mirror of
https://github.com/hyperion-project/hyperion.ng.git
synced 2023-10-10 13:36:59 +02:00
leddevice refactoring. code style and extension of baseclass to avoid dups (#174)
This commit is contained in:
parent
bc0c9c469f
commit
97181fa83c
@ -3,6 +3,8 @@
|
||||
// STL incldues
|
||||
#include <vector>
|
||||
|
||||
#include <QObject>
|
||||
|
||||
// Utility includes
|
||||
#include <utils/ColorRgb.h>
|
||||
#include <utils/ColorRgbw.h>
|
||||
@ -12,8 +14,10 @@
|
||||
///
|
||||
/// Interface (pure virtual base class) for LedDevices.
|
||||
///
|
||||
class LedDevice
|
||||
class LedDevice : public QObject
|
||||
{
|
||||
Q_OBJECT
|
||||
|
||||
public:
|
||||
LedDevice();
|
||||
///
|
||||
@ -41,5 +45,12 @@ public:
|
||||
virtual int open();
|
||||
|
||||
protected:
|
||||
/// The common Logger instance for all LedDevices
|
||||
Logger * _log;
|
||||
|
||||
int _ledCount;
|
||||
|
||||
/// The buffer containing the packed RGB values
|
||||
std::vector<uint8_t> _ledBuffer;
|
||||
|
||||
};
|
||||
|
@ -6,8 +6,7 @@
|
||||
using namespace hyperion;
|
||||
|
||||
LinearColorSmoothing::LinearColorSmoothing( LedDevice * ledDevice, double ledUpdateFrequency_hz, int settlingTime_ms, unsigned updateDelay, bool continuousOutput)
|
||||
: QObject()
|
||||
, LedDevice()
|
||||
: LedDevice()
|
||||
, _ledDevice(ledDevice)
|
||||
, _updateInterval(1000 / ledUpdateFrequency_hz)
|
||||
, _settlingTime(settlingTime_ms)
|
||||
|
@ -15,7 +15,7 @@
|
||||
///
|
||||
/// This class processes the requested led values and forwards them to the device after applying
|
||||
/// a linear smoothing effect. This class can be handled as a generic LedDevice.
|
||||
class LinearColorSmoothing : public QObject, public LedDevice
|
||||
class LinearColorSmoothing : public LedDevice
|
||||
{
|
||||
Q_OBJECT
|
||||
|
||||
|
@ -14,6 +14,7 @@ include_directories(
|
||||
|
||||
# Group the headers that go through the MOC compiler
|
||||
SET(Leddevice_QT_HEADERS
|
||||
${CURRENT_HEADER_DIR}/LedDevice.h
|
||||
${CURRENT_SOURCE_DIR}/LedRs232Device.h
|
||||
${CURRENT_SOURCE_DIR}/LedDeviceAdalight.h
|
||||
${CURRENT_SOURCE_DIR}/LedDeviceAdalightApa102.h
|
||||
@ -25,7 +26,6 @@ SET(Leddevice_QT_HEADERS
|
||||
)
|
||||
|
||||
SET(Leddevice_HEADERS
|
||||
${CURRENT_HEADER_DIR}/LedDevice.h
|
||||
${CURRENT_HEADER_DIR}/LedDeviceFactory.h
|
||||
|
||||
${CURRENT_SOURCE_DIR}/LedDeviceLightpack.h
|
||||
|
@ -1,7 +1,11 @@
|
||||
#include <leddevice/LedDevice.h>
|
||||
|
||||
LedDevice::LedDevice()
|
||||
: _log(Logger::getInstance("LedDevice"))
|
||||
: QObject()
|
||||
, _log(Logger::getInstance("LedDevice"))
|
||||
, _ledCount(0)
|
||||
, _ledBuffer(0)
|
||||
|
||||
{
|
||||
}
|
||||
|
||||
|
@ -14,16 +14,15 @@
|
||||
|
||||
LedDeviceAPA102::LedDeviceAPA102(const std::string& outputDevice, const unsigned baudrate)
|
||||
: LedSpiDevice(outputDevice, baudrate, 500000)
|
||||
, _ledBuffer(0)
|
||||
{
|
||||
}
|
||||
|
||||
int LedDeviceAPA102::write(const std::vector<ColorRgb> &ledValues)
|
||||
{
|
||||
_mLedCount = ledValues.size();
|
||||
_ledCount = ledValues.size();
|
||||
const unsigned int startFrameSize = 4;
|
||||
const unsigned int endFrameSize = std::max<unsigned int>(((_mLedCount + 15) / 16), 4);
|
||||
const unsigned int APAbufferSize = (_mLedCount * 4) + startFrameSize + endFrameSize;
|
||||
const unsigned int endFrameSize = std::max<unsigned int>(((_ledCount + 15) / 16), 4);
|
||||
const unsigned int APAbufferSize = (_ledCount * 4) + startFrameSize + endFrameSize;
|
||||
|
||||
if(_ledBuffer.size() != APAbufferSize){
|
||||
_ledBuffer.resize(APAbufferSize, 0xFF);
|
||||
@ -33,7 +32,7 @@ int LedDeviceAPA102::write(const std::vector<ColorRgb> &ledValues)
|
||||
_ledBuffer[3] = 0x00;
|
||||
}
|
||||
|
||||
for (unsigned iLed=0; iLed < _mLedCount; ++iLed) {
|
||||
for (signed iLed=0; iLed < _ledCount; ++iLed) {
|
||||
const ColorRgb& rgb = ledValues[iLed];
|
||||
_ledBuffer[4+iLed*4] = 0xFF;
|
||||
_ledBuffer[4+iLed*4+1] = rgb.red;
|
||||
@ -46,5 +45,5 @@ int LedDeviceAPA102::write(const std::vector<ColorRgb> &ledValues)
|
||||
|
||||
int LedDeviceAPA102::switchOff()
|
||||
{
|
||||
return write(std::vector<ColorRgb>(_mLedCount, ColorRgb{0,0,0}));
|
||||
return write(std::vector<ColorRgb>(_ledCount, ColorRgb{0,0,0}));
|
||||
}
|
||||
|
@ -33,11 +33,4 @@ public:
|
||||
|
||||
/// Switch the leds off
|
||||
virtual int switchOff();
|
||||
|
||||
private:
|
||||
|
||||
/// The buffer containing the packed RGB values
|
||||
std::vector<uint8_t> _ledBuffer;
|
||||
unsigned int _mLedCount;
|
||||
|
||||
};
|
||||
|
@ -11,10 +11,9 @@
|
||||
// hyperion local includes
|
||||
#include "LedDeviceAdalight.h"
|
||||
|
||||
LedDeviceAdalight::LedDeviceAdalight(const std::string& outputDevice, const unsigned baudrate, int delayAfterConnect_ms) :
|
||||
LedRs232Device(outputDevice, baudrate, delayAfterConnect_ms),
|
||||
_ledBuffer(0),
|
||||
_timer()
|
||||
LedDeviceAdalight::LedDeviceAdalight(const std::string& outputDevice, const unsigned baudrate, int delayAfterConnect_ms)
|
||||
: LedRs232Device(outputDevice, baudrate, delayAfterConnect_ms)
|
||||
, _timer()
|
||||
{
|
||||
// setup the timer
|
||||
_timer.setSingleShot(false);
|
||||
|
@ -41,9 +41,6 @@ private slots:
|
||||
void rewriteLeds();
|
||||
|
||||
protected:
|
||||
/// The buffer containing the packed RGB values
|
||||
std::vector<uint8_t> _ledBuffer;
|
||||
|
||||
/// Timer object which makes sure that led data is written at a minimum rate
|
||||
/// The Adalight device will switch off when it does not receive data at least
|
||||
/// every 15 seconds
|
||||
|
@ -11,28 +11,20 @@
|
||||
// hyperion local includes
|
||||
#include "LedDeviceAdalightApa102.h"
|
||||
|
||||
LedDeviceAdalightApa102::LedDeviceAdalightApa102(const std::string& outputDevice, const unsigned baudrate, int delayAfterConnect_ms) :
|
||||
LedRs232Device(outputDevice, baudrate, delayAfterConnect_ms),
|
||||
_ledBuffer(0),
|
||||
_timer()
|
||||
LedDeviceAdalightApa102::LedDeviceAdalightApa102(const std::string& outputDevice, const unsigned baudrate, int delayAfterConnect_ms)
|
||||
: LedDeviceAdalight(outputDevice, baudrate, delayAfterConnect_ms)
|
||||
{
|
||||
// setup the timer
|
||||
_timer.setSingleShot(false);
|
||||
_timer.setInterval(5000);
|
||||
connect(&_timer, SIGNAL(timeout()), this, SLOT(rewriteLeds()));
|
||||
|
||||
// start the timer
|
||||
_timer.start();
|
||||
}
|
||||
|
||||
//comparing to ws2801 adalight, the following changes were needed:
|
||||
// 1- differnt data frame (4 bytes instead of 3)
|
||||
// 2 - in order to accomodate point 1 above, number of leds sent to adalight is increased by 1/3rd
|
||||
int LedDeviceAdalightApa102::write(const std::vector<ColorRgb> & ledValues)
|
||||
{
|
||||
ledCount = ledValues.size();
|
||||
_ledCount = ledValues.size();
|
||||
const unsigned int startFrameSize = 4;
