return Zero on success else negative
/// ///
virtual int write(const std::vector <ColorRgb> &ledValues); virtual int write(const std::vector <ColorRgb> &ledValues);
@ -82,43 +76,40 @@ public:
private: private:
/// QNetworkAccessManager object for sending requests. /// QNetworkAccessManager object for sending requests.
QNetworkAccessManager *manager; QNetworkAccessManager *_manager;
/// String containing multicast group IP address /// String containing multicast group IP address
QString multicastGroup; QString _multicastGroup;
/// use Orbs own (external) smoothing algorithm /// use Orbs own (external) smoothing algorithm
bool useOrbSmoothing; bool _useOrbSmoothing;
/// Transition time between colors (not implemented) /// Transition time between colors (not implemented)
int transitiontime; int _transitiontime;
// Maximum allowed color difference, will skip Orb (external) smoothing once reached // Maximum allowed color difference, will skip Orb (external) smoothing once reached
int skipSmoothingDiff; int _skipSmoothingDiff;
/// Multicast port to send data to /// Multicast port to send data to
int multiCastGroupPort; int _multiCastGroupPort;
/// Number of leds in Orb, used to determine buffer size /// Number of leds in Orb, used to determine buffer size
int numLeds; int _numLeds;
/// QHostAddress object of multicast group IP address /// QHostAddress object of multicast group IP address
QHostAddress groupAddress; QHostAddress _groupAddress;
/// QUdpSocket object used to send data over /// QUdpSocket object used to send data over
QUdpSocket *udpSocket; QUdpSocket * _udpSocket;
/// Array of the orb ids. /// Array of the orb ids.
std::vector<unsigned int> orbIds; std::vector<unsigned int> _orbIds;
/// ///
/// Set Orbcolor /// Set Orbcolor
/// ///
/// @param orbId the orb id /// @param orbId the orb id
///
/// @param color which color to set /// @param color which color to set
///
///
/// @param commandType which type of command to send (off / smoothing / etc..) /// @param commandType which type of command to send (off / smoothing / etc..)
/// ///
void setColor(unsigned int orbId, const ColorRgb &color, int commandType); void setColor(unsigned int orbId, const ColorRgb &color, int commandType);

View File

@ -1,12 +1,13 @@
#include "LedDeviceFadeCandy.h" #include "LedDeviceFadeCandy.h"
static const signed MAX_NUM_LEDS = 10000; // OPC can handle 21845 leds - in theory, fadecandy device should handle 10000 leds static const signed MAX_NUM_LEDS = 10000; // OPC can handle 21845 leds - in theory, fadecandy device should handle 10000 leds
static const unsigned OPC_SET_PIXELS = 0; // OPC command codes static const unsigned OPC_SET_PIXELS = 0; // OPC command codes
static const unsigned OPC_SYS_EX = 255; // OPC command codes static const unsigned OPC_SYS_EX = 255; // OPC command codes
static const unsigned OPC_HEADER_SIZE = 4; // OPC header size static const unsigned OPC_HEADER_SIZE = 4; // OPC header size
LedDeviceFadeCandy::LedDeviceFadeCandy(const Json::Value &deviceConfig) LedDeviceFadeCandy::LedDeviceFadeCandy(const Json::Value &deviceConfig)
: LedDevice()
{ {
setConfig(deviceConfig); setConfig(deviceConfig);
_opc_data.resize( OPC_HEADER_SIZE ); _opc_data.resize( OPC_HEADER_SIZE );

View File

@ -13,7 +13,7 @@
/// Implementation of the LedDevice interface for sending to /// Implementation of the LedDevice interface for sending to
/// fadecandy/opc-server via network by using the 'open pixel control' protocol. /// fadecandy/opc-server via network by using the 'open pixel control' protocol.
/// ///
class LedDeviceFadeCandy : public QObject, public LedDevice class LedDeviceFadeCandy : public LedDevice
{ {
Q_OBJECT Q_OBJECT

View File

@ -2,8 +2,9 @@
// Local-Hyperion includes // Local-Hyperion includes
#include "LedDeviceFile.h" #include "LedDeviceFile.h"
LedDeviceFile::LedDeviceFile(const std::string& output) : LedDeviceFile::LedDeviceFile(const std::string& output)
_ofs(output.empty()?"/dev/null":output.c_str()) : LedDevice()
, _ofs( output.empty() ? "/dev/null" : output.c_str())
{ {
// empty // empty
} }

View File

@ -11,12 +11,11 @@ uint16_t LedDeviceHyperionUsbasp::_usbProductId = 0x05dc;
std::string LedDeviceHyperionUsbasp::_usbProductDescription = "Hyperion led controller"; std::string LedDeviceHyperionUsbasp::_usbProductDescription = "Hyperion led controller";
LedDeviceHyperionUsbasp::LedDeviceHyperionUsbasp(uint8_t writeLedsCommand) : LedDeviceHyperionUsbasp::LedDeviceHyperionUsbasp(uint8_t writeLedsCommand)
LedDevice(), : LedDevice()
_writeLedsCommand(writeLedsCommand), , _writeLedsCommand(writeLedsCommand)
_libusbContext(nullptr), , _libusbContext(nullptr)
_deviceHandle(nullptr), , _deviceHandle(nullptr)
_ledCount(256)
{ {
} }

View File

@ -78,11 +78,8 @@ private:
/// libusb device handle /// libusb device handle
libusb_device_handle * _deviceHandle; libusb_device_handle * _deviceHandle;
/// Number of leds
int _ledCount;
/// Usb device identifiers /// Usb device identifiers
static uint16_t _usbVendorId; static uint16_t _usbVendorId;
static uint16_t _usbProductId; static uint16_t _usbProductId;
static std::string _usbProductDescription; static std::string _usbProductDescription;
}; };

View File

@ -16,7 +16,7 @@
// from commands.h (http://code.google.com/p/light-pack/source/browse/CommonHeaders/commands.h) // from commands.h (http://code.google.com/p/light-pack/source/browse/CommonHeaders/commands.h)
// Commands to device, sends it in first byte of data[] // Commands to device, sends it in first byte of data[]
enum COMMANDS{ enum COMMANDS {
CMD_UPDATE_LEDS = 1, CMD_UPDATE_LEDS = 1,
CMD_OFF_ALL, CMD_OFF_ALL,
CMD_SET_TIMER_OPTIONS, CMD_SET_TIMER_OPTIONS,
@ -28,20 +28,19 @@ enum COMMANDS{
}; };
// from commands.h (http://code.google.com/p/light-pack/source/browse/CommonHeaders/commands.h) // from commands.h (http://code.google.com/p/light-pack/source/browse/CommonHeaders/commands.h)
enum DATA_VERSION_INDEXES{ enum DATA_VERSION_INDEXES {
INDEX_FW_VER_MAJOR = 1, INDEX_FW_VER_MAJOR = 1,
INDEX_FW_VER_MINOR INDEX_FW_VER_MINOR
}; };
LedDeviceLightpackHidapi::LedDeviceLightpackHidapi() : LedDeviceLightpackHidapi::LedDeviceLightpackHidapi()
LedDevice(), : LedDevice()
_deviceHandle(nullptr), , _deviceHandle(nullptr)
_serialNumber(""), , _serialNumber("")
_firmwareVersion({-1,-1}), , _firmwareVersion({-1,-1})
_ledCount(-1), , _bitsPerChannel(-1)
_bitsPerChannel(-1),
_ledBuffer()
{ {
_ledCount = -1;
} }
LedDeviceLightpackHidapi::~LedDeviceLightpackHidapi() LedDeviceLightpackHidapi::~LedDeviceLightpackHidapi()

View File

@ -40,10 +40,9 @@ LedDeviceLightpack::LedDeviceLightpack(const std::string & serialNumber)
, _addressNumber(-1) , _addressNumber(-1)
, _serialNumber(serialNumber) , _serialNumber(serialNumber)
, _firmwareVersion({-1,-1}) , _firmwareVersion({-1,-1})
, _ledCount(-1)
, _bitsPerChannel(-1) , _bitsPerChannel(-1)
, _ledBuffer()
{ {
_ledCount = -1;
} }
LedDeviceLightpack::~LedDeviceLightpack() LedDeviceLightpack::~LedDeviceLightpack()

View File

@ -110,12 +110,6 @@ private:
/// firmware version of the device /// firmware version of the device
Version _firmwareVersion; Version _firmwareVersion;
/// the number of leds of the device
int _ledCount;
/// the number of bits per channel /// the number of bits per channel
int _bitsPerChannel; int _bitsPerChannel;
/// buffer for led data
std::vector<uint8_t> _ledBuffer;
}; };

View File

@ -10,11 +10,9 @@
// hyperion local includes // hyperion local includes
#include "LedDeviceLpd6803.h" #include "LedDeviceLpd6803.h"
LedDeviceLpd6803::LedDeviceLpd6803(const std::string& outputDevice, const unsigned baudrate) : LedDeviceLpd6803::LedDeviceLpd6803(const std::string& outputDevice, const unsigned baudrate)
LedSpiDevice(outputDevice, baudrate), : LedSpiDevice(outputDevice, baudrate)
_ledBuffer(0)
{ {
// empty
} }
int LedDeviceLpd6803::write(const std::vector<ColorRgb> &ledValues) int LedDeviceLpd6803::write(const std::vector<ColorRgb> &ledValues)

View File

@ -35,8 +35,4 @@ public:
/// Switch the leds off /// Switch the leds off
virtual int switchOff(); virtual int switchOff();
private:
/// The buffer containing the packed RGB values
std::vector<uint8_t> _ledBuffer;
}; };

View File

@ -10,9 +10,8 @@
// hyperion local includes // hyperion local includes
#include "LedDeviceLpd8806.h" #include "LedDeviceLpd8806.h"
LedDeviceLpd8806::LedDeviceLpd8806(const std::string& outputDevice, const unsigned baudrate) : LedDeviceLpd8806::LedDeviceLpd8806(const std::string& outputDevice, const unsigned baudrate)
LedSpiDevice(outputDevice, baudrate), : LedSpiDevice(outputDevice, baudrate)
_ledBuffer(0)
{ {
// empty // empty
} }

View File

@ -96,8 +96,4 @@ public:
/// Switch the leds off /// Switch the leds off
virtual int switchOff(); virtual int switchOff();
private:
/// The buffer containing the packed RGB values
std::vector<uint8_t> _ledBuffer;
}; };

View File

@ -17,9 +17,9 @@ bool compareLightpacks(LedDeviceLightpack * lhs, LedDeviceLightpack * rhs)
return lhs->getSerialNumber() < rhs->getSerialNumber(); return lhs->getSerialNumber() < rhs->getSerialNumber();
} }
LedDeviceMultiLightpack::LedDeviceMultiLightpack() : LedDeviceMultiLightpack::LedDeviceMultiLightpack()
LedDevice(), : LedDevice()
_lightpacks() , _lightpacks()
{ {
} }

View File

@ -11,22 +11,21 @@
// hyperion local includes // hyperion local includes
#include "LedDeviceP9813.h" #include "LedDeviceP9813.h"
LedDeviceP9813::LedDeviceP9813(const std::string& outputDevice, const unsigned baudrate) : LedDeviceP9813::LedDeviceP9813(const std::string& outputDevice, const unsigned baudrate)
LedSpiDevice(outputDevice, baudrate, 0), : LedSpiDevice(outputDevice, baudrate, 0)
_ledCount(0)
{ {
// empty // empty
} }
int LedDeviceP9813::write(const std::vector<ColorRgb> &ledValues) int LedDeviceP9813::write(const std::vector<ColorRgb> &ledValues)
{ {
if (_ledCount != ledValues.size()) if (_ledCount != (signed)ledValues.size())
{ {
_ledBuf.resize(ledValues.size() * 4 + 8, 0x00); _ledBuffer.resize(ledValues.size() * 4 + 8, 0x00);
_ledCount = ledValues.size(); _ledCount = ledValues.size();
} }
uint8_t * dataPtr = _ledBuf.data(); uint8_t * dataPtr = _ledBuffer.data();
for (const ColorRgb & color : ledValues) for (const ColorRgb & color : ledValues)
{ {
*dataPtr++ = calculateChecksum(color); *dataPtr++ = calculateChecksum(color);
@ -35,7 +34,7 @@ int LedDeviceP9813::write(const std::vector<ColorRgb> &ledValues)
*dataPtr++ = color.red; *dataPtr++ = color.red;
} }
return writeBytes(_ledBuf.size(), _ledBuf.data()); return writeBytes(_ledBuffer.size(), _ledBuffer.data());
} }
int LedDeviceP9813::switchOff() int LedDeviceP9813::switchOff()

View File

@ -18,8 +18,7 @@ public:
/// @param outputDevice The name of the output device (eg '/etc/SpiDev.0.0') /// @param outputDevice The name of the output device (eg '/etc/SpiDev.0.0')
/// @param baudrate The used baudrate for writing to the output device /// @param baudrate The used baudrate for writing to the output device
/// ///
LedDeviceP9813(const std::string& outputDevice, LedDeviceP9813(const std::string& outputDevice, const unsigned baudrate);
const unsigned baudrate);
/// ///
/// Writes the led color values to the led-device /// Writes the led color values to the led-device
@ -33,13 +32,6 @@ public:
virtual int switchOff(); virtual int switchOff();
private: private:
/// the number of leds
size_t _ledCount;
/// Buffer for writing/written led data
std::vector<uint8_t> _ledBuf;
/// ///
/// Calculates the required checksum for one led /// Calculates the required checksum for one led
/// ///

View File

@ -3,9 +3,8 @@
#include "LedDevicePaintpack.h" #include "LedDevicePaintpack.h"
// Use out report HID device // Use out report HID device
LedDevicePaintpack::LedDevicePaintpack(const unsigned short VendorId, const unsigned short ProductId, int delayAfterConnect_ms) : LedDevicePaintpack::LedDevicePaintpack(const unsigned short VendorId, const unsigned short ProductId, int delayAfterConnect_ms)
LedHIDDevice(VendorId, ProductId, delayAfterConnect_ms, false), : LedHIDDevice(VendorId, ProductId, delayAfterConnect_ms, false)
_ledBuffer(0)
{ {
// empty // empty
} }

View File

@ -32,8 +32,4 @@ public:
/// @return Zero on success else negative /// @return Zero on success else negative
/// ///
virtual int switchOff(); virtual int switchOff();
private:
/// buffer for led data
std::vector<uint8_t> _ledBuffer;
}; };