|
||||
const unsigned int endFrameSize = std::max<unsigned int>(((ledCount + 15) / 16), 4);
|
||||
const unsigned int mLedCount = (ledCount * 4) + startFrameSize + endFrameSize;
|
||||
const unsigned int endFrameSize = std::max<unsigned int>(((_ledCount + 15) / 16), 4);
|
||||
const unsigned int mLedCount = (_ledCount * 4) + startFrameSize + endFrameSize;
|
||||
if(_ledBuffer.size() != mLedCount+6){
|
||||
_ledBuffer.resize(mLedCount+6, 0x00);
|
||||
_ledBuffer[0] = 'A';
|
||||
@ -43,7 +35,7 @@ int LedDeviceAdalightApa102::write(const std::vector<ColorRgb> & ledValues)
|
||||
_ledBuffer[5] = _ledBuffer[3] ^ _ledBuffer[4] ^ 0x55; // Checksum
|
||||
}
|
||||
|
||||
for (unsigned iLed=1; iLed<=ledCount; iLed++) {
|
||||
for (signed iLed=1; iLed<=_ledCount; iLed++) {
|
||||
const ColorRgb& rgb = ledValues[iLed-1];
|
||||
_ledBuffer[iLed*4+6] = 0xFF;
|
||||
_ledBuffer[iLed*4+1+6] = rgb.red;
|
||||
@ -60,7 +52,7 @@ int LedDeviceAdalightApa102::write(const std::vector<ColorRgb> & ledValues)
|
||||
|
||||
int LedDeviceAdalightApa102::switchOff()
|
||||
{
|
||||
for (unsigned iLed=1; iLed<=ledCount; iLed++) {
|
||||
for (signed iLed=1; iLed<=_ledCount; iLed++) {
|
||||
_ledBuffer[iLed*4+6] = 0xFF;
|
||||
_ledBuffer[iLed*4+1+6] = 0x00;
|
||||
_ledBuffer[iLed*4+2+6] = 0x00;
|
||||
@ -74,9 +66,3 @@ int LedDeviceAdalightApa102::switchOff()
|
||||
return writeBytes(_ledBuffer.size(), _ledBuffer.data());
|
||||
|
||||
}
|
||||
|
||||
void LedDeviceAdalightApa102::rewriteLeds()
|
||||
{
|
||||
writeBytes(_ledBuffer.size(), _ledBuffer.data());
|
||||
}
|
||||
|
||||
|
@ -3,16 +3,13 @@
|
||||
// STL includes
|
||||
#include <string>
|
||||
|
||||
// Qt includes
|
||||
#include <QTimer>
|
||||
|
||||
// hyperion incluse
|
||||
#include "LedRs232Device.h"
|
||||
// hyperion include
|
||||
#include "LedDeviceAdalight.h"
|
||||
|
||||
///
|
||||
/// Implementation of the LedDevice interface for writing to an Adalight led device for APA102.
|
||||
///
|
||||
class LedDeviceAdalightApa102 : public LedRs232Device
|
||||
class LedDeviceAdalightApa102 : public LedDeviceAdalight
|
||||
{
|
||||
Q_OBJECT
|
||||
|
||||
@ -32,19 +29,7 @@ public:
|
||||
/// @return Zero on succes else negative
|
||||
///
|
||||
virtual int write(const std::vector<ColorRgb> & ledValues);
|
||||
|
||||
/// Switch the leds off
|
||||
virtual int switchOff();
|
||||
|
||||
|
||||
private slots:
|
||||
/// Write the last data to the leds again
|
||||
void rewriteLeds();
|
||||
|
||||
private:
|
||||
/// The buffer containing the packed RGB values
|
||||
std::vector<uint8_t> _ledBuffer;
|
||||
unsigned int ledCount;
|
||||
/// Timer object which makes sure that led data is written at a minimum rate
|
||||
/// The Adalight device will switch off when it does not receive data at least
|
||||
/// every 15 seconds
|
||||
QTimer _timer;
|
||||
};
|
||||
|
@ -1,15 +1,10 @@
|
||||
|
||||
// STL includes
|
||||
#include <cstring>
|
||||
#include <iostream>
|
||||
|
||||
// hyperion local includes
|
||||
#include "LedDeviceAtmo.h"
|
||||
|
||||
LedDeviceAtmo::LedDeviceAtmo(const std::string& outputDevice, const unsigned baudrate) :
|
||||
LedRs232Device(outputDevice, baudrate),
|
||||
_ledBuffer(4 + 5*3) // 4-byte header, 5 RGB values
|
||||
LedDeviceAtmo::LedDeviceAtmo(const std::string& outputDevice, const unsigned baudrate)
|
||||
: LedRs232Device(outputDevice, baudrate)
|
||||
{
|
||||
_ledBuffer.resize(4 + 5*3); // 4-byte header, 5 RGB values
|
||||
_ledBuffer[0] = 0xFF; // Startbyte
|
||||
_ledBuffer[1] = 0x00; // StartChannel(Low)
|
||||
_ledBuffer[2] = 0x00; // StartChannel(High)
|
||||
|
@ -31,8 +31,4 @@ public:
|
||||
|
||||
/// Switch the leds off
|
||||
virtual int switchOff();
|
||||
|
||||
private:
|
||||
/// The buffer containing the packed RGB values
|
||||
std::vector<uint8_t> _ledBuffer;
|
||||
};
|
||||
|
@ -22,22 +22,30 @@ LedDeviceAtmoOrb::LedDeviceAtmoOrb(
|
||||
int skipSmoothingDiff,
|
||||
int port,
|
||||
int numLeds,
|
||||
std::vector<unsigned int> orbIds) :
|
||||
multicastGroup(output.c_str()), useOrbSmoothing(useOrbSmoothing), transitiontime(transitiontime), skipSmoothingDiff(skipSmoothingDiff),
|
||||
multiCastGroupPort(port), numLeds(numLeds), orbIds(orbIds)
|
||||
std::vector<unsigned int> orbIds)
|
||||
: LedDevice()
|
||||
, _multicastGroup(output.c_str())
|
||||
, _useOrbSmoothing(useOrbSmoothing)
|
||||
, _transitiontime(transitiontime)
|
||||
, _skipSmoothingDiff(skipSmoothingDiff)
|
||||
, _multiCastGroupPort(port)
|
||||
, _numLeds(numLeds)
|
||||
, _orbIds(orbIds)
|
||||
{
|
||||
manager = new QNetworkAccessManager();
|
||||
groupAddress = QHostAddress(multicastGroup);
|
||||
_manager = new QNetworkAccessManager();
|
||||
_groupAddress = QHostAddress(_multicastGroup);
|
||||
|
||||
udpSocket = new QUdpSocket(this);
|
||||
udpSocket->bind(QHostAddress::Any, multiCastGroupPort, QUdpSocket::ShareAddress | QUdpSocket::ReuseAddressHint);
|
||||
_udpSocket = new QUdpSocket(this);
|
||||
_udpSocket->bind(QHostAddress::Any, _multiCastGroupPort, QUdpSocket::ShareAddress | QUdpSocket::ReuseAddressHint);
|
||||
|
||||
joinedMulticastgroup = udpSocket->joinMulticastGroup(groupAddress);
|
||||
joinedMulticastgroup = _udpSocket->joinMulticastGroup(_groupAddress);
|
||||
}
|
||||
|
||||
int LedDeviceAtmoOrb::write(const std::vector <ColorRgb> &ledValues) {
|
||||
int LedDeviceAtmoOrb::write(const std::vector <ColorRgb> &ledValues)
|
||||
{
|
||||
// If not in multicast group return
|
||||
if (!joinedMulticastgroup) {
|
||||
if (!joinedMulticastgroup)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -47,9 +55,9 @@ int LedDeviceAtmoOrb::write(const std::vector <ColorRgb> &ledValues) {
|
||||
// 2 = use lamp smoothing and validate by Orb ID
|
||||
// 4 = validate by Orb ID
|
||||
|
||||
// When setting useOrbSmoothing = true it's recommended to disable Hyperion's own smoothing as it will conflict (double smoothing)
|
||||
// When setting _useOrbSmoothing = true it's recommended to disable Hyperion's own smoothing as it will conflict (double smoothing)
|
||||
int commandType = 4;
|
||||
if(useOrbSmoothing)
|
||||
if(_useOrbSmoothing)
|
||||
{
|
||||
commandType = 2;
|
||||
}
|
||||
@ -58,27 +66,33 @@ int LedDeviceAtmoOrb::write(const std::vector <ColorRgb> &ledValues) {
|
||||
// Start off with idx 1 as 0 is reserved for controlling all orbs at once
|
||||
unsigned int idx = 1;
|
||||
|
||||
for (const ColorRgb &color : ledValues) {
|
||||
for (const ColorRgb &color : ledValues)
|
||||
{
|
||||
// Retrieve last send colors
|
||||
int lastRed = lastColorRedMap[idx];
|
||||
int lastGreen = lastColorGreenMap[idx];
|
||||
int lastBlue = lastColorBlueMap[idx];
|
||||
|
||||
// If color difference is higher than skipSmoothingDiff than we skip Orb smoothing (if enabled) and send it right away
|
||||