View File

@ -21,8 +21,10 @@ bool operator !=(CiColor p1, CiColor p2) {
return !(p1 == p2); return !(p1 == p2);
} }
PhilipsHueLight::PhilipsHueLight(unsigned int id, QString originalState, QString modelId) : PhilipsHueLight::PhilipsHueLight(unsigned int id, QString originalState, QString modelId)
id(id), originalState(originalState) { : id(id)
, originalState(originalState)
{
// Hue system model ids (http://www.developers.meethue.com/documentation/supported-lights). // Hue system model ids (http://www.developers.meethue.com/documentation/supported-lights).
// Light strips, color iris, ... // Light strips, color iris, ...
const std::set<QString> GAMUT_A_MODEL_IDS = { "LLC001", "LLC005", "LLC006", "LLC007", "LLC010", "LLC011", "LLC012", const std::set<QString> GAMUT_A_MODEL_IDS = { "LLC001", "LLC005", "LLC006", "LLC007", "LLC010", "LLC011", "LLC012",
@ -32,19 +34,26 @@ PhilipsHueLight::PhilipsHueLight(unsigned int id, QString originalState, QString
// Hue Lightstrip plus, go ... // Hue Lightstrip plus, go ...
const std::set<QString> GAMUT_C_MODEL_IDS = { "LLC020", "LST002" }; const std::set<QString> GAMUT_C_MODEL_IDS = { "LLC020", "LST002" };
// Find id in the sets and set the appropiate color space. // Find id in the sets and set the appropiate color space.
if (GAMUT_A_MODEL_IDS.find(modelId) != GAMUT_A_MODEL_IDS.end()) { if (GAMUT_A_MODEL_IDS.find(modelId) != GAMUT_A_MODEL_IDS.end())
{
colorSpace.red = {0.703f, 0.296f}; colorSpace.red = {0.703f, 0.296f};
colorSpace.green = {0.2151f, 0.7106f}; colorSpace.green = {0.2151f, 0.7106f};
colorSpace.blue = {0.138f, 0.08f}; colorSpace.blue = {0.138f, 0.08f};
} else if (GAMUT_B_MODEL_IDS.find(modelId) != GAMUT_B_MODEL_IDS.end()) { }
else if (GAMUT_B_MODEL_IDS.find(modelId) != GAMUT_B_MODEL_IDS.end())
{
colorSpace.red = {0.675f, 0.322f}; colorSpace.red = {0.675f, 0.322f};
colorSpace.green = {0.4091f, 0.518f}; colorSpace.green = {0.4091f, 0.518f};
colorSpace.blue = {0.167f, 0.04f}; colorSpace.blue = {0.167f, 0.04f};
} else if (GAMUT_C_MODEL_IDS.find(modelId) != GAMUT_B_MODEL_IDS.end()) { }
else if (GAMUT_C_MODEL_IDS.find(modelId) != GAMUT_B_MODEL_IDS.end())
{
colorSpace.red = {0.675f, 0.322f}; colorSpace.red = {0.675f, 0.322f};
colorSpace.green = {0.2151f, 0.7106f}; colorSpace.green = {0.2151f, 0.7106f};
colorSpace.blue = {0.167f, 0.04f}; colorSpace.blue = {0.167f, 0.04f};
} else { }
else
{
colorSpace.red = {1.0f, 0.0f}; colorSpace.red = {1.0f, 0.0f};
colorSpace.green = {0.0f, 1.0f}; colorSpace.green = {0.0f, 1.0f};
colorSpace.blue = {0.0f, 0.0f}; colorSpace.blue = {0.0f, 0.0f};
@ -55,37 +64,45 @@ PhilipsHueLight::PhilipsHueLight(unsigned int id, QString originalState, QString
color = {black.x, black.y, black.bri}; color = {black.x, black.y, black.bri};
} }
float PhilipsHueLight::crossProduct(CiColor p1, CiColor p2) { float PhilipsHueLight::crossProduct(CiColor p1, CiColor p2)
{
return p1.x * p2.y - p1.y * p2.x; return p1.x * p2.y - p1.y * p2.x;
} }
bool PhilipsHueLight::isPointInLampsReach(CiColor p) { bool PhilipsHueLight::isPointInLampsReach(CiColor p)
{
CiColor v1 = { colorSpace.green.x - colorSpace.red.x, colorSpace.green.y - colorSpace.red.y }; CiColor v1 = { colorSpace.green.x - colorSpace.red.x, colorSpace.green.y - colorSpace.red.y };
CiColor v2 = { colorSpace.blue.x - colorSpace.red.x, colorSpace.blue.y - colorSpace.red.y }; CiColor v2 = { colorSpace.blue.x - colorSpace.red.x, colorSpace.blue.y - colorSpace.red.y };
CiColor q = { p.x - colorSpace.red.x, p.y - colorSpace.red.y }; CiColor q = { p.x - colorSpace.red.x, p.y - colorSpace.red.y };
float s = crossProduct(q, v2) / crossProduct(v1, v2); float s = crossProduct(q, v2) / crossProduct(v1, v2);
float t = crossProduct(v1, q) / crossProduct(v1, v2); float t = crossProduct(v1, q) / crossProduct(v1, v2);
if ((s >= 0.0f) && (t >= 0.0f) && (s + t <= 1.0f)) { if ((s >= 0.0f) && (t >= 0.0f) && (s + t <= 1.0f))
{
return true; return true;
} }
return false; return false;
} }
CiColor PhilipsHueLight::getClosestPointToPoint(CiColor a, CiColor b, CiColor p) { CiColor PhilipsHueLight::getClosestPointToPoint(CiColor a, CiColor b, CiColor p)
{
CiColor AP = { p.x - a.x, p.y - a.y }; CiColor AP = { p.x - a.x, p.y - a.y };
CiColor AB = { b.x - a.x, b.y - a.y }; CiColor AB = { b.x - a.x, b.y - a.y };
float ab2 = AB.x * AB.x + AB.y * AB.y; float ab2 = AB.x * AB.x + AB.y * AB.y;
float ap_ab = AP.x * AB.x + AP.y * AB.y; float ap_ab = AP.x * AB.x + AP.y * AB.y;
float t = ap_ab / ab2; float t = ap_ab / ab2;
if (t < 0.0f) { if (t < 0.0f)
{
t = 0.0f; t = 0.0f;
} else if (t > 1.0f) { }
else if (t > 1.0f)
{
t = 1.0f; t = 1.0f;
} }
return {a.x + AB.x * t, a.y + AB.y * t}; return {a.x + AB.x * t, a.y + AB.y * t};
} }
float PhilipsHueLight::getDistanceBetweenTwoPoints(CiColor p1, CiColor p2) { float PhilipsHueLight::getDistanceBetweenTwoPoints(CiColor p1, CiColor p2)
{
// Horizontal difference. // Horizontal difference.
float dx = p1.x - p2.x; float dx = p1.x - p2.x;
// Vertical difference. // Vertical difference.
@ -94,7 +111,8 @@ float PhilipsHueLight::getDistanceBetweenTwoPoints(CiColor p1, CiColor p2) {
return sqrt(dx * dx + dy * dy); return sqrt(dx * dx + dy * dy);
} }
CiColor PhilipsHueLight::rgbToCiColor(float red, float green, float blue) { CiColor PhilipsHueLight::rgbToCiColor(float red, float green, float blue)
{
// Apply gamma correction. // Apply gamma correction.
float r = (red > 0.04045f) ? powf((red + 0.055f) / (1.0f + 0.055f), 2.4f) : (red / 12.92f); float r = (red > 0.04045f) ? powf((red + 0.055f) / (1.0f + 0.055f), 2.4f) : (red / 12.92f);
float g = (green > 0.04045f) ? powf((green + 0.055f) / (1.0f + 0.055f), 2.4f) : (green / 12.92f); float g = (green > 0.04045f) ? powf((green + 0.055f) / (1.0f + 0.055f), 2.4f) : (green / 12.92f);
@ -106,16 +124,19 @@ CiColor PhilipsHueLight::rgbToCiColor(float red, float green, float blue) {
// Convert to x,y space. // Convert to x,y space.
float cx = X / (X + Y + Z); float cx = X / (X + Y + Z);
float cy = Y / (X + Y + Z); float cy = Y / (X + Y + Z);
if (std::isnan(cx)) { if (std::isnan(cx))
{
cx = 0.0f; cx = 0.0f;
} }
if (std::isnan(cy)) { if (std::isnan(cy))
{
cy = 0.0f; cy = 0.0f;
} }
// Brightness is simply Y in the XYZ space. // Brightness is simply Y in the XYZ space.
CiColor xy = { cx, cy, Y }; CiColor xy = { cx, cy, Y };
// Check if the given XY value is within the color reach of our lamps. // Check if the given XY value is within the color reach of our lamps.
if (!isPointInLampsReach(xy)) { if (!isPointInLampsReach(xy))
{
// It seems the color is out of reach let's find the closes color we can produce with our lamp and send this XY value out. // It seems the color is out of reach let's find the closes color we can produce with our lamp and send this XY value out.
CiColor pAB = getClosestPointToPoint(colorSpace.red, colorSpace.green, xy); CiColor pAB = getClosestPointToPoint(colorSpace.red, colorSpace.green, xy);
CiColor pAC = getClosestPointToPoint(colorSpace.blue, colorSpace.red, xy); CiColor pAC = getClosestPointToPoint(colorSpace.blue, colorSpace.red, xy);
@ -126,11 +147,13 @@ CiColor PhilipsHueLight::rgbToCiColor(float red, float green, float blue) {
float dBC = getDistanceBetweenTwoPoints(xy, pBC); float dBC = getDistanceBetweenTwoPoints(xy, pBC);
float lowest = dAB; float lowest = dAB;
CiColor closestPoint = pAB; CiColor closestPoint = pAB;
if (dAC < lowest) { if (dAC < lowest)
{
lowest = dAC; lowest = dAC;
closestPoint = pAC; closestPoint = pAC;
} }
if (dBC < lowest) { if (dBC < lowest)
{
lowest = dBC; lowest = dBC;
closestPoint = pBC; closestPoint = pBC;
} }
@ -141,46 +164,58 @@ CiColor PhilipsHueLight::rgbToCiColor(float red, float green, float blue) {
return xy; return xy;
} }
LedDevicePhilipsHue::LedDevicePhilipsHue(const std::string& output, const std::string& username, bool switchOffOnBlack, LedDevicePhilipsHue::LedDevicePhilipsHue(const std::string& output, const std::string& username, bool switchOffOnBlack, int transitiontime, std::vector<unsigned int> lightIds)
int transitiontime, std::vector<unsigned int> lightIds) : : LedDevice()
host(output.c_str()), username(username.c_str()), switchOffOnBlack(switchOffOnBlack), transitiontime( , host(output.c_str())
transitiontime), lightIds(lightIds) { , username(username.c_str())
, switchOffOnBlack(switchOffOnBlack)
, transitiontime(transitiontime)
, lightIds(lightIds)
{
manager = new QNetworkAccessManager(); manager = new QNetworkAccessManager();
timer.setInterval(3000); timer.setInterval(3000);
timer.setSingleShot(true); timer.setSingleShot(true);
connect(&timer, SIGNAL(timeout()), this, SLOT(restoreStates())); connect(&timer, SIGNAL(timeout()), this, SLOT(restoreStates()));
} }
LedDevicePhilipsHue::~LedDevicePhilipsHue() { LedDevicePhilipsHue::~LedDevicePhilipsHue()
{
delete manager; delete manager;
} }
int LedDevicePhilipsHue::write(const std::vector<ColorRgb> & ledValues) { int LedDevicePhilipsHue::write(const std::vector<ColorRgb> & ledValues)
{
// Save light states if not done before. // Save light states if not done before.
if (!areStatesSaved()) { if (!areStatesSaved())
{
saveStates((unsigned int) ledValues.size()); saveStates((unsigned int) ledValues.size());
switchOn((unsigned int) ledValues.size()); switchOn((unsigned int) ledValues.size());
} }
// If there are less states saved than colors given, then maybe something went wrong before. // If there are less states saved than colors given, then maybe something went wrong before.
if (lights.size() != ledValues.size()) { if (lights.size() != ledValues.size())
{
restoreStates(); restoreStates();
return 0; return 0;
} }
// Iterate through colors and set light states. // Iterate through colors and set light states.
unsigned int idx = 0; unsigned int idx = 0;
for (const ColorRgb& color : ledValues) { for (const ColorRgb& color : ledValues)
{
// Get lamp. // Get lamp.
PhilipsHueLight& lamp = lights.at(idx); PhilipsHueLight& lamp = lights.at(idx);
// Scale colors from [0, 255] to [0, 1] and convert to xy space. // Scale colors from [0, 255] to [0, 1] and convert to xy space.
CiColor xy = lamp.rgbToCiColor(color.red / 255.0f, color.green / 255.0f, color.blue / 255.0f); CiColor xy = lamp.rgbToCiColor(color.red / 255.0f, color.green / 255.0f, color.blue / 255.0f);
// Write color if color has been changed. // Write color if color has been changed.
if (xy != lamp.color) { if (xy != lamp.color)
{
// From a color to black. // From a color to black.
if (switchOffOnBlack && lamp.color != lamp.black && xy == lamp.black) { if (switchOffOnBlack && lamp.color != lamp.black && xy == lamp.black)
{
put(getStateRoute(lamp.id), QString("{\"on\": false}")); put(getStateRoute(lamp.id), QString("{\"on\": false}"));
} }
// From black to a color // From black to a color
else if (switchOffOnBlack && lamp.color == lamp.black && xy != lamp.black) { else if (switchOffOnBlack && lamp.color == lamp.black && xy != lamp.black)
{
// Send adjust color and brightness command in JSON format. // Send adjust color and brightness command in JSON format.
// We have to set the transition time each time. // We have to set the transition time each time.
// Send also command to switch the lamp on. // Send also command to switch the lamp on.
@ -189,7 +224,8 @@ int LedDevicePhilipsHue::write(const std::vector<ColorRgb> & ledValues) {
xy.y).arg(qRound(xy.bri * 255.0f)).arg(transitiontime)); xy.y).arg(qRound(xy.bri * 255.0f)).arg(transitiontime));
} }
// Normal color change. // Normal color change.
else { else
{
// Send adjust color and brightness command in JSON format. // Send adjust color and brightness command in JSON format.
// We have to set the transition time each time. // We have to set the transition time each time.
put(getStateRoute(lamp.id), put(getStateRoute(lamp.id),
@ -206,17 +242,20 @@ int LedDevicePhilipsHue::write(const std::vector<ColorRgb> & ledValues) {
return 0; return 0;
} }
int LedDevicePhilipsHue::switchOff() { int LedDevicePhilipsHue::switchOff()
{
timer.stop(); timer.stop();
// If light states have been saved before, ... // If light states have been saved before, ...
if (areStatesSaved()) { if (areStatesSaved())
{
// ... restore them. // ... restore them.
restoreStates(); restoreStates();
} }
return 0; return 0;
} }
void LedDevicePhilipsHue::put(QString route, QString content) { void LedDevicePhilipsHue::put(QString route, QString content)
{
QString url = getUrl(route); QString url = getUrl(route);
// Perfrom request // Perfrom request
QNetworkRequest request(url); QNetworkRequest request(url);
@ -230,7 +269,8 @@ void LedDevicePhilipsHue::put(QString route, QString content) {
reply->deleteLater(); reply->deleteLater();
} }
QByteArray LedDevicePhilipsHue::get(QString route) { QByteArray LedDevicePhilipsHue::get(QString route)
{
QString url = getUrl(route); QString url = getUrl(route);
// Perfrom request // Perfrom request
QNetworkRequest request(url); QNetworkRequest request(url);
@ -248,67 +288,80 @@ QByteArray LedDevicePhilipsHue::get(QString route) {
return response; return response;
} }
QString LedDevicePhilipsHue::getStateRoute(unsigned int lightId) { QString LedDevicePhilipsHue::getStateRoute(unsigned int lightId)
{
return QString("lights/%1/state").arg(lightId); return QString("lights/%1/state").arg(lightId);
} }
QString LedDevicePhilipsHue::getRoute(unsigned int lightId) { QString LedDevicePhilipsHue::getRoute(unsigned int lightId)
{
return QString("lights/%1").arg(lightId); return QString("lights/%1").arg(lightId);
} }
QString LedDevicePhilipsHue::getUrl(QString route) { QString LedDevicePhilipsHue::getUrl(QString route)
{
return QString("http://%1/api/%2/%3").arg(host).arg(username).arg(route); return QString("http://%1/api/%2/%3").arg(host).arg(username).arg(route);
} }
void LedDevicePhilipsHue::saveStates(unsigned int nLights) { void LedDevicePhilipsHue::saveStates(unsigned int nLights)
{
// Clear saved lamps. // Clear saved lamps.
lights.clear(); lights.clear();
// Use json parser to parse reponse. // Use json parser to parse reponse.
Json::Reader reader; Json::Reader reader;
Json::FastWriter writer; Json::FastWriter writer;
// Read light ids if none have been supplied by the user. // Read light ids if none have been supplied by the user.
if (lightIds.size() != nLights) { if (lightIds.size() != nLights)
{
lightIds.clear(); lightIds.clear();
// //
QByteArray response = get("lights"); QByteArray response = get("lights");
Json::Value json; Json::Value json;
if (!reader.parse(QString(response).toStdString(), json)) { if (!reader.parse(QString(response).toStdString(), json))
{
throw std::runtime_error(("No lights found at " + getUrl("lights")).toStdString()); throw std::runtime_error(("No lights found at " + getUrl("lights")).toStdString());
} }
// Loop over all children. // Loop over all children.
for (Json::ValueIterator it = json.begin(); it != json.end() && lightIds.size() < nLights; it++) { for (Json::ValueIterator it = json.begin(); it != json.end() && lightIds.size() < nLights; it++)
{
int lightId = atoi(it.key().asCString()); int lightId = atoi(it.key().asCString());
lightIds.push_back(lightId); lightIds.push_back(lightId);
Debug(_log, "nLights=%d: found light with id %d.", nLights, lightId); Debug(_log, "nLights=%d: found light with id %d.", nLights, lightId);
} }
// Check if we found enough lights. // Check if we found enough lights.
if (lightIds.size() != nLights) { if (lightIds.size() != nLights)
{
throw std::runtime_error(("Not enough lights found at " + getUrl("lights")).toStdString()); throw std::runtime_error(("Not enough lights found at " + getUrl("lights")).toStdString());
} }
} }
// Iterate lights. // Iterate lights.
for (unsigned int i = 0; i < nLights; i++) { for (unsigned int i = 0; i < nLights; i++)
{
// Read the response. // Read the response.
QByteArray response = get(getRoute(lightIds.at(i))); QByteArray response = get(getRoute(lightIds.at(i)));
// Parse JSON. // Parse JSON.
Json::Value json; Json::Value json;
if (!reader.parse(QString(response).toStdString(), json)) { if (!reader.parse(QString(response).toStdString(), json))
{
// Error occured, break loop. // Error occured, break loop.
Error(_log, "saveStates(nLights=%d): got invalid response from light %s.", nLights, getUrl(getRoute(lightIds.at(i))).toStdString().c_str()); Error(_log, "saveStates(nLights=%d): got invalid response from light %s.", nLights, getUrl(getRoute(lightIds.at(i))).toStdString().c_str());
break; break;
} }
// Get state object values which are subject to change. // Get state object values which are subject to change.
Json::Value state(Json::objectValue); Json::Value state(Json::objectValue);
if (!json.isMember("state")) { if (!json.isMember("state"))
{
Error(_log, "saveStates(nLights=%d): got no state for light from %s", nLights, getUrl(getRoute(lightIds.at(i))).toStdString().c_str()); Error(_log, "saveStates(nLights=%d): got no state for light from %s", nLights, getUrl(getRoute(lightIds.at(i))).toStdString().c_str());
break; break;
} }
if (!json["state"].isMember("on")) { if (!json["state"].isMember("on"))
{
Error(_log, "saveStates(nLights=%d,): got no valid state from light %s", nLights, getUrl(getRoute(lightIds.at(i))).toStdString().c_str()); Error(_log, "saveStates(nLights=%d,): got no valid state from light %s", nLights, getUrl(getRoute(lightIds.at(i))).toStdString().c_str());
break; break;
} }
state["on"] = json["state"]["on"]; state["on"] = json["state"]["on"];
if (json["state"]["on"] == true) { if (json["state"]["on"] == true)
{
state["xy"] = json["state"]["xy"]; state["xy"] = json["state"]["xy"];
state["bri"] = json["state"]["bri"]; state["bri"] = json["state"]["bri"];
} }
@ -320,20 +373,25 @@ void LedDevicePhilipsHue::saveStates(unsigned int nLights) {
} }
} }
void LedDevicePhilipsHue::switchOn(unsigned int nLights) { void LedDevicePhilipsHue::switchOn(unsigned int nLights)
for (PhilipsHueLight light : lights) { {
for (PhilipsHueLight light : lights)
{
put(getStateRoute(light.id), "{\"on\": true}"); put(getStateRoute(light.id), "{\"on\": true}");
} }
} }
void LedDevicePhilipsHue::restoreStates() { void LedDevicePhilipsHue::restoreStates()
for (PhilipsHueLight light : lights) { {
for (PhilipsHueLight light : lights)
{
put(getStateRoute(light.id), light.originalState); put(getStateRoute(light.id), light.originalState);
} }
// Clear saved light states. // Clear saved light states.
lights.clear(); lights.clear();
} }
bool LedDevicePhilipsHue::areStatesSaved() { bool LedDevicePhilipsHue::areStatesSaved()
{
return !lights.empty(); return !lights.empty();
} }