if ((skipSmoothingDiff != 0 && useOrbSmoothing) && (abs(color.red - lastRed) >= skipSmoothingDiff || abs(color.blue - lastBlue) >= skipSmoothingDiff ||
|
||||
abs(color.green - lastGreen) >= skipSmoothingDiff))
|
||||
// If color difference is higher than _skipSmoothingDiff than we skip Orb smoothing (if enabled) and send it right away
|
||||
if ((_skipSmoothingDiff != 0 && _useOrbSmoothing) && (abs(color.red - lastRed) >= _skipSmoothingDiff || abs(color.blue - lastBlue) >= _skipSmoothingDiff ||
|
||||
abs(color.green - lastGreen) >= _skipSmoothingDiff))
|
||||
{
|
||||
// Skip Orb smoothing when using (command type 4)
|
||||
for (unsigned int i = 0; i < orbIds.size(); i++) {
|
||||
if (orbIds[i] == idx) {
|
||||
for (unsigned int i = 0; i < _orbIds.size(); i++)
|
||||
{
|
||||
if (_orbIds[i] == idx)
|
||||
{
|
||||
setColor(idx, color, 4);
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
else
|
||||
{
|
||||
// Send color
|
||||
for (unsigned int i = 0; i < orbIds.size(); i++) {
|
||||
if (orbIds[i] == idx) {
|
||||
for (unsigned int i = 0; i < _orbIds.size(); i++)
|
||||
{
|
||||
if (_orbIds[i] == idx)
|
||||
{
|
||||
setColor(idx, color, commandType);
|
||||
}
|
||||
}
|
||||
@ -96,9 +110,10 @@ int LedDeviceAtmoOrb::write(const std::vector <ColorRgb> &ledValues) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
void LedDeviceAtmoOrb::setColor(unsigned int orbId, const ColorRgb &color, int commandType) {
|
||||
void LedDeviceAtmoOrb::setColor(unsigned int orbId, const ColorRgb &color, int commandType)
|
||||
{
|
||||
QByteArray bytes;
|
||||
bytes.resize(5 + numLeds * 3);
|
||||
bytes.resize(5 + _numLeds * 3);
|
||||
bytes.fill('\0');
|
||||
|
||||
// Command identifier: C0FFEE
|
||||
@ -120,16 +135,17 @@ void LedDeviceAtmoOrb::setColor(unsigned int orbId, const ColorRgb &color, int c
|
||||
sendCommand(bytes);
|
||||
}
|
||||
|
||||
void LedDeviceAtmoOrb::sendCommand(const QByteArray &bytes) {
|
||||
void LedDeviceAtmoOrb::sendCommand(const QByteArray &bytes)
|
||||
{
|
||||
QByteArray datagram = bytes;
|
||||
udpSocket->writeDatagram(datagram.data(), datagram.size(),
|
||||
groupAddress, multiCastGroupPort);
|
||||
_udpSocket->writeDatagram(datagram.data(), datagram.size(), _groupAddress, _multiCastGroupPort);
|
||||
}
|
||||
|
||||
int LedDeviceAtmoOrb::switchOff() {
|
||||
for (unsigned int i = 0; i < orbIds.size(); i++) {
|
||||
for (unsigned int i = 0; i < _orbIds.size(); i++)
|
||||
{
|
||||
QByteArray bytes;
|
||||
bytes.resize(5 + numLeds * 3);
|
||||
bytes.resize(5 + _numLeds * 3);
|
||||
bytes.fill('\0');
|
||||
|
||||
// Command identifier: C0FFEE
|
||||
@ -141,7 +157,7 @@ int LedDeviceAtmoOrb::switchOff() {
|
||||
bytes[3] = 1;
|
||||
|
||||
// Orb ID
|
||||
bytes[4] = orbIds[i];
|
||||
bytes[4] = _orbIds[i];
|
||||
|
||||
// RED / GREEN / BLUE
|
||||
bytes[5] = 0;
|
||||
@ -153,6 +169,7 @@ int LedDeviceAtmoOrb::switchOff() {
|
||||
return 0;
|
||||
}
|
||||
|
||||
LedDeviceAtmoOrb::~LedDeviceAtmoOrb() {
|
||||
delete manager;
|
||||
LedDeviceAtmoOrb::~LedDeviceAtmoOrb()
|
||||
{
|
||||
delete _manager;
|
||||
}
|
||||
|
@ -32,7 +32,8 @@ public:
|
||||
*
|
||||
* @author RickDB (github)
|
||||
*/
|
||||
class LedDeviceAtmoOrb : public QObject, public LedDevice {
|
||||
class LedDeviceAtmoOrb : public LedDevice
|
||||
{
|
||||
Q_OBJECT
|
||||
public:
|
||||
// Last send color map
|
||||
@ -47,22 +48,16 @@ public:
|
||||
/// Constructs the device.
|
||||
///
|
||||
/// @param output is the multicast address of Orbs
|
||||
///
|
||||
/// @param transitiontime is optional and not used at the moment
|
||||
///
|
||||
/// @param useOrbSmoothing use Orbs own (external) smoothing algorithm (default: false)
|
||||
///
|
||||
/// @param skipSmoothingDiff minimal color (0-255) difference to override smoothing so that if current and previously received colors are higher than set dif we override smoothing
|
||||
///
|
||||
/// @param port is the multicast port.
|
||||
///
|
||||
/// @param numLeds is the total amount of leds per Orb
|
||||
///
|
||||
/// @param array containing orb ids
|
||||
///
|
||||
LedDeviceAtmoOrb(const std::string &output, bool useOrbSmoothing =
|
||||
false, int transitiontime = 0, int skipSmoothingDiff = 0, int port = 49692, int numLeds = 24,
|
||||
std::vector<unsigned int> orbIds = std::vector < unsigned int>());
|
||||
std::vector<unsigned int> orbIds = std::vector<unsigned int>());
|
||||
|
||||
///
|
||||
/// Destructor of this device
|
||||
@ -73,7 +68,6 @@ public:
|
||||
/// Sends the given led-color values to the Orbs
|
||||
///
|
||||
/// @param ledValues The color-value per led
|
||||
///
|
||||
/// @return Zero on success else negative
|
||||
///
|
||||
virtual int write(const std::vector <ColorRgb> &ledValues);
|
||||
@ -82,43 +76,40 @@ public:
|
||||
|
||||
private:
|
||||
/// QNetworkAccessManager object for sending requests.
|
||||
QNetworkAccessManager *manager;
|
||||
QNetworkAccessManager *_manager;
|
||||
|
||||
/// String containing multicast group IP address
|
||||
QString multicastGroup;
|
||||
QString _multicastGroup;
|
||||
|
||||
/// use Orbs own (external) smoothing algorithm
|
||||
bool useOrbSmoothing;
|
||||
bool _useOrbSmoothing;
|
||||
|
||||
/// Transition time between colors (not implemented)
|
||||
int transitiontime;
|
||||
int _transitiontime;
|
||||
|
||||
// Maximum allowed color difference, will skip Orb (external) smoothing once reached
|
||||
int skipSmoothingDiff;
|
||||
int _skipSmoothingDiff;
|
||||
|
||||
/// Multicast port to send data to
|
||||
int multiCastGroupPort;
|
||||
int _multiCastGroupPort;
|
||||
|
||||
/// Number of leds in Orb, used to determine buffer size
|
||||
int numLeds;
|
||||
int _numLeds;
|
||||
|
||||
/// QHostAddress object of multicast group IP address
|
||||
QHostAddress groupAddress;
|
||||
QHostAddress _groupAddress;
|
||||
|
||||
/// QUdpSocket object used to send data over
|
||||
QUdpSocket *udpSocket;
|
||||
QUdpSocket * _udpSocket;
|
||||
|
||||
/// Array of the orb ids.
|
||||
std::vector<unsigned int> orbIds;
|
||||
std::vector<unsigned int> _orbIds;
|
||||
|
||||
///
|
||||
/// Set Orbcolor
|
||||
///
|
||||
/// @param orbId the orb id
|
||||
///
|
||||
/// @param color which color to set
|
||||
///
|
||||
///
|
||||
/// @param commandType which type of command to send (off / smoothing / etc..)
|
||||
///
|
||||
void setColor(unsigned int orbId, const ColorRgb &color, int commandType);
|
||||
|
@ -7,6 +7,7 @@ static const unsigned OPC_HEADER_SIZE = 4; // OPC header size
|
||||
|
||||
|
||||
LedDeviceFadeCandy::LedDeviceFadeCandy(const Json::Value &deviceConfig)
|
||||
: LedDevice()
|
||||
{
|
||||
setConfig(deviceConfig);
|
||||
_opc_data.resize( OPC_HEADER_SIZE );
|
||||
|
@ -13,7 +13,7 @@
|
||||
/// Implementation of the LedDevice interface for sending to
|
||||
/// fadecandy/opc-server via network by using the 'open pixel control' protocol.
|
||||
///
|
||||
class LedDeviceFadeCandy : public QObject, public LedDevice
|
||||
class LedDeviceFadeCandy : public LedDevice
|
||||
{
|
||||
Q_OBJECT
|
||||
|
||||
|
@ -2,8 +2,9 @@
|
||||
// Local-Hyperion includes
|
||||
#include "LedDeviceFile.h"
|
||||
|
||||
LedDeviceFile::LedDeviceFile(const std::string& output) :
|
||||
_ofs(output.empty()?"/dev/null":output.c_str())
|
||||
LedDeviceFile::LedDeviceFile(const std::string& output)
|
||||
: LedDevice()
|
||||
, _ofs( output.empty() ? "/dev/null" : output.c_str())
|
||||
{
|
||||
// empty
|
||||
}
|
||||
|
@ -11,12 +11,11 @@ uint16_t LedDeviceHyperionUsbasp::_usbProductId = 0x05dc;
|
||||
std::string LedDeviceHyperionUsbasp::_usbProductDescription = "Hyperion led controller";
|
||||
|
||||
|
||||
LedDeviceHyperionUsbasp::LedDeviceHyperionUsbasp(uint8_t writeLedsCommand) :
|
||||
LedDevice(),
|
||||
_writeLedsCommand(writeLedsCommand),
|
||||
_libusbContext(nullptr),
|
||||
_deviceHandle(nullptr),
|
||||
_ledCount(256)
|
||||
LedDeviceHyperionUsbasp::LedDeviceHyperionUsbasp(uint8_t writeLedsCommand)
|
||||
: LedDevice()
|
||||
, _writeLedsCommand(writeLedsCommand)
|
||||
, _libusbContext(nullptr)
|
||||
, _deviceHandle(nullptr)
|
||||
{
|
||||
}
|
||||
|
||||
|
@ -78,9 +78,6 @@ private:
|
||||
/// libusb device handle
|
||||
libusb_device_handle * _deviceHandle;
|
||||
|
||||
/// Number of leds
|
||||
int _ledCount;
|
||||
|
||||
/// Usb device identifiers
|
||||
static uint16_t _usbVendorId;
|
||||
static uint16_t _usbProductId;
|
||||
|
@ -16,7 +16,7 @@
|
||||
|
||||
// from commands.h (http://code.google.com/p/light-pack/source/browse/CommonHeaders/commands.h)
|
||||
// Commands to device, sends it in first byte of data[]
|
||||
enum COMMANDS{
|
||||
enum COMMANDS {
|
||||
CMD_UPDATE_LEDS = 1,
|
||||
CMD_OFF_ALL,
|
||||
CMD_SET_TIMER_OPTIONS,
|
||||
@ -28,20 +28,19 @@ enum COMMANDS{
|
||||
};
|
||||
|
||||
// from commands.h (http://code.google.com/p/light-pack/source/browse/CommonHeaders/commands.h)
|
||||
enum DATA_VERSION_INDEXES{
|
||||
enum DATA_VERSION_INDEXES {
|
||||
INDEX_FW_VER_MAJOR = 1,
|
||||
INDEX_FW_VER_MINOR
|
||||
};
|
||||
|
||||
LedDeviceLightpackHidapi::LedDeviceLightpackHidapi() :
|
||||
LedDevice(),
|
||||
_deviceHandle(nullptr),
|
||||
_serialNumber(""),
|
||||
_firmwareVersion({-1,-1}),
|
||||
_ledCount(-1),
|
||||
_bitsPerChannel(-1),
|
||||
_ledBuffer()
|
||||
LedDeviceLightpackHidapi::LedDeviceLightpackHidapi()
|
||||
: LedDevice()
|
||||
, _deviceHandle(nullptr)
|
||||
, _serialNumber("")
|
||||
, _firmwareVersion({-1,-1})
|
||||
, _bitsPerChannel(-1)
|
||||
{
|
||||
_ledCount = -1;
|
||||
}
|
||||
|
||||
LedDeviceLightpackHidapi::~LedDeviceLightpackHidapi()
|
||||
|
@ -40,10 +40,9 @@ LedDeviceLightpack::LedDeviceLightpack(const std::string & serialNumber)
|
||||
, _addressNumber(-1)
|
||||
, _serialNumber(serialNumber)
|
||||
, _firmwareVersion({-1,-1})
|
||||
, _ledCount(-1)
|
||||
, _bitsPerChannel(-1)
|
||||
, _ledBuffer()
|
||||
{
|
||||
_ledCount = -1;
|
||||
}
|
||||
|
||||
LedDeviceLightpack::~LedDeviceLightpack()
|
||||
|
@ -110,12 +110,6 @@ private:
|
||||
/// firmware version of the device
|
||||
Version _firmwareVersion;
|
||||
|
||||
/// the number of leds of the device
|
||||
int _ledCount;
|
||||
|
||||
/// the number of bits per channel
|
||||
int _bitsPerChannel;
|
||||
|
||||
/// buffer for led data
|
||||
std::vector<uint8_t> _ledBuffer;
|
||||
};
|
||||
|
@ -10,11 +10,9 @@
|
||||
// hyperion local includes
|
||||
#include "LedDeviceLpd6803.h"
|
||||
|
||||
LedDeviceLpd6803::LedDeviceLpd6803(const std::string& outputDevice, const unsigned baudrate) :
|
||||
LedSpiDevice(outputDevice, baudrate),
|
||||
_ledBuffer(0)
|
||||
LedDeviceLpd6803::LedDeviceLpd6803(const std::string& outputDevice, const unsigned baudrate)
|
||||
: LedSpiDevice(outputDevice, baudrate)
|
||||
{
|
||||
// empty
|
||||
}
|
||||
|
||||
int LedDeviceLpd6803::write(const std::vector<ColorRgb> &ledValues)
|
||||
|
@ -35,8 +35,4 @@ public:
|
||||
|
||||
/// Switch the leds off
|
||||
virtual int switchOff();
|
||||
|
||||
private:
|
||||
/// The buffer containing the packed RGB values
|
||||
std::vector<uint8_t> _ledBuffer;
|
||||
};
|
||||
|
@ -10,9 +10,8 @@
|
||||
// hyperion local includes
|
||||
#include "LedDeviceLpd8806.h"
|
||||
|
||||
LedDeviceLpd8806::LedDeviceLpd8806(const std::string& outputDevice, const unsigned baudrate) :
|
||||
LedSpiDevice(outputDevice, baudrate),
|
||||
_ledBuffer(0)
|
||||
LedDeviceLpd8806::LedDeviceLpd8806(const std::string& outputDevice, const unsigned baudrate)
|
||||
: LedSpiDevice(outputDevice, baudrate)
|
||||
{
|
||||
// empty
|
||||
}
|
||||
|
@ -96,8 +96,4 @@ public:
|
||||
|
||||
/// Switch the leds off
|
||||
virtual int switchOff();
|
||||
|
||||
private:
|
||||
/// The buffer containing the packed RGB values
|
||||
std::vector<uint8_t> _ledBuffer;
|
||||
};
|
||||
|
@ -17,9 +17,9 @@ bool compareLightpacks(LedDeviceLightpack * lhs, LedDeviceLightpack * rhs)
|
||||
return lhs->getSerialNumber() < rhs->getSerialNumber();
|
||||
}
|
||||
|
||||
LedDeviceMultiLightpack::LedDeviceMultiLightpack() :
|
||||
LedDevice(),
|
||||
_lightpacks()
|
||||
LedDeviceMultiLightpack::LedDeviceMultiLightpack()
|
||||
: LedDevice()
|
||||
, _lightpacks()
|
||||
{
|
||||
}
|
||||
|
||||
|
@ -11,22 +11,21 @@
|
||||
// hyperion local includes
|
||||
#include "LedDeviceP9813.h"
|
||||
|
||||
LedDeviceP9813::LedDeviceP9813(const std::string& outputDevice, const unsigned baudrate) :
|
||||
LedSpiDevice(outputDevice, baudrate, 0),
|
||||
_ledCount(0)
|
||||
LedDeviceP9813::LedDeviceP9813(const std::string& outputDevice, const unsigned baudrate)
|
||||
: LedSpiDevice(outputDevice, baudrate, 0)
|
||||
{
|
||||
// empty
|
||||
}
|
||||
|
||||
int LedDeviceP9813::write(const std::vector<ColorRgb> &ledValues)
|
||||
{
|
||||
if (_ledCount != ledValues.size())
|
||||
if (_ledCount != (signed)ledValues.size())
|
||||
{
|
||||
_ledBuf.resize(ledValues.size() * 4 + 8, 0x00);
|
||||
_ledBuffer.resize(ledValues.size() * 4 + 8, 0x00);
|
||||
_ledCount = ledValues.size();
|
||||
}
|
||||
|
||||
uint8_t * dataPtr = _ledBuf.data();
|
||||
uint8_t * dataPtr = _ledBuffer.data();
|
||||
for (const ColorRgb & color : ledValues)
|
||||
{
|
||||
*dataPtr++ = calculateChecksum(color);
|
||||
@ -35,7 +34,7 @@ int LedDeviceP9813::write(const std::vector<ColorRgb> &ledValues)
|
||||
*dataPtr++ = color.red;
|
||||
}
|
||||
|
||||
return writeBytes(_ledBuf.size(), _ledBuf.data());
|
||||
return writeBytes(_ledBuffer.size(), _ledBuffer.data());
|
||||
}
|
||||
|
||||
int LedDeviceP9813::switchOff()
|
||||
|
@ -18,8 +18,7 @@ public:
|
||||
/// @param outputDevice The name of the output device (eg '/etc/SpiDev.0.0')
|
||||
/// @param baudrate The used baudrate for writing to the output device
|
||||
///
|
||||
LedDeviceP9813(const std::string& outputDevice,
|
||||
const unsigned baudrate);
|
||||
LedDeviceP9813(const std::string& outputDevice, const unsigned baudrate);
|
||||
|
||||
///
|
||||
/// Writes the led color values to the led-device
|
||||
@ -33,13 +32,6 @@ public:
|
||||
virtual int switchOff();
|
||||
|
||||
private:
|
||||
|
||||
/// the number of leds
|
||||
size_t _ledCount;
|
||||
|
||||
/// Buffer for writing/written led data
|
||||
std::vector<uint8_t> _ledBuf;
|
||||
|
||||
///
|
||||
/// Calculates the required checksum for one led
|
||||
///
|
||||
|
@ -3,9 +3,8 @@
|
||||
#include "LedDevicePaintpack.h"
|
||||
|
||||
// Use out report HID device
|
||||
LedDevicePaintpack::LedDevicePaintpack(const unsigned short VendorId, const unsigned short ProductId, int delayAfterConnect_ms) :
|
||||
LedHIDDevice(VendorId, ProductId, delayAfterConnect_ms, false),
|
||||
_ledBuffer(0)
|
||||
LedDevicePaintpack::LedDevicePaintpack(const unsigned short VendorId, const unsigned short ProductId, int delayAfterConnect_ms)
|
||||
: LedHIDDevice(VendorId, ProductId, delayAfterConnect_ms, false)
|
||||
{
|
||||
// empty
|
||||
}
|
||||
|
@ -32,8 +32,4 @@ public:
|
||||
/// @return Zero on success else negative
|
||||
///
|
||||
virtual int switchOff();
|
||||
|
||||
private:
|
||||
/// buffer for led data
|
||||
std::vector<uint8_t> _ledBuffer;
|
||||
};
|
||||
|
@ -21,8 +21,10 @@ bool operator !=(CiColor p1, CiColor p2) {
|
||||
return !(p1 == p2);
|
||||
}
|
||||
|
||||
PhilipsHueLight::PhilipsHueLight(unsigned int id, QString originalState, QString modelId) :
|
||||
id(id), originalState(originalState) {
|
||||
PhilipsHueLight::PhilipsHueLight(unsigned int id, QString originalState, QString modelId)
|
||||
: id(id)
|
||||
, originalState(originalState)
|
||||
{
|
||||
// Hue system model ids (http://www.developers.meethue.com/documentation/supported-lights).