View File

@ -60,9 +60,7 @@ public:
/// https://github.com/PhilipsHue/PhilipsHueSDK-iOS-OSX/blob/master/ApplicationDesignNotes/RGB%20to%20xy%20Color%20conversion.md /// https://github.com/PhilipsHue/PhilipsHueSDK-iOS-OSX/blob/master/ApplicationDesignNotes/RGB%20to%20xy%20Color%20conversion.md
/// ///
/// @param red the red component in [0, 1] /// @param red the red component in [0, 1]
///
/// @param green the green component in [0, 1] /// @param green the green component in [0, 1]
///
/// @param blue the blue component in [0, 1] /// @param blue the blue component in [0, 1]
/// ///
/// @return color point /// @return color point
@ -71,14 +69,12 @@ public:
/// ///
/// @param p the color point to check /// @param p the color point to check
///
/// @return true if the color point is covered by the lamp color space /// @return true if the color point is covered by the lamp color space
/// ///
bool isPointInLampsReach(CiColor p); bool isPointInLampsReach(CiColor p);
/// ///
/// @param p1 point one /// @param p1 point one
///
/// @param p2 point tow /// @param p2 point tow
/// ///
/// @return the cross product between p1 and p2 /// @return the cross product between p1 and p2
@ -87,9 +83,7 @@ public:
/// ///
/// @param a reference point one /// @param a reference point one
///
/// @param b reference point two /// @param b reference point two
///
/// @param p the point to which the closest point is to be found /// @param p the point to which the closest point is to be found
/// ///
/// @return the closest color point of p to a and b /// @return the closest color point of p to a and b
@ -98,7 +92,6 @@ public:
/// ///
/// @param p1 point one /// @param p1 point one
///
/// @param p2 point tow /// @param p2 point tow
/// ///
/// @return the distance between the two points /// @return the distance between the two points
@ -116,20 +109,18 @@ public:
* *
* @author ntim (github), bimsarck (github) * @author ntim (github), bimsarck (github)
*/ */
class LedDevicePhilipsHue: public QObject, public LedDevice { class LedDevicePhilipsHue: public LedDevice {
Q_OBJECT
Q_OBJECT
public: public:
/// ///
/// Constructs the device. /// Constructs the device.
/// ///
/// @param output the ip address of the bridge /// @param output the ip address of the bridge
///
/// @param username username of the hue bridge (default: newdeveloper) /// @param username username of the hue bridge (default: newdeveloper)
///
/// @param switchOffOnBlack kill lights for black (default: false) /// @param switchOffOnBlack kill lights for black (default: false)
///
/// @param transitiontime the time duration a light change takes in multiples of 100 ms (default: 400 ms). /// @param transitiontime the time duration a light change takes in multiples of 100 ms (default: 400 ms).
///
/// @param lightIds light ids of the lights to control if not starting at one in ascending order. /// @param lightIds light ids of the lights to control if not starting at one in ascending order.
/// ///
LedDevicePhilipsHue(const std::string& output, const std::string& username = "newdeveloper", bool switchOffOnBlack = LedDevicePhilipsHue(const std::string& output, const std::string& username = "newdeveloper", bool switchOffOnBlack =

View File

@ -12,10 +12,9 @@
#include "LedDeviceRawHID.h" #include "LedDeviceRawHID.h"
// Use feature report HID device // Use feature report HID device
LedDeviceRawHID::LedDeviceRawHID(const unsigned short VendorId, const unsigned short ProductId, int delayAfterConnect_ms) : LedDeviceRawHID::LedDeviceRawHID(const unsigned short VendorId, const unsigned short ProductId, int delayAfterConnect_ms)
LedHIDDevice(VendorId, ProductId, delayAfterConnect_ms, true), : LedHIDDevice(VendorId, ProductId, delayAfterConnect_ms, true)
_ledBuffer(0), , _timer()
_timer()
{ {
// setup the timer // setup the timer
_timer.setSingleShot(false); _timer.setSingleShot(false);

View File

@ -38,9 +38,6 @@ private slots:
void rewriteLeds(); void rewriteLeds();
private: private:
/// The buffer containing the packed RGB values
std::vector<uint8_t> _ledBuffer;
/// Timer object which makes sure that led data is written at a minimum rate /// Timer object which makes sure that led data is written at a minimum rate
/// The RawHID device will switch off when it does not receive data at least /// The RawHID device will switch off when it does not receive data at least
/// every 15 seconds /// every 15 seconds

View File

@ -17,9 +17,8 @@ struct FrameSpec
size_t size; size_t size;
}; };
LedDeviceSedu::LedDeviceSedu(const std::string& outputDevice, const unsigned baudrate) : LedDeviceSedu::LedDeviceSedu(const std::string& outputDevice, const unsigned baudrate)
LedRs232Device(outputDevice, baudrate), : LedRs232Device(outputDevice, baudrate)
_ledBuffer(0)
{ {
// empty // empty
} }

View File

@ -30,8 +30,4 @@ public:
/// Switch the leds off /// Switch the leds off
virtual int switchOff(); virtual int switchOff();
private:
/// The buffer containing the packed RGB values
std::vector<uint8_t> _ledBuffer;
}; };

View File

@ -12,9 +12,8 @@
#include "LedDeviceSk6812SPI.h" #include "LedDeviceSk6812SPI.h"
LedDeviceSk6812SPI::LedDeviceSk6812SPI(const std::string& outputDevice, const unsigned baudrate, const std::string& whiteAlgorithm, LedDeviceSk6812SPI::LedDeviceSk6812SPI(const std::string& outputDevice, const unsigned baudrate, const std::string& whiteAlgorithm,
const int spiMode, const bool spiDataInvert) const int spiMode, const bool spiDataInvert)
: LedSpiDevice(outputDevice, baudrate, 0, spiMode, spiDataInvert) : LedSpiDevice(outputDevice, baudrate, 0, spiMode, spiDataInvert)
, mLedCount(0)
, _whiteAlgorithm(whiteAlgorithm) , _whiteAlgorithm(whiteAlgorithm)
, bitpair_to_byte { , bitpair_to_byte {
0b10001000, 0b10001000,
@ -29,16 +28,16 @@ LedDeviceSk6812SPI::LedDeviceSk6812SPI(const std::string& outputDevice, const un
int LedDeviceSk6812SPI::write(const std::vector<ColorRgb> &ledValues) int LedDeviceSk6812SPI::write(const std::vector<ColorRgb> &ledValues)
{ {
mLedCount = ledValues.size(); _ledCount = ledValues.size();
// 4 colours, 4 spi bytes per colour + 3 frame end latch bytes // 4 colours, 4 spi bytes per colour + 3 frame end latch bytes
#define COLOURS_PER_LED 4 #define COLOURS_PER_LED 4
#define SPI_BYTES_PER_COLOUR 4 #define SPI_BYTES_PER_COLOUR 4
#define SPI_BYTES_PER_LED COLOURS_PER_LED * SPI_BYTES_PER_COLOUR #define SPI_BYTES_PER_LED COLOURS_PER_LED * SPI_BYTES_PER_COLOUR
unsigned spi_size = mLedCount * SPI_BYTES_PER_LED + 3; unsigned spi_size = _ledCount * SPI_BYTES_PER_LED + 3;
if(_spiBuffer.size() != spi_size){ if(_ledBuffer.size() != spi_size){
_spiBuffer.resize(spi_size, 0x00); _ledBuffer.resize(spi_size, 0x00);
} }
unsigned spi_ptr = 0; unsigned spi_ptr = 0;
@ -52,19 +51,19 @@ int LedDeviceSk6812SPI::write(const std::vector<ColorRgb> &ledValues)
_temp_rgbw.white; _temp_rgbw.white;
for (int j=SPI_BYTES_PER_LED - 1; j>=0; j--) { for (int j=SPI_BYTES_PER_LED - 1; j>=0; j--) {
_spiBuffer[spi_ptr+j] = bitpair_to_byte[ colorBits & 0x3 ]; _ledBuffer[spi_ptr+j] = bitpair_to_byte[ colorBits & 0x3 ];
colorBits >>= 2; colorBits >>= 2;
} }
spi_ptr += SPI_BYTES_PER_LED; spi_ptr += SPI_BYTES_PER_LED;
} }
_spiBuffer[spi_ptr++] = 0; _ledBuffer[spi_ptr++] = 0;
_spiBuffer[spi_ptr++] = 0; _ledBuffer[spi_ptr++] = 0;
_spiBuffer[spi_ptr++] = 0; _ledBuffer[spi_ptr++] = 0;
return writeBytes(spi_size, _spiBuffer.data()); return writeBytes(spi_size, _ledBuffer.data());
} }
int LedDeviceSk6812SPI::switchOff() int LedDeviceSk6812SPI::switchOff()
{ {
return write(std::vector<ColorRgb>(mLedCount, ColorRgb{0,0,0})); return write(std::vector<ColorRgb>(_ledCount, ColorRgb{0,0,0}));
} }