|
||||
// Light strips, color iris, ...
|
||||
const std::set<QString> GAMUT_A_MODEL_IDS = { "LLC001", "LLC005", "LLC006", "LLC007", "LLC010", "LLC011", "LLC012",
|
||||
@ -32,19 +34,26 @@ PhilipsHueLight::PhilipsHueLight(unsigned int id, QString originalState, QString
|
||||
// Hue Lightstrip plus, go ...
|
||||
const std::set<QString> GAMUT_C_MODEL_IDS = { "LLC020", "LST002" };
|
||||
// Find id in the sets and set the appropiate color space.
|
||||
if (GAMUT_A_MODEL_IDS.find(modelId) != GAMUT_A_MODEL_IDS.end()) {
|
||||
if (GAMUT_A_MODEL_IDS.find(modelId) != GAMUT_A_MODEL_IDS.end())
|
||||
{
|
||||
colorSpace.red = {0.703f, 0.296f};
|
||||
colorSpace.green = {0.2151f, 0.7106f};
|
||||
colorSpace.blue = {0.138f, 0.08f};
|
||||
} else if (GAMUT_B_MODEL_IDS.find(modelId) != GAMUT_B_MODEL_IDS.end()) {
|
||||
}
|
||||
else if (GAMUT_B_MODEL_IDS.find(modelId) != GAMUT_B_MODEL_IDS.end())
|
||||
{
|
||||
colorSpace.red = {0.675f, 0.322f};
|
||||
colorSpace.green = {0.4091f, 0.518f};
|
||||
colorSpace.blue = {0.167f, 0.04f};
|
||||
} else if (GAMUT_C_MODEL_IDS.find(modelId) != GAMUT_B_MODEL_IDS.end()) {
|
||||
}
|
||||
else if (GAMUT_C_MODEL_IDS.find(modelId) != GAMUT_B_MODEL_IDS.end())
|
||||
{
|
||||
colorSpace.red = {0.675f, 0.322f};
|
||||
colorSpace.green = {0.2151f, 0.7106f};
|
||||
colorSpace.blue = {0.167f, 0.04f};
|
||||
} else {
|
||||
}
|
||||
else
|
||||
{
|
||||
colorSpace.red = {1.0f, 0.0f};
|
||||
colorSpace.green = {0.0f, 1.0f};
|
||||
colorSpace.blue = {0.0f, 0.0f};
|
||||
@ -55,37 +64,45 @@ PhilipsHueLight::PhilipsHueLight(unsigned int id, QString originalState, QString
|
||||
color = {black.x, black.y, black.bri};
|
||||
}
|
||||
|
||||
float PhilipsHueLight::crossProduct(CiColor p1, CiColor p2) {
|
||||
float PhilipsHueLight::crossProduct(CiColor p1, CiColor p2)
|
||||
{
|
||||
return p1.x * p2.y - p1.y * p2.x;
|
||||
}
|
||||
|
||||
bool PhilipsHueLight::isPointInLampsReach(CiColor p) {
|
||||
bool PhilipsHueLight::isPointInLampsReach(CiColor p)
|
||||
{
|
||||
CiColor v1 = { colorSpace.green.x - colorSpace.red.x, colorSpace.green.y - colorSpace.red.y };
|
||||
CiColor v2 = { colorSpace.blue.x - colorSpace.red.x, colorSpace.blue.y - colorSpace.red.y };
|
||||
CiColor q = { p.x - colorSpace.red.x, p.y - colorSpace.red.y };
|
||||
float s = crossProduct(q, v2) / crossProduct(v1, v2);
|
||||
float t = crossProduct(v1, q) / crossProduct(v1, v2);
|
||||
if ((s >= 0.0f) && (t >= 0.0f) && (s + t <= 1.0f)) {
|
||||
if ((s >= 0.0f) && (t >= 0.0f) && (s + t <= 1.0f))
|
||||
{
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
CiColor PhilipsHueLight::getClosestPointToPoint(CiColor a, CiColor b, CiColor p) {
|
||||
CiColor PhilipsHueLight::getClosestPointToPoint(CiColor a, CiColor b, CiColor p)
|
||||
{
|
||||
CiColor AP = { p.x - a.x, p.y - a.y };
|
||||
CiColor AB = { b.x - a.x, b.y - a.y };
|
||||
float ab2 = AB.x * AB.x + AB.y * AB.y;
|
||||
float ap_ab = AP.x * AB.x + AP.y * AB.y;
|
||||
float t = ap_ab / ab2;
|
||||
if (t < 0.0f) {
|
||||
if (t < 0.0f)
|
||||
{
|
||||
t = 0.0f;
|
||||
} else if (t > 1.0f) {
|
||||
}
|
||||
else if (t > 1.0f)
|
||||
{
|
||||
t = 1.0f;
|
||||
}
|
||||
return {a.x + AB.x * t, a.y + AB.y * t};
|
||||
}
|
||||
|
||||
float PhilipsHueLight::getDistanceBetweenTwoPoints(CiColor p1, CiColor p2) {
|
||||
float PhilipsHueLight::getDistanceBetweenTwoPoints(CiColor p1, CiColor p2)
|
||||
{
|
||||
// Horizontal difference.
|
||||
float dx = p1.x - p2.x;
|
||||
// Vertical difference.
|
||||
@ -94,7 +111,8 @@ float PhilipsHueLight::getDistanceBetweenTwoPoints(CiColor p1, CiColor p2) {
|
||||
return sqrt(dx * dx + dy * dy);
|
||||
}
|
||||
|
||||
CiColor PhilipsHueLight::rgbToCiColor(float red, float green, float blue) {
|
||||
CiColor PhilipsHueLight::rgbToCiColor(float red, float green, float blue)
|
||||
{
|
||||
// Apply gamma correction.
|
||||
float r = (red > 0.04045f) ? powf((red + 0.055f) / (1.0f + 0.055f), 2.4f) : (red / 12.92f);
|
||||
float g = (green > 0.04045f) ? powf((green + 0.055f) / (1.0f + 0.055f), 2.4f) : (green / 12.92f);
|
||||
@ -106,16 +124,19 @@ CiColor PhilipsHueLight::rgbToCiColor(float red, float green, float blue) {
|
||||
// Convert to x,y space.
|
||||
float cx = X / (X + Y + Z);
|
||||
float cy = Y / (X + Y + Z);
|
||||
if (std::isnan(cx)) {
|
||||
if (std::isnan(cx))
|
||||
{
|
||||
cx = 0.0f;
|
||||
}
|
||||
if (std::isnan(cy)) {
|
||||
if (std::isnan(cy))
|
||||
{
|
||||
cy = 0.0f;
|
||||
}
|
||||
// Brightness is simply Y in the XYZ space.
|
||||
CiColor xy = { cx, cy, Y };
|
||||
// Check if the given XY value is within the color reach of our lamps.
|
||||
if (!isPointInLampsReach(xy)) {
|
||||
if (!isPointInLampsReach(xy))
|
||||
{
|
||||
// It seems the color is out of reach let's find the closes color we can produce with our lamp and send this XY value out.
|
||||
CiColor pAB = getClosestPointToPoint(colorSpace.red, colorSpace.green, xy);
|
||||
CiColor pAC = getClosestPointToPoint(colorSpace.blue, colorSpace.red, xy);
|
||||
@ -126,11 +147,13 @@ CiColor PhilipsHueLight::rgbToCiColor(float red, float green, float blue) {
|
||||
float dBC = getDistanceBetweenTwoPoints(xy, pBC);
|
||||
float lowest = dAB;
|
||||
CiColor closestPoint = pAB;
|
||||
if (dAC < lowest) {
|
||||
if (dAC < lowest)
|
||||
{
|
||||
lowest = dAC;
|
||||
closestPoint = pAC;
|
||||
}
|
||||
if (dBC < lowest) {
|
||||
if (dBC < lowest)
|
||||
{
|
||||
lowest = dBC;
|
||||
closestPoint = pBC;
|
||||
}
|
||||
@ -141,46 +164,58 @@ CiColor PhilipsHueLight::rgbToCiColor(float red, float green, float blue) {
|
||||
return xy;
|
||||
}
|
||||
|
||||
LedDevicePhilipsHue::LedDevicePhilipsHue(const std::string& output, const std::string& username, bool switchOffOnBlack,
|
||||
int transitiontime, std::vector<unsigned int> lightIds) :
|
||||
host(output.c_str()), username(username.c_str()), switchOffOnBlack(switchOffOnBlack), transitiontime(
|
||||
transitiontime), lightIds(lightIds) {
|
||||
LedDevicePhilipsHue::LedDevicePhilipsHue(const std::string& output, const std::string& username, bool switchOffOnBlack, int transitiontime, std::vector<unsigned int> lightIds)
|
||||
: LedDevice()
|
||||
, host(output.c_str())
|
||||
, username(username.c_str())
|
||||
, switchOffOnBlack(switchOffOnBlack)
|
||||
, transitiontime(transitiontime)
|
||||
, lightIds(lightIds)
|
||||
{
|
||||
manager = new QNetworkAccessManager();
|
||||
timer.setInterval(3000);
|
||||
timer.setSingleShot(true);
|
||||
connect(&timer, SIGNAL(timeout()), this, SLOT(restoreStates()));
|
||||
}
|
||||
|
||||
LedDevicePhilipsHue::~LedDevicePhilipsHue() {
|
||||
LedDevicePhilipsHue::~LedDevicePhilipsHue()
|
||||
{
|
||||
delete manager;
|
||||
}
|
||||
|
||||
int LedDevicePhilipsHue::write(const std::vector<ColorRgb> & ledValues) {
|
||||
int LedDevicePhilipsHue::write(const std::vector<ColorRgb> & ledValues)
|
||||
{
|
||||
// Save light states if not done before.
|
||||
if (!areStatesSaved()) {
|
||||
if (!areStatesSaved())
|
||||
{
|
||||
saveStates((unsigned int) ledValues.size());
|
||||
switchOn((unsigned int) ledValues.size());
|
||||
}
|
||||
// If there are less states saved than colors given, then maybe something went wrong before.
|
||||
if (lights.size() != ledValues.size()) {
|
||||
if (lights.size() != ledValues.size())
|
||||
{
|
||||
restoreStates();
|
||||
return 0;
|
||||
}
|
||||
// Iterate through colors and set light states.
|
||||
unsigned int idx = 0;
|
||||
for (const ColorRgb& color : ledValues) {
|
||||
for (const ColorRgb& color : ledValues)
|
||||
{
|
||||
// Get lamp.
|
||||
PhilipsHueLight& lamp = lights.at(idx);
|
||||
// Scale colors from [0, 255] to [0, 1] and convert to xy space.
|
||||
CiColor xy = lamp.rgbToCiColor(color.red / 255.0f, color.green / 255.0f, color.blue / 255.0f);
|
||||
// Write color if color has been changed.
|
||||
if (xy != lamp.color) {
|
||||
if (xy != lamp.color)
|
||||
{
|
||||
// From a color to black.
|
||||
if (switchOffOnBlack && lamp.color != lamp.black && xy == lamp.black) {
|
||||
if (switchOffOnBlack && lamp.color != lamp.black && xy == lamp.black)
|
||||
{
|
||||
put(getStateRoute(lamp.id), QString("{\"on\": false}"));
|
||||
}
|
||||
// From black to a color
|
||||
else if (switchOffOnBlack && lamp.color == lamp.black && xy != lamp.black) {
|
||||
else if (switchOffOnBlack && lamp.color == lamp.black && xy != lamp.black)
|
||||
{
|
||||
// Send adjust color and brightness command in JSON format.
|
||||
// We have to set the transition time each time.
|
||||
// Send also command to switch the lamp on.
|
||||
@ -189,7 +224,8 @@ int LedDevicePhilipsHue::write(const std::vector<ColorRgb> & ledValues) {
|
||||
xy.y).arg(qRound(xy.bri * 255.0f)).arg(transitiontime));
|
||||
}
|
||||
// Normal color change.
|
||||
else {
|
||||
else
|
||||
{
|
||||
// Send adjust color and brightness command in JSON format.
|
||||
// We have to set the transition time each time.
|
||||
put(getStateRoute(lamp.id),
|
||||
@ -206,17 +242,20 @@ int LedDevicePhilipsHue::write(const std::vector<ColorRgb> & ledValues) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
int LedDevicePhilipsHue::switchOff() {
|
||||
int LedDevicePhilipsHue::switchOff()
|
||||
{
|
||||
timer.stop();
|
||||
// If light states have been saved before, ...
|
||||
if (areStatesSaved()) {
|
||||
if (areStatesSaved())
|
||||
{
|
||||
// ... restore them.
|
||||
restoreStates();
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void LedDevicePhilipsHue::put(QString route, QString content) {
|
||||
void LedDevicePhilipsHue::put(QString route, QString content)
|
||||
{
|
||||
QString url = getUrl(route);
|
||||
// Perfrom request
|
||||
QNetworkRequest request(url);
|
||||
@ -230,7 +269,8 @@ void LedDevicePhilipsHue::put(QString route, QString content) {
|
||||
reply->deleteLater();
|
||||
}
|
||||
|
||||
QByteArray LedDevicePhilipsHue::get(QString route) {
|
||||
QByteArray LedDevicePhilipsHue::get(QString route)
|
||||
{
|
||||
QString url = getUrl(route);
|
||||
// Perfrom request
|
||||
QNetworkRequest request(url);
|
||||
@ -248,67 +288,80 @@ QByteArray LedDevicePhilipsHue::get(QString route) {
|
||||
return response;
|
||||
}
|
||||
|
||||
QString LedDevicePhilipsHue::getStateRoute(unsigned int lightId) {
|
||||
QString LedDevicePhilipsHue::getStateRoute(unsigned int lightId)
|
||||
{
|
||||
return QString("lights/%1/state").arg(lightId);
|
||||
}
|
||||
|
||||
QString LedDevicePhilipsHue::getRoute(unsigned int lightId) {
|
||||
QString LedDevicePhilipsHue::getRoute(unsigned int lightId)
|
||||
{
|
||||
return QString("lights/%1").arg(lightId);
|
||||
}
|
||||
|
||||
QString LedDevicePhilipsHue::getUrl(QString route) {
|
||||
QString LedDevicePhilipsHue::getUrl(QString route)
|
||||
{
|
||||
return QString("http://%1/api/%2/%3").arg(host).arg(username).arg(route);
|
||||
}
|
||||
|
||||
void LedDevicePhilipsHue::saveStates(unsigned int nLights) {
|
||||
void LedDevicePhilipsHue::saveStates(unsigned int nLights)
|
||||
{
|
||||
// Clear saved lamps.
|
||||
lights.clear();
|
||||
// Use json parser to parse reponse.
|
||||
Json::Reader reader;
|
||||
Json::FastWriter writer;
|
||||
// Read light ids if none have been supplied by the user.
|
||||
if (lightIds.size() != nLights) {
|
||||
if (lightIds.size() != nLights)
|
||||
{
|
||||
lightIds.clear();
|
||||
//
|
||||
QByteArray response = get("lights");
|
||||
Json::Value json;
|
||||
if (!reader.parse(QString(response).toStdString(), json)) {
|
||||
if (!reader.parse(QString(response).toStdString(), json))
|
||||
{
|
||||
throw std::runtime_error(("No lights found at " + getUrl("lights")).toStdString());
|
||||
}
|
||||
// Loop over all children.