View File

@ -20,8 +20,7 @@ public:
/// ///
LedDeviceSk6812SPI(const std::string& outputDevice, const unsigned baudrate, LedDeviceSk6812SPI(const std::string& outputDevice, const unsigned baudrate,
const std::string& whiteAlgorithm, const std::string& whiteAlgorithm, const int spiMode, const bool spiDataInvert);
const int spiMode, const bool spiDataInvert);
/// ///
/// Writes the led color values to the led-device /// Writes the led color values to the led-device
@ -35,12 +34,9 @@ public:
virtual int switchOff(); virtual int switchOff();
private: private:
/// the number of leds (needed when switching off)
size_t mLedCount;
std::vector<uint8_t> _spiBuffer;
std::string _whiteAlgorithm; std::string _whiteAlgorithm;
uint8_t bitpair_to_byte[4]; uint8_t bitpair_to_byte[4];
ColorRgbw _temp_rgbw; ColorRgbw _temp_rgbw;
}; };

View File

@ -9,15 +9,15 @@
static const unsigned MAX_NUM_LEDS = 320; static const unsigned MAX_NUM_LEDS = 320;
static const unsigned MAX_NUM_LEDS_SETTABLE = 16; static const unsigned MAX_NUM_LEDS_SETTABLE = 16;
LedDeviceTinkerforge::LedDeviceTinkerforge(const std::string & host, uint16_t port, const std::string & uid, const unsigned interval) : LedDeviceTinkerforge::LedDeviceTinkerforge(const std::string & host, uint16_t port, const std::string & uid, const unsigned interval)
LedDevice(), : LedDevice()
_host(host), , _host(host)
_port(port), , _port(port)
_uid(uid), , _uid(uid)
_interval(interval), , _interval(interval)
_ipConnection(nullptr), , _ipConnection(nullptr)
_ledStrip(nullptr), , _ledStrip(nullptr)
_colorChannelSize(0) , _colorChannelSize(0)
{ {
// empty // empty
} }

View File

@ -7,9 +7,8 @@
// hyperion local includes // hyperion local includes
#include "LedDeviceTpm2.h" #include "LedDeviceTpm2.h"
LedDeviceTpm2::LedDeviceTpm2(const std::string& outputDevice, const unsigned baudrate) : LedDeviceTpm2::LedDeviceTpm2(const std::string& outputDevice, const unsigned baudrate)
LedRs232Device(outputDevice, baudrate), : LedRs232Device(outputDevice, baudrate)
_ledBuffer(0)
{ {
// empty // empty
} }

View File

@ -31,8 +31,4 @@ public:
/// Switch the leds off /// Switch the leds off
virtual int switchOff(); virtual int switchOff();
private:
/// The buffer containing the packed RGB values
std::vector<uint8_t> _ledBuffer;
}; };

View File

@ -1,6 +1,8 @@
// Local-Hyperion includes // Local-Hyperion includes
#include "LedDeviceUdp.h" #include "LedDeviceUdp.h"
#include <fstream>
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <unistd.h> #include <unistd.h>
@ -22,6 +24,7 @@ int update_number;
int fragment_number; int fragment_number;
LedDeviceUdp::LedDeviceUdp(const std::string& output, const unsigned protocol, const unsigned maxPacket) LedDeviceUdp::LedDeviceUdp(const std::string& output, const unsigned protocol, const unsigned maxPacket)
: LedDevice()
{ {
std::string hostname; std::string hostname;
std::string port; std::string port;
@ -79,6 +82,7 @@ LedDeviceUdp::~LedDeviceUdp()
int LedDeviceUdp::write(const std::vector<ColorRgb> & ledValues) int LedDeviceUdp::write(const std::vector<ColorRgb> & ledValues)
{ {
_ledCount = ledValues.size();
char udpbuffer[4096]; char udpbuffer[4096];
int udpPtr=0; int udpPtr=0;
@ -86,11 +90,13 @@ int LedDeviceUdp::write(const std::vector<ColorRgb> & ledValues)
update_number++; update_number++;
update_number &= 0xf; update_number &= 0xf;
if (ledprotocol == 0) { if (ledprotocol == 0)
{
int i=0; int i=0;
for (const ColorRgb& color : ledValues) for (const ColorRgb& color : ledValues)
{ {
if (i<4090) { if (i<4090)
{
udpbuffer[i++] = color.red; udpbuffer[i++] = color.red;
udpbuffer[i++] = color.green; udpbuffer[i++] = color.green;
udpbuffer[i++] = color.blue; udpbuffer[i++] = color.blue;
@ -98,30 +104,35 @@ int LedDeviceUdp::write(const std::vector<ColorRgb> & ledValues)
} }
sendto(sockfd, udpbuffer, i, 0, p->ai_addr, p->ai_addrlen); sendto(sockfd, udpbuffer, i, 0, p->ai_addr, p->ai_addrlen);
} }
if (ledprotocol == 1) { if (ledprotocol == 1)
{
#define MAXLEDperFRAG 450 #define MAXLEDperFRAG 450
int mLedCount = ledValues.size(); for (int frag=0; frag<4; frag++)
{
for (int frag=0; frag<4; frag++) {
udpPtr=0; udpPtr=0;
udpbuffer[udpPtr++] = 0; udpbuffer[udpPtr++] = 0;
udpbuffer[udpPtr++] = 0; udpbuffer[udpPtr++] = 0;
udpbuffer[udpPtr++] = (frag*MAXLEDperFRAG)/256; // high byte udpbuffer[udpPtr++] = (frag*MAXLEDperFRAG)/256; // high byte
udpbuffer[udpPtr++] = (frag*MAXLEDperFRAG)%256; // low byte udpbuffer[udpPtr++] = (frag*MAXLEDperFRAG)%256; // low byte
int ct=0; int ct=0;
for (int this_led = frag*300; ((this_led<mLedCount) && (ct++<MAXLEDperFRAG)); this_led++) { for (int this_led = frag*300; ((this_led<_ledCount) && (ct++<MAXLEDperFRAG)); this_led++)
{
const ColorRgb& color = ledValues[this_led]; const ColorRgb& color = ledValues[this_led];
if (udpPtr<4090) { if (udpPtr<4090)
{
udpbuffer[udpPtr++] = color.red; udpbuffer[udpPtr++] = color.red;
udpbuffer[udpPtr++] = color.green; udpbuffer[udpPtr++] = color.green;
udpbuffer[udpPtr++] = color.blue; udpbuffer[udpPtr++] = color.blue;
} }
} }
if (udpPtr > 7) if (udpPtr > 7)
{
sendto(sockfd, udpbuffer, udpPtr, 0, p->ai_addr, p->ai_addrlen); sendto(sockfd, udpbuffer, udpPtr, 0, p->ai_addr, p->ai_addrlen);
}
} }
} }
if (ledprotocol == 2) { if (ledprotocol == 2)
{
udpPtr = 0; udpPtr = 0;
unsigned int ledCtr = 0; unsigned int ledCtr = 0;
fragment_number = 0; fragment_number = 0;
@ -150,7 +161,8 @@ int LedDeviceUdp::write(const std::vector<ColorRgb> & ledValues)
} }
} }
if (ledprotocol == 3) { if (ledprotocol == 3)
{
udpPtr = 0; udpPtr = 0;
unsigned int ledCtr = 0; unsigned int ledCtr = 0;
unsigned int fragments = 1; unsigned int fragments = 1;
@ -168,13 +180,15 @@ int LedDeviceUdp::write(const std::vector<ColorRgb> & ledValues)
for (const ColorRgb& color : ledValues) for (const ColorRgb& color : ledValues)
{ {
if (udpPtr<4090) { if (udpPtr<4090)
{
udpbuffer[udpPtr++] = color.red; udpbuffer[udpPtr++] = color.red;
udpbuffer[udpPtr++] = color.green; udpbuffer[udpPtr++] = color.green;
udpbuffer[udpPtr++] = color.blue; udpbuffer[udpPtr++] = color.blue;
} }
ledCtr++; ledCtr++;
if ( (ledCtr % leds_per_pkt == 0) || (ledCtr == ledValues.size()) ) { if ( (ledCtr % leds_per_pkt == 0) || (ledCtr == ledValues.size()) )
{
udpbuffer[udpPtr++] = 0x36; udpbuffer[udpPtr++] = 0x36;
sendto(sockfd, udpbuffer, udpPtr, 0, p->ai_addr, p->ai_addrlen); sendto(sockfd, udpbuffer, udpPtr, 0, p->ai_addr, p->ai_addrlen);
memset(udpbuffer, 0, sizeof udpbuffer); memset(udpbuffer, 0, sizeof udpbuffer);
@ -194,6 +208,6 @@ int LedDeviceUdp::write(const std::vector<ColorRgb> & ledValues)
int LedDeviceUdp::switchOff() int LedDeviceUdp::switchOff()
{ {
// return write(std::vector<ColorRgb>(mLedCount, ColorRgb{0,0,0})); // return write(std::vector<ColorRgb>(_ledCount, ColorRgb{0,0,0}));
return 0; return 0;
} }

View File

@ -1,8 +1,5 @@
#pragma once #pragma once
// STL includes0
#include <fstream>
// Leddevice includes // Leddevice includes
#include <leddevice/LedDevice.h> #include <leddevice/LedDevice.h>
@ -35,7 +32,4 @@ public:
/// Switch the leds off /// Switch the leds off
virtual int switchOff(); virtual int switchOff();
private:
/// the number of leds (needed when switching off)
size_t mLedCount;
}; };