|
||||
for (Json::ValueIterator it = json.begin(); it != json.end() && lightIds.size() < nLights; it++) {
|
||||
for (Json::ValueIterator it = json.begin(); it != json.end() && lightIds.size() < nLights; it++)
|
||||
{
|
||||
int lightId = atoi(it.key().asCString());
|
||||
lightIds.push_back(lightId);
|
||||
Debug(_log, "nLights=%d: found light with id %d.", nLights, lightId);
|
||||
}
|
||||
// Check if we found enough lights.
|
||||
if (lightIds.size() != nLights) {
|
||||
if (lightIds.size() != nLights)
|
||||
{
|
||||
throw std::runtime_error(("Not enough lights found at " + getUrl("lights")).toStdString());
|
||||
}
|
||||
}
|
||||
// Iterate lights.
|
||||
for (unsigned int i = 0; i < nLights; i++) {
|
||||
for (unsigned int i = 0; i < nLights; i++)
|
||||
{
|
||||
// Read the response.
|
||||
QByteArray response = get(getRoute(lightIds.at(i)));
|
||||
// Parse JSON.
|
||||
Json::Value json;
|
||||
if (!reader.parse(QString(response).toStdString(), json)) {
|
||||
if (!reader.parse(QString(response).toStdString(), json))
|
||||
{
|
||||
// Error occured, break loop.
|
||||
Error(_log, "saveStates(nLights=%d): got invalid response from light %s.", nLights, getUrl(getRoute(lightIds.at(i))).toStdString().c_str());
|
||||
break;
|
||||
}
|
||||
// Get state object values which are subject to change.
|
||||
Json::Value state(Json::objectValue);
|
||||
if (!json.isMember("state")) {
|
||||
if (!json.isMember("state"))
|
||||
{
|
||||
Error(_log, "saveStates(nLights=%d): got no state for light from %s", nLights, getUrl(getRoute(lightIds.at(i))).toStdString().c_str());
|
||||
break;
|
||||
}
|
||||
if (!json["state"].isMember("on")) {
|
||||
if (!json["state"].isMember("on"))
|
||||
{
|
||||
Error(_log, "saveStates(nLights=%d,): got no valid state from light %s", nLights, getUrl(getRoute(lightIds.at(i))).toStdString().c_str());
|
||||
break;
|
||||
}
|
||||
state["on"] = json["state"]["on"];
|
||||
if (json["state"]["on"] == true) {
|
||||
if (json["state"]["on"] == true)
|
||||
{
|
||||
state["xy"] = json["state"]["xy"];
|
||||
state["bri"] = json["state"]["bri"];
|
||||
}
|
||||
@ -320,20 +373,25 @@ void LedDevicePhilipsHue::saveStates(unsigned int nLights) {
|
||||
}
|
||||
}
|
||||
|
||||
void LedDevicePhilipsHue::switchOn(unsigned int nLights) {
|
||||
for (PhilipsHueLight light : lights) {
|
||||
void LedDevicePhilipsHue::switchOn(unsigned int nLights)
|
||||
{
|
||||
for (PhilipsHueLight light : lights)
|
||||
{
|
||||
put(getStateRoute(light.id), "{\"on\": true}");
|
||||
}
|
||||
}
|
||||
|
||||
void LedDevicePhilipsHue::restoreStates() {
|
||||
for (PhilipsHueLight light : lights) {
|
||||
void LedDevicePhilipsHue::restoreStates()
|
||||
{
|
||||
for (PhilipsHueLight light : lights)
|
||||
{
|
||||
put(getStateRoute(light.id), light.originalState);
|
||||
}
|
||||
// Clear saved light states.
|
||||
lights.clear();
|
||||
}
|
||||
|
||||
bool LedDevicePhilipsHue::areStatesSaved() {
|
||||
bool LedDevicePhilipsHue::areStatesSaved()
|
||||
{
|
||||
return !lights.empty();
|
||||
}
|
||||
|
@ -60,9 +60,7 @@ public:
|
||||
/// https://github.com/PhilipsHue/PhilipsHueSDK-iOS-OSX/blob/master/ApplicationDesignNotes/RGB%20to%20xy%20Color%20conversion.md
|
||||
///
|
||||
/// @param red the red component in [0, 1]
|
||||
///
|
||||
/// @param green the green component in [0, 1]
|
||||
///
|
||||
/// @param blue the blue component in [0, 1]
|
||||
///
|
||||
/// @return color point
|
||||
@ -71,14 +69,12 @@ public:
|
||||
|
||||
///
|
||||
/// @param p the color point to check
|
||||
///
|
||||
/// @return true if the color point is covered by the lamp color space
|
||||
///
|
||||
bool isPointInLampsReach(CiColor p);
|
||||
|
||||
///
|
||||
/// @param p1 point one
|
||||
///
|
||||
/// @param p2 point tow
|
||||
///
|
||||
/// @return the cross product between p1 and p2
|
||||
@ -87,9 +83,7 @@ public:
|
||||
|
||||
///
|
||||
/// @param a reference point one
|
||||
///
|
||||
/// @param b reference point two
|
||||
///
|
||||
/// @param p the point to which the closest point is to be found
|
||||
///
|
||||
/// @return the closest color point of p to a and b
|
||||
@ -98,7 +92,6 @@ public:
|
||||
|
||||
///
|
||||
/// @param p1 point one
|
||||
///
|
||||
/// @param p2 point tow
|
||||
///
|
||||
/// @return the distance between the two points
|
||||
@ -116,20 +109,18 @@ public:
|
||||
*
|
||||
* @author ntim (github), bimsarck (github)
|
||||
*/
|
||||
class LedDevicePhilipsHue: public QObject, public LedDevice {
|
||||
Q_OBJECT
|
||||
class LedDevicePhilipsHue: public LedDevice {
|
||||
|
||||
Q_OBJECT
|
||||
|
||||
public:
|
||||
///
|
||||
/// Constructs the device.
|
||||
///
|
||||
/// @param output the ip address of the bridge
|
||||
///
|
||||
/// @param username username of the hue bridge (default: newdeveloper)
|
||||
///
|
||||
/// @param switchOffOnBlack kill lights for black (default: false)
|
||||
///
|
||||
/// @param transitiontime the time duration a light change takes in multiples of 100 ms (default: 400 ms).
|
||||
///
|
||||
/// @param lightIds light ids of the lights to control if not starting at one in ascending order.
|
||||
///
|
||||
LedDevicePhilipsHue(const std::string& output, const std::string& username = "newdeveloper", bool switchOffOnBlack =
|
||||
|
@ -12,10 +12,9 @@
|
||||
#include "LedDeviceRawHID.h"
|
||||
|
||||
// Use feature report HID device
|
||||
LedDeviceRawHID::LedDeviceRawHID(const unsigned short VendorId, const unsigned short ProductId, int delayAfterConnect_ms) :
|
||||
LedHIDDevice(VendorId, ProductId, delayAfterConnect_ms, true),
|
||||
_ledBuffer(0),
|
||||
_timer()
|
||||
LedDeviceRawHID::LedDeviceRawHID(const unsigned short VendorId, const unsigned short ProductId, int delayAfterConnect_ms)
|
||||
: LedHIDDevice(VendorId, ProductId, delayAfterConnect_ms, true)
|
||||
, _timer()
|
||||
{
|
||||
// setup the timer
|
||||
_timer.setSingleShot(false);
|
||||
|
@ -38,9 +38,6 @@ private slots:
|
||||
void rewriteLeds();
|
||||
|
||||
private:
|
||||
/// The buffer containing the packed RGB values
|
||||
std::vector<uint8_t> _ledBuffer;
|
||||
|
||||
/// Timer object which makes sure that led data is written at a minimum rate
|
||||
/// The RawHID device will switch off when it does not receive data at least
|
||||
/// every 15 seconds
|
||||
|
@ -17,9 +17,8 @@ struct FrameSpec
|
||||
size_t size;
|
||||
};
|
||||
|
||||
LedDeviceSedu::LedDeviceSedu(const std::string& outputDevice, const unsigned baudrate) :
|
||||
LedRs232Device(outputDevice, baudrate),
|
||||
_ledBuffer(0)
|
||||
LedDeviceSedu::LedDeviceSedu(const std::string& outputDevice, const unsigned baudrate)
|
||||
: LedRs232Device(outputDevice, baudrate)
|
||||
{
|
||||
// empty
|
||||
}
|
||||
|
@ -30,8 +30,4 @@ public:
|
||||
|
||||
/// Switch the leds off
|
||||
virtual int switchOff();
|
||||
|
||||