View File

@ -11,18 +11,17 @@
// hyperion local includes // hyperion local includes
#include "LedDeviceUdpRaw.h" #include "LedDeviceUdpRaw.h"
LedDeviceUdpRaw::LedDeviceUdpRaw(const std::string& outputDevice, const unsigned latchTime) : LedDeviceUdpRaw::LedDeviceUdpRaw(const std::string& outputDevice, const unsigned latchTime)
LedUdpDevice(outputDevice, latchTime), : LedUdpDevice(outputDevice, latchTime)
mLedCount(0)
{ {
// empty // empty
} }
int LedDeviceUdpRaw::write(const std::vector<ColorRgb> &ledValues) int LedDeviceUdpRaw::write(const std::vector<ColorRgb> &ledValues)
{ {
mLedCount = ledValues.size(); _ledCount = ledValues.size();
const unsigned dataLen = ledValues.size() * sizeof(ColorRgb); const unsigned dataLen = _ledCount * sizeof(ColorRgb);
const uint8_t * dataPtr = reinterpret_cast<const uint8_t *>(ledValues.data()); const uint8_t * dataPtr = reinterpret_cast<const uint8_t *>(ledValues.data());
return writeBytes(dataLen, dataPtr); return writeBytes(dataLen, dataPtr);
@ -30,5 +29,5 @@ int LedDeviceUdpRaw::write(const std::vector<ColorRgb> &ledValues)
int LedDeviceUdpRaw::switchOff() int LedDeviceUdpRaw::switchOff()
{ {
return write(std::vector<ColorRgb>(mLedCount, ColorRgb{0,0,0})); return write(std::vector<ColorRgb>(_ledCount, ColorRgb{0,0,0}));
} }

View File

@ -31,9 +31,4 @@ public:
/// Switch the leds off /// Switch the leds off
virtual int switchOff(); virtual int switchOff();
private:
/// the number of leds (needed when switching off)
size_t mLedCount;
}; };

View File

@ -232,17 +232,13 @@
LedDeviceWS2812b::LedDeviceWS2812b() : LedDeviceWS2812b::LedDeviceWS2812b()
LedDevice(), : LedDevice()
mLedCount(0)
#ifdef BENCHMARK #ifdef BENCHMARK
, , runCount(0)
runCount(0), , combinedNseconds(0)
combinedNseconds(0), , shortestNseconds(2147483647)
shortestNseconds(2147483647)
#endif #endif
{ {
//shortestNseconds = 2147483647; //shortestNseconds = 2147483647;
// Init PWM generator and clear LED buffer // Init PWM generator and clear LED buffer
@ -306,7 +302,7 @@ int LedDeviceWS2812b::write(const std::vector<ColorRgb> &ledValues)
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &timeStart); clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &timeStart);
#endif #endif
mLedCount = ledValues.size(); _ledCount = ledValues.size();
// Read data from LEDBuffer[], translate it into wire format, and write to PWMWaveform // Read data from LEDBuffer[], translate it into wire format, and write to PWMWaveform
unsigned int colorBits = 0; // Holds the GRB color before conversion to wire bit pattern unsigned int colorBits = 0; // Holds the GRB color before conversion to wire bit pattern
@ -319,11 +315,11 @@ int LedDeviceWS2812b::write(const std::vector<ColorRgb> &ledValues)
// 72 bits per pixel / 32 bits per word = 2.25 words per pixel // 72 bits per pixel / 32 bits per word = 2.25 words per pixel
// Add 1 to make sure the PWM FIFO gets the message: "we're sending zeroes" // Add 1 to make sure the PWM FIFO gets the message: "we're sending zeroes"
// Times 4 because DMA works in bytes, not words // Times 4 because DMA works in bytes, not words
cbp->length = ((mLedCount * 2.25) + 1) * 4; cbp->length = ((_ledCount * 2.25) + 1) * 4;
if(cbp->length > NUM_DATA_WORDS * 4) if(cbp->length > NUM_DATA_WORDS * 4)
{ {
cbp->length = NUM_DATA_WORDS * 4; cbp->length = NUM_DATA_WORDS * 4;
mLedCount = (NUM_DATA_WORDS - 1) / 2.25; _ledCount = (NUM_DATA_WORDS - 1) / 2.25;
} }
#ifdef WS2812_ASM_OPTI #ifdef WS2812_ASM_OPTI
@ -331,7 +327,7 @@ int LedDeviceWS2812b::write(const std::vector<ColorRgb> &ledValues)
#endif #endif
for(size_t i=0; i<mLedCount; i++) for(size_t i=0; i<_ledCount; i++)
{ {
// Create bits necessary to represent one color triplet (in GRB, not RGB, order) // Create bits necessary to represent one color triplet (in GRB, not RGB, order)
colorBits = ((unsigned int)ledValues[i].red << 8) | ((unsigned int)ledValues[i].green << 16) | ledValues[i].blue; colorBits = ((unsigned int)ledValues[i].red << 8) | ((unsigned int)ledValues[i].green << 16) | ledValues[i].blue;
@ -375,7 +371,7 @@ int LedDeviceWS2812b::write(const std::vector<ColorRgb> &ledValues)
#ifdef WS2812_ASM_OPTI #ifdef WS2812_ASM_OPTI
// calculate the bits manually since it is not needed with asm // calculate the bits manually since it is not needed with asm
//wireBit += mLedCount * 24 *3; //wireBit += _ledCount * 24 *3;
#endif #endif
//remove one to undo optimization //remove one to undo optimization
wireBit --; wireBit --;
@ -455,7 +451,7 @@ int LedDeviceWS2812b::write(const std::vector<ColorRgb> &ledValues)
int LedDeviceWS2812b::switchOff() int LedDeviceWS2812b::switchOff()
{ {
return write(std::vector<ColorRgb>(mLedCount, ColorRgb{0,0,0})); return write(std::vector<ColorRgb>(_ledCount, ColorRgb{0,0,0}));
} }
LedDeviceWS2812b::~LedDeviceWS2812b() LedDeviceWS2812b::~LedDeviceWS2812b()
@ -746,7 +742,7 @@ void LedDeviceWS2812b::initHardware()
// 72 bits per pixel / 32 bits per word = 2.25 words per pixel // 72 bits per pixel / 32 bits per word = 2.25 words per pixel
// Add 1 to make sure the PWM FIFO gets the message: "we're sending zeroes" // Add 1 to make sure the PWM FIFO gets the message: "we're sending zeroes"
// Times 4 because DMA works in bytes, not words // Times 4 because DMA works in bytes, not words
cbp->length = ((mLedCount * 2.25) + 1) * 4; cbp->length = ((_ledCount * 2.25) + 1) * 4;
if(cbp->length > NUM_DATA_WORDS * 4) if(cbp->length > NUM_DATA_WORDS * 4)
{ {
cbp->length = NUM_DATA_WORDS * 4; cbp->length = NUM_DATA_WORDS * 4;

View File

@ -149,10 +149,6 @@ public:
virtual int switchOff(); virtual int switchOff();
private: private:
/// the number of leds (needed when switching off)
size_t mLedCount;
page_map_t *page_map; // This will hold the page map, which we'll allocate page_map_t *page_map; // This will hold the page map, which we'll allocate
uint8_t *virtbase; // Pointer to some virtual memory that will be allocated uint8_t *virtbase; // Pointer to some virtual memory that will be allocated

View File

@ -1,75 +1,75 @@
#include <iostream> #include <iostream>
#include <exception>
#include "LedDeviceWS281x.h" #include "LedDeviceWS281x.h"
// Constructor // Constructor
LedDeviceWS281x::LedDeviceWS281x(const int gpio, const int leds, const uint32_t freq, const int dmanum, const int pwmchannel, const int invert, const int rgbw, const std::string& whiteAlgorithm) LedDeviceWS281x::LedDeviceWS281x(const int gpio, const int leds, const uint32_t freq, const int dmanum, const int pwmchannel, const int invert, const int rgbw, const std::string& whiteAlgorithm)
: LedDevice()
, _channel(pwmchannel)
, _initialized(false)
, _whiteAlgorithm(whiteAlgorithm)
{ {
_whiteAlgorithm = whiteAlgorithm;
Debug( _log, "whiteAlgorithm : %s", whiteAlgorithm.c_str()); Debug( _log, "whiteAlgorithm : %s", whiteAlgorithm.c_str());
initialized = false; _led_string.freq = freq;
led_string.freq = freq; _led_string.dmanum = dmanum;
led_string.dmanum = dmanum; if (pwmchannel != 0 && pwmchannel != 1)
if (pwmchannel != 0 && pwmchannel != 1) { {
Error( _log, "WS281x: invalid PWM channel; must be 0 or 1."); throw std::runtime_error("WS281x: invalid PWM channel; must be 0 or 1.");
throw -1;
}
chan = pwmchannel;
led_string.channel[chan].gpionum = gpio;
led_string.channel[chan].invert = invert;
led_string.channel[chan].count = leds;
led_string.channel[chan].brightness = 255;
if (rgbw == 1) {
led_string.channel[chan].strip_type = SK6812_STRIP_GRBW;
} else {
led_string.channel[chan].strip_type = WS2811_STRIP_RGB;
} }
_led_string.channel[_channel].gpionum = gpio;
_led_string.channel[_channel].invert = invert;
_led_string.channel[_channel].count = leds;
_led_string.channel[_channel].brightness = 255;
_led_string.channel[_channel].strip_type = ((rgbw == 1) ? SK6812_STRIP_GRBW : WS2811_STRIP_RGB);
led_string.channel[!chan].gpionum = 0; _led_string.channel[!_channel].gpionum = 0;
led_string.channel[!chan].invert = invert; _led_string.channel[!_channel].invert = invert;
led_string.channel[!chan].count = 0; _led_string.channel[!_channel].count = 0;
led_string.channel[!chan].brightness = 0; _led_string.channel[!_channel].brightness = 0;
led_string.channel[!chan].strip_type = WS2811_STRIP_RGB; _led_string.channel[!_channel].strip_type = WS2811_STRIP_RGB;
if (ws2811_init(&led_string) < 0) { if (ws2811_init(&_led_string) < 0)
Error( _log, "Unable to initialize ws281x library."); {
throw -1; throw std::runtime_error("Unable to initialize ws281x library.");
} }
initialized = true; _initialized = true;
} }
// Send new values down the LED chain // Send new values down the LED chain
int LedDeviceWS281x::write(const std::vector<ColorRgb> &ledValues) int LedDeviceWS281x::write(const std::vector<ColorRgb> &ledValues)
{ {
if (!initialized) if (!_initialized)
return -1; return -1;
int idx = 0; int idx = 0;
for (const ColorRgb& color : ledValues) for (const ColorRgb& color : ledValues)
{ {
if (idx >= led_string.channel[chan].count) if (idx >= _led_string.channel[_channel].count)
{
break; break;
}
_temp_rgbw.red = color.red; _temp_rgbw.red = color.red;
_temp_rgbw.green = color.green; _temp_rgbw.green = color.green;
_temp_rgbw.blue = color.blue; _temp_rgbw.blue = color.blue;
_temp_rgbw.white = 0; _temp_rgbw.white = 0;
if (led_string.channel[chan].strip_type == SK6812_STRIP_GRBW) { if (_led_string.channel[_channel].strip_type == SK6812_STRIP_GRBW)
{
Rgb_to_Rgbw(color, &_temp_rgbw, _whiteAlgorithm); Rgb_to_Rgbw(color, &_temp_rgbw, _whiteAlgorithm);
} }
led_string.channel[chan].leds[idx++] = _led_string.channel[_channel].leds[idx++] =
((uint32_t)_temp_rgbw.white << 24) + ((uint32_t)_temp_rgbw.red << 16) + ((uint32_t)_temp_rgbw.green << 8) + _temp_rgbw.blue; ((uint32_t)_temp_rgbw.white << 24) + ((uint32_t)_temp_rgbw.red << 16) + ((uint32_t)_temp_rgbw.green << 8) + _temp_rgbw.blue;
} }
while (idx < led_string.channel[chan].count) while (idx < _led_string.channel[_channel].count)
led_string.channel[chan].leds[idx++] = 0; {
_led_string.channel[_channel].leds[idx++] = 0;
}
if (ws2811_render(&led_string)) return ws2811_render(&_led_string) ? -1 : 0;
return -1;
return 0;
} }
// Turn off the LEDs by sending 000000's // Turn off the LEDs by sending 000000's
@ -77,25 +77,24 @@ int LedDeviceWS281x::write(const std::vector<ColorRgb> &ledValues)
// make it more likely we don't accidentally drive data into an off strip // make it more likely we don't accidentally drive data into an off strip
int LedDeviceWS281x::switchOff() int LedDeviceWS281x::switchOff()
{ {
if (!initialized) if (!_initialized)
{
return -1; return -1;
}
int idx = 0; int idx = 0;
while (idx < led_string.channel[chan].count) while (idx < _led_string.channel[_channel].count)
led_string.channel[chan].leds[idx++] = 0; _led_string.channel[_channel].leds[idx++] = 0;
if (ws2811_render(&led_string)) return ws2811_render(&_led_string) ? -1 : 0;
return -1;
return 0;
} }
// Destructor // Destructor
LedDeviceWS281x::~LedDeviceWS281x() LedDeviceWS281x::~LedDeviceWS281x()
{ {
if (initialized) if (_initialized)
{ {
ws2811_fini(&led_string); ws2811_fini(&_led_string);
} }
initialized = false; _initialized = false;
} }

View File

@ -1,6 +1,3 @@
#ifndef LEDDEVICEWS281X_H_
#define LEDDEVICEWS281X_H_
#pragma once #pragma once
#include <leddevice/LedDevice.h> #include <leddevice/LedDevice.h>
@ -41,11 +38,9 @@ public:
virtual int switchOff(); virtual int switchOff();
private: private:
ws2811_t led_string; ws2811_t _led_string;
int chan; int _channel;
bool initialized; bool _initialized;
std::string _whiteAlgorithm; std::string _whiteAlgorithm;
ColorRgbw _temp_rgbw; ColorRgbw _temp_rgbw;
}; };
#endif /* LEDDEVICEWS281X_H_ */

View File

@ -12,16 +12,15 @@
#include "LedDeviceWs2801.h" #include "LedDeviceWs2801.h"
LedDeviceWs2801::LedDeviceWs2801(const std::string& outputDevice, const unsigned baudrate, const unsigned latchTime, LedDeviceWs2801::LedDeviceWs2801(const std::string& outputDevice, const unsigned baudrate, const unsigned latchTime,
const int spiMode, const bool spiDataInvert) const int spiMode, const bool spiDataInvert)
: LedSpiDevice(outputDevice, baudrate, latchTime, spiMode, spiDataInvert) : LedSpiDevice(outputDevice, baudrate, latchTime, spiMode, spiDataInvert)
, mLedCount(0)
{ {
// empty // empty
} }
int LedDeviceWs2801::write(const std::vector<ColorRgb> &ledValues) int LedDeviceWs2801::write(const std::vector<ColorRgb> &ledValues)
{ {
mLedCount = ledValues.size(); _ledCount = ledValues.size();
const unsigned dataLen = ledValues.size() * sizeof(ColorRgb); const unsigned dataLen = ledValues.size() * sizeof(ColorRgb);
const uint8_t * dataPtr = reinterpret_cast<const uint8_t *>(ledValues.data()); const uint8_t * dataPtr = reinterpret_cast<const uint8_t *>(ledValues.data());
@ -31,5 +30,5 @@ int LedDeviceWs2801::write(const std::vector<ColorRgb> &ledValues)
int LedDeviceWs2801::switchOff() int LedDeviceWs2801::switchOff()
{ {
return write(std::vector<ColorRgb>(mLedCount, ColorRgb{0,0,0})); return write(std::vector<ColorRgb>(_ledCount, ColorRgb{0,0,0}));
} }

View File

@ -35,9 +35,4 @@ public:
/// Switch the leds off /// Switch the leds off
virtual int switchOff(); virtual int switchOff();
private:
/// the number of leds (needed when switching off)
size_t mLedCount;
}; };

View File

@ -11,55 +11,53 @@
// hyperion local includes // hyperion local includes
#include "LedDeviceWs2812SPI.h" #include "LedDeviceWs2812SPI.h"
LedDeviceWs2812SPI::LedDeviceWs2812SPI(const std::string& outputDevice, const unsigned baudrate, LedDeviceWs2812SPI::LedDeviceWs2812SPI(const std::string& outputDevice, const unsigned baudrate, const int spiMode, const bool spiDataInvert)
const int spiMode, const bool spiDataInvert) : LedSpiDevice(outputDevice, baudrate, 0, spiMode, spiDataInvert)
: LedSpiDevice(outputDevice, baudrate, 0, spiMode, spiDataInvert)
, mLedCount(0)
, bitpair_to_byte { , bitpair_to_byte {
0b10001000, 0b10001000,
0b10001100, 0b10001100,
0b11001000, 0b11001000,
0b11001100, 0b11001100,
} }
{ {
// empty // empty
} }
int LedDeviceWs2812SPI::write(const std::vector<ColorRgb> &ledValues) int LedDeviceWs2812SPI::write(const std::vector<ColorRgb> &ledValues)
{ {
mLedCount = ledValues.size(); _ledCount = ledValues.size();
// 3 colours, 4 spi bytes per colour + 3 frame end latch bytes // 3 colours, 4 spi bytes per colour + 3 frame end latch bytes
#define COLOURS_PER_LED 3 const int SPI_BYTES_PER_LED = 3 * 4;
#define SPI_BYTES_PER_COLOUR 4 unsigned spi_size = _ledCount * SPI_BYTES_PER_LED + 3;
#define SPI_BYTES_PER_LED COLOURS_PER_LED * SPI_BYTES_PER_COLOUR
unsigned spi_size = mLedCount * SPI_BYTES_PER_LED + 3; if(_ledBuffer.size() != spi_size)
if(_spiBuffer.size() != spi_size){ {
_spiBuffer.resize(spi_size, 0x00); _ledBuffer.resize(spi_size, 0x00);
} }
unsigned spi_ptr = 0; unsigned spi_ptr = 0;
for (unsigned i=0; i< mLedCount; ++i) { for (unsigned i=0; i< (unsigned)_ledCount; ++i)
{
uint32_t colorBits = ((unsigned int)ledValues[i].red << 16) uint32_t colorBits = ((unsigned int)ledValues[i].red << 16)
| ((unsigned int)ledValues[i].green << 8) | ((unsigned int)ledValues[i].green << 8)
| ledValues[i].blue; | ledValues[i].blue;
for (int j=SPI_BYTES_PER_LED - 1; j>=0; j--) { for (int j=SPI_BYTES_PER_LED - 1; j>=0; j--)
_spiBuffer[spi_ptr+j] = bitpair_to_byte[ colorBits & 0x3 ]; {
_ledBuffer[spi_ptr+j] = bitpair_to_byte[ colorBits & 0x3 ];
colorBits >>= 2; colorBits >>= 2;
} }
spi_ptr += SPI_BYTES_PER_LED; spi_ptr += SPI_BYTES_PER_LED;
} }
_spiBuffer[spi_ptr++] = 0; _ledBuffer[spi_ptr++] = 0;
_spiBuffer[spi_ptr++] = 0; _ledBuffer[spi_ptr++] = 0;
_spiBuffer[spi_ptr++] = 0; _ledBuffer[spi_ptr++] = 0;
return writeBytes(spi_size, _spiBuffer.data()); return writeBytes(spi_size, _ledBuffer.data());
} }
int LedDeviceWs2812SPI::switchOff() int LedDeviceWs2812SPI::switchOff()
{ {
return write(std::vector<ColorRgb>(mLedCount, ColorRgb{0,0,0})); return write(std::vector<ColorRgb>(_ledCount, ColorRgb{0,0,0}));
} }

View File

@ -33,10 +33,5 @@ public:
virtual int switchOff(); virtual int switchOff();
private: private:
uint8_t bitpair_to_byte[4];
/// the number of leds (needed when switching off)
size_t mLedCount;
std::vector<uint8_t> _spiBuffer;
uint8_t bitpair_to_byte[4];
}; };

View File

@ -9,13 +9,13 @@
// Local Hyperion includes // Local Hyperion includes
#include "LedHIDDevice.h" #include "LedHIDDevice.h"
LedHIDDevice::LedHIDDevice(const unsigned short VendorId, const unsigned short ProductId, int delayAfterConnect_ms, const bool useFeature) : LedHIDDevice::LedHIDDevice(const unsigned short VendorId, const unsigned short ProductId, int delayAfterConnect_ms, const bool useFeature)
_VendorId(VendorId), : _VendorId(VendorId)
_ProductId(ProductId), , _ProductId(ProductId)
_useFeature(useFeature), , _useFeature(useFeature)
_deviceHandle(nullptr), , _deviceHandle(nullptr)
_delayAfterConnect_ms(delayAfterConnect_ms), , _delayAfterConnect_ms(delayAfterConnect_ms)
_blockedForDelay(false) , _blockedForDelay(false)
{ {
// empty // empty
} }

View File

@ -11,7 +11,7 @@
/// ///
/// The LedHIDDevice implements an abstract base-class for LedDevices using an HID-device. /// The LedHIDDevice implements an abstract base-class for LedDevices using an HID-device.
/// ///
class LedHIDDevice : public QObject, public LedDevice class LedHIDDevice : public LedDevice
{ {
Q_OBJECT Q_OBJECT

View File

@ -18,8 +18,6 @@ LedRs232Device::LedRs232Device(const std::string& outputDevice, const unsigned b
, _stateChanged(true) , _stateChanged(true)
{ {
connect(&_rs232Port, SIGNAL(error(QSerialPort::SerialPortError)), this, SLOT(error(QSerialPort::SerialPortError))); connect(&_rs232Port, SIGNAL(error(QSerialPort::SerialPortError)), this, SLOT(error(QSerialPort::SerialPortError)));
} }
void LedRs232Device::error(QSerialPort::SerialPortError error) void LedRs232Device::error(QSerialPort::SerialPortError error)
@ -109,7 +107,9 @@ bool LedRs232Device::tryOpen()
int LedRs232Device::writeBytes(const unsigned size, const uint8_t * data) int LedRs232Device::writeBytes(const unsigned size, const uint8_t * data)
{ {
if (_blockedForDelay) if (_blockedForDelay)
{
return 0; return 0;
}
if (!_rs232Port.isOpen()) if (!_rs232Port.isOpen())
{ {

View File

@ -9,7 +9,7 @@
/// ///
/// The LedRs232Device implements an abstract base-class for LedDevices using a RS232-device. /// The LedRs232Device implements an abstract base-class for LedDevices using a RS232-device.
/// ///
class LedRs232Device : public QObject, public LedDevice class LedRs232Device : public LedDevice
{ {
Q_OBJECT Q_OBJECT
@ -49,6 +49,7 @@ private slots:
/// Unblock the device after a connection delay /// Unblock the device after a connection delay
void unblockAfterDelay(); void unblockAfterDelay();
void error(QSerialPort::SerialPortError error); void error(QSerialPort::SerialPortError error);
private: private:
// tries to open device if not opened // tries to open device if not opened
bool tryOpen(); bool tryOpen();

View File

@ -14,47 +14,46 @@
#include <utils/Logger.h> #include <utils/Logger.h>
LedSpiDevice::LedSpiDevice(const std::string& outputDevice, const unsigned baudrate, const int latchTime_ns, LedSpiDevice::LedSpiDevice(const std::string& outputDevice, const unsigned baudrate, const int latchTime_ns, const int spiMode, const bool spiDataInvert)
const int spiMode, const bool spiDataInvert) : _deviceName(outputDevice)
: mDeviceName(outputDevice) , _baudRate_Hz(baudrate)
, mBaudRate_Hz(baudrate) , _latchTime_ns(latchTime_ns)
, mLatchTime_ns(latchTime_ns) , _fid(-1)
, mFid(-1) , _spiMode(spiMode)
, mSpiMode(spiMode) , _spiDataInvert(spiDataInvert)
, mSpiDataInvert(spiDataInvert)
{ {
memset(&spi, 0, sizeof(spi)); memset(&_spi, 0, sizeof(_spi));
Debug(_log, "_spiDataInvert %d, _spiMode %d", _spiDataInvert, _spiMode);
} }
LedSpiDevice::~LedSpiDevice() LedSpiDevice::~LedSpiDevice()
{ {
// close(mFid); // close(_fid);
} }
int LedSpiDevice::open() int LedSpiDevice::open()
{ {
//printf ("mSpiDataInvert %d mSpiMode %d\n",mSpiDataInvert, mSpiMode);
const int bitsPerWord = 8; const int bitsPerWord = 8;
mFid = ::open(mDeviceName.c_str(), O_RDWR); _fid = ::open(_deviceName.c_str(), O_RDWR);
if (mFid < 0) if (_fid < 0)
{ {
Error( _log, "Failed to open device (%s). Error message: %s", mDeviceName.c_str(), strerror(errno) ); Error( _log, "Failed to open device (%s). Error message: %s", _deviceName.c_str(), strerror(errno) );
return -1; return -1;
} }
if (ioctl(mFid, SPI_IOC_WR_MODE, &mSpiMode) == -1 || ioctl(mFid, SPI_IOC_RD_MODE, &mSpiMode) == -1) if (ioctl(_fid, SPI_IOC_WR_MODE, &_spiMode) == -1 || ioctl(_fid, SPI_IOC_RD_MODE, &_spiMode) == -1)
{ {
return -2; return -2;
} }
if (ioctl(mFid, SPI_IOC_WR_BITS_PER_WORD, &bitsPerWord) == -1 || ioctl(mFid, SPI_IOC_RD_BITS_PER_WORD, &bitsPerWord) == -1) if (ioctl(_fid, SPI_IOC_WR_BITS_PER_WORD, &bitsPerWord) == -1 || ioctl(_fid, SPI_IOC_RD_BITS_PER_WORD, &bitsPerWord) == -1)
{ {
return -4; return -4;
} }
if (ioctl(mFid, SPI_IOC_WR_MAX_SPEED_HZ, &mBaudRate_Hz) == -1 || ioctl(mFid, SPI_IOC_RD_MAX_SPEED_HZ, &mBaudRate_Hz) == -1) if (ioctl(_fid, SPI_IOC_WR_MAX_SPEED_HZ, &_baudRate_Hz) == -1 || ioctl(_fid, SPI_IOC_RD_MAX_SPEED_HZ, &_baudRate_Hz) == -1)
{ {
return -6; return -6;
} }
@ -64,30 +63,31 @@ int LedSpiDevice::open()
int LedSpiDevice::writeBytes(const unsigned size, const uint8_t * data) int LedSpiDevice::writeBytes(const unsigned size, const uint8_t * data)
{ {
if (mFid < 0) if (_fid < 0)
{ {
return -1; return -1;
} }
spi.tx_buf = __u64(data); _spi.tx_buf = __u64(data);
spi.len = __u32(size); _spi.len = __u32(size);
if (mSpiDataInvert) { if (_spiDataInvert)
{
uint8_t * newdata = (uint8_t *)malloc(size); uint8_t * newdata = (uint8_t *)malloc(size);
for (unsigned i = 0; i<size; i++) { for (unsigned i = 0; i<size; i++) {
newdata[i] = data[i] ^ 0xff; newdata[i] = data[i] ^ 0xff;
} }
spi.tx_buf = __u64(newdata); _spi.tx_buf = __u64(newdata);
} }
int retVal = ioctl(mFid, SPI_IOC_MESSAGE(1), &spi); int retVal = ioctl(_fid, SPI_IOC_MESSAGE(1), &_spi);
if (retVal == 0 && mLatchTime_ns > 0) if (retVal == 0 && _latchTime_ns > 0)
{ {
// The 'latch' time for latching the shifted-value into the leds // The 'latch' time for latching the shifted-value into the leds
timespec latchTime; timespec latchTime;
latchTime.tv_sec = 0; latchTime.tv_sec = 0;
latchTime.tv_nsec = mLatchTime_ns; latchTime.tv_nsec = _latchTime_ns;
// Sleep to latch the leds (only if write succesfull) // Sleep to latch the leds (only if write succesfull)
nanosleep(&latchTime, NULL); nanosleep(&latchTime, NULL);

View File

@ -50,21 +50,23 @@ protected:
private: private:
/// The name of the output device /// The name of the output device
const std::string mDeviceName; const std::string _deviceName;
/// The used baudrate of the output device /// The used baudrate of the output device
const int mBaudRate_Hz; const int _baudRate_Hz;
/// The time which the device should be untouched after a write /// The time which the device should be untouched after a write
const int mLatchTime_ns; const int _latchTime_ns;
/// The File Identifier of the opened output device (or -1 if not opened) /// The File Identifier of the opened output device (or -1 if not opened)
int mFid; int _fid;
/// which spi clock mode do we use? (0..3) /// which spi clock mode do we use? (0..3)
int mSpiMode; int _spiMode;
/// 1=>invert the data pattern /// 1=>invert the data pattern
bool mSpiDataInvert; bool _spiDataInvert;
/// The transfer structure for writing to the spi-device /// The transfer structure for writing to the spi-device
spi_ioc_transfer spi; spi_ioc_transfer _spi;
}; };

View File

@ -15,35 +15,37 @@
// Local Hyperion includes // Local Hyperion includes
#include "LedUdpDevice.h" #include "LedUdpDevice.h"
LedUdpDevice::LedUdpDevice(const std::string& output, const int latchTime_ns) : LedUdpDevice::LedUdpDevice(const std::string& output, const int latchTime_ns)
_target(output), : _target(output)
_LatchTime_ns(latchTime_ns) , _LatchTime_ns(latchTime_ns)
{ {
udpSocket = new QUdpSocket(); _udpSocket = new QUdpSocket();
QString str = QString::fromStdString(_target); QString str = QString::fromStdString(_target);
QStringList _list = str.split(":"); QStringList str_splitted = str.split(":");
if (_list.size() != 2) { if (str_splitted.size() != 2)
{
throw("Error parsing hostname:port"); throw("Error parsing hostname:port");
} }
QHostInfo info = QHostInfo::fromName(_list.at(0)); QHostInfo info = QHostInfo::fromName(str_splitted.at(0));
if (!info.addresses().isEmpty()) { if (!info.addresses().isEmpty())
_address = info.addresses().first(); {
// use the first IP address // use the first IP address
_address = info.addresses().first();
} }
_port = _list.at(1).toInt(); _port = str_splitted.at(1).toInt();
} }
LedUdpDevice::~LedUdpDevice() LedUdpDevice::~LedUdpDevice()
{ {
udpSocket->close(); _udpSocket->close();
} }
int LedUdpDevice::open() int LedUdpDevice::open()
{ {
QHostAddress _localAddress = QHostAddress::Any; QHostAddress localAddress = QHostAddress::Any;
quint16 _localPort = 0; quint16 localPort = 0;
WarningIf( !udpSocket->bind(_localAddress, _localPort), _log, "Couldnt bind local address: %s", strerror(errno)); WarningIf( !_udpSocket->bind(localAddress, localPort), _log, "Couldnt bind local address: %s", strerror(errno));
return 0; return 0;
} }
@ -51,7 +53,7 @@ int LedUdpDevice::open()
int LedUdpDevice::writeBytes(const unsigned size, const uint8_t * data) int LedUdpDevice::writeBytes(const unsigned size, const uint8_t * data)
{ {
qint64 retVal = udpSocket->writeDatagram((const char *)data,size,_address,_port); qint64 retVal = _udpSocket->writeDatagram((const char *)data,size,_address,_port);
if (retVal >= 0 && _LatchTime_ns > 0) if (retVal >= 0 && _LatchTime_ns > 0)
{ {
@ -62,7 +64,9 @@ int LedUdpDevice::writeBytes(const unsigned size, const uint8_t * data)
// Sleep to latch the leds (only if write succesfull) // Sleep to latch the leds (only if write succesfull)
nanosleep(&latchTime, NULL); nanosleep(&latchTime, NULL);
} else { }
else
{
Warning( _log, "Error sending: %s", strerror(errno)); Warning( _log, "Error sending: %s", strerror(errno));
} }

View File

@ -38,7 +38,7 @@ protected:
/// Writes the given bytes/bits to the SPI-device and sleeps the latch time to ensure that the /// Writes the given bytes/bits to the SPI-device and sleeps the latch time to ensure that the
/// values are latched. /// values are latched.
/// ///
/// @param[in[ size The length of the data /// @param[in] size The length of the data
/// @param[in] data The data /// @param[in] data The data
/// ///
/// @return Zero on succes else negative /// @return Zero on succes else negative
@ -48,12 +48,13 @@ protected:
private: private:
/// The UDP destination as "host:port" /// The UDP destination as "host:port"
const std::string _target; const std::string _target;
/// The time which the device should be untouched after a write /// The time which the device should be untouched after a write
const int _LatchTime_ns; const int _LatchTime_ns;
/// ///
QUdpSocket *udpSocket; QUdpSocket * _udpSocket;
QHostAddress _address; QHostAddress _address;
quint16 _port; quint16 _port;
}; };