private:
|
||||
/// The buffer containing the packed RGB values
|
||||
std::vector<uint8_t> _ledBuffer;
|
||||
};
|
||||
|
@ -14,7 +14,6 @@
|
||||
LedDeviceSk6812SPI::LedDeviceSk6812SPI(const std::string& outputDevice, const unsigned baudrate, const std::string& whiteAlgorithm,
|
||||
const int spiMode, const bool spiDataInvert)
|
||||
: LedSpiDevice(outputDevice, baudrate, 0, spiMode, spiDataInvert)
|
||||
, mLedCount(0)
|
||||
, _whiteAlgorithm(whiteAlgorithm)
|
||||
, bitpair_to_byte {
|
||||
0b10001000,
|
||||
@ -29,16 +28,16 @@ LedDeviceSk6812SPI::LedDeviceSk6812SPI(const std::string& outputDevice, const un
|
||||
|
||||
int LedDeviceSk6812SPI::write(const std::vector<ColorRgb> &ledValues)
|
||||
{
|
||||
mLedCount = ledValues.size();
|
||||
_ledCount = ledValues.size();
|
||||
|
||||
// 4 colours, 4 spi bytes per colour + 3 frame end latch bytes
|
||||
#define COLOURS_PER_LED 4
|
||||
#define SPI_BYTES_PER_COLOUR 4
|
||||
#define SPI_BYTES_PER_LED COLOURS_PER_LED * SPI_BYTES_PER_COLOUR
|
||||
|
||||
unsigned spi_size = mLedCount * SPI_BYTES_PER_LED + 3;
|
||||
if(_spiBuffer.size() != spi_size){
|
||||
_spiBuffer.resize(spi_size, 0x00);
|
||||
unsigned spi_size = _ledCount * SPI_BYTES_PER_LED + 3;
|
||||
if(_ledBuffer.size() != spi_size){
|
||||
_ledBuffer.resize(spi_size, 0x00);
|
||||
}
|
||||
|
||||
unsigned spi_ptr = 0;
|
||||
@ -52,19 +51,19 @@ int LedDeviceSk6812SPI::write(const std::vector<ColorRgb> &ledValues)
|
||||
_temp_rgbw.white;
|
||||
|
||||
for (int j=SPI_BYTES_PER_LED - 1; j>=0; j--) {
|
||||
_spiBuffer[spi_ptr+j] = bitpair_to_byte[ colorBits & 0x3 ];
|
||||
_ledBuffer[spi_ptr+j] = bitpair_to_byte[ colorBits & 0x3 ];
|
||||
colorBits >>= 2;
|
||||
}
|
||||
spi_ptr += SPI_BYTES_PER_LED;
|
||||
}
|
||||
_spiBuffer[spi_ptr++] = 0;
|
||||
_spiBuffer[spi_ptr++] = 0;
|
||||
_spiBuffer[spi_ptr++] = 0;
|
||||
_ledBuffer[spi_ptr++] = 0;
|
||||
_ledBuffer[spi_ptr++] = 0;
|
||||
_ledBuffer[spi_ptr++] = 0;
|
||||
|
||||
return writeBytes(spi_size, _spiBuffer.data());
|
||||
return writeBytes(spi_size, _ledBuffer.data());
|
||||
}
|
||||
|
||||
int LedDeviceSk6812SPI::switchOff()
|
||||
{
|
||||
return write(std::vector<ColorRgb>(mLedCount, ColorRgb{0,0,0}));
|
||||
return write(std::vector<ColorRgb>(_ledCount, ColorRgb{0,0,0}));
|
||||
}
|
||||
|
@ -20,8 +20,7 @@ public:
|
||||
///
|
||||
|
||||
LedDeviceSk6812SPI(const std::string& outputDevice, const unsigned baudrate,
|
||||
const std::string& whiteAlgorithm,
|
||||
const int spiMode, const bool spiDataInvert);
|
||||
const std::string& whiteAlgorithm, const int spiMode, const bool spiDataInvert);
|
||||
|
||||
///
|
||||
/// Writes the led color values to the led-device
|
||||
@ -35,12 +34,9 @@ public:
|
||||
virtual int switchOff();
|
||||
|
||||
private:
|
||||
|
||||
/// the number of leds (needed when switching off)
|
||||
size_t mLedCount;
|
||||
std::vector<uint8_t> _spiBuffer;
|
||||
|
||||
std::string _whiteAlgorithm;
|
||||
|
||||
uint8_t bitpair_to_byte[4];
|
||||
|
||||
ColorRgbw _temp_rgbw;
|
||||
};
|
||||
|
@ -9,15 +9,15 @@
|
||||
static const unsigned MAX_NUM_LEDS = 320;
|
||||
static const unsigned MAX_NUM_LEDS_SETTABLE = 16;
|
||||
|
||||
LedDeviceTinkerforge::LedDeviceTinkerforge(const std::string & host, uint16_t port, const std::string & uid, const unsigned interval) :
|
||||
LedDevice(),
|
||||
_host(host),
|
||||
_port(port),
|
||||
_uid(uid),
|
||||
_interval(interval),
|
||||
_ipConnection(nullptr),
|
||||
_ledStrip(nullptr),
|
||||
_colorChannelSize(0)
|
||||
LedDeviceTinkerforge::LedDeviceTinkerforge(const std::string & host, uint16_t port, const std::string & uid, const unsigned interval)
|
||||
: LedDevice()
|
||||
, _host(host)
|
||||
, _port(port)
|
||||
, _uid(uid)
|
||||
, _interval(interval)
|
||||
, _ipConnection(nullptr)
|
||||
, _ledStrip(nullptr)
|
||||
, _colorChannelSize(0)
|
||||
{
|
||||
// empty
|
||||
}
|
||||
|
@ -7,9 +7,8 @@
|
||||
// hyperion local includes
|
||||
#include "LedDeviceTpm2.h"
|
||||
|
||||
LedDeviceTpm2::LedDeviceTpm2(const std::string& outputDevice, const unsigned baudrate) :
|
||||
LedRs232Device(outputDevice, baudrate),
|
||||
_ledBuffer(0)
|
||||
LedDeviceTpm2::LedDeviceTpm2(const std::string& outputDevice, const unsigned baudrate)
|
||||
: LedRs232Device(outputDevice, baudrate)
|
||||
{
|
||||
// empty
|
||||
}
|
||||
|
@ -31,8 +31,4 @@ public:
|
||||
|
||||
/// Switch the leds off
|
||||
virtual int switchOff();
|
||||
|
||||
private:
|
||||
/// The buffer containing the packed RGB values
|
||||
std::vector<uint8_t> _ledBuffer;
|
||||
};
|
||||
|
@ -1,6 +1,8 @@
|
||||
|
||||
// Local-Hyperion includes
|
||||
#include "LedDeviceUdp.h"
|
||||
|
||||
#include <fstream>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <unistd.h>
|
||||
@ -22,6 +24,7 @@ int update_number;
|
||||
int fragment_number;
|
||||
|
||||
LedDeviceUdp::LedDeviceUdp(const std::string& output, const unsigned protocol, const unsigned maxPacket)
|
||||
: LedDevice()
|
||||
{
|
||||
std::string hostname;
|
||||
std::string port;
|
||||
@ -79,6 +82,7 @@ LedDeviceUdp::~LedDeviceUdp()
|
||||
|
||||
int LedDeviceUdp::write(const std::vector<ColorRgb> & ledValues)
|
||||
{
|
||||
_ledCount = ledValues.size();
|
||||
|
||||
char udpbuffer[4096];
|
||||
int udpPtr=0;
|
||||
@ -86,11 +90,13 @@ int LedDeviceUdp::write(const std::vector<ColorRgb> & ledValues)
|
||||
update_number++;
|
||||
update_number &= 0xf;
|
||||
|
||||
if (ledprotocol == 0) {
|
||||
if (ledprotocol == 0)
|
||||
{
|
||||
int i=0;
|
||||
for (const ColorRgb& color : ledValues)
|
||||
{
|
||||
if (i<4090) {
|
||||
if (i<4090)
|
||||
{
|
||||
udpbuffer[i++] = color.red;
|
||||
udpbuffer[i++] = color.green;
|
||||
udpbuffer[i++] = color.blue;
|
||||
@ -98,30 +104,35 @@ int LedDeviceUdp::write(const std::vector<ColorRgb> & ledValues)
|
||||
}
|
||||
sendto(sockfd, udpbuffer, i, 0, p->ai_addr, p->ai_addrlen);
|
||||
}
|
||||
if (ledprotocol == 1) {
|
||||
if (ledprotocol == 1)
|
||||
{
|
||||
#define MAXLEDperFRAG 450
|
||||
int mLedCount = ledValues.size();
|
||||
|
||||
for (int frag=0; frag<4; frag++) {
|
||||
for (int frag=0; frag<4; frag++)
|
||||
{
|
||||
udpPtr=0;
|
||||
udpbuffer[udpPtr++] = 0;
|
||||
udpbuffer[udpPtr++] = 0;
|
||||
udpbuffer[udpPtr++] = (frag*MAXLEDperFRAG)/256; // high byte
|
||||
udpbuffer[udpPtr++] = (frag*MAXLEDperFRAG)%256; // low byte
|
||||
int ct=0;
|
||||
for (int this_led = frag*300; ((this_led<mLedCount) && (ct++<MAXLEDperFRAG)); this_led++) {
|
||||
for (int this_led = frag*300; ((this_led<_ledCount) && (ct++<MAXLEDperFRAG)); this_led++)
|
||||
{
|
||||
const ColorRgb& color = ledValues[this_led];
|
||||
if (udpPtr<4090) {
|
||||
if (udpPtr<4090)
|
||||
{
|
||||
udpbuffer[udpPtr++] = color.red;
|
||||
udpbuffer[udpPtr++] = color.green;
|
||||
udpbuffer[udpPtr++] = color.blue;
|
||||
}
|
||||
}
|
||||
if (udpPtr > 7)
|
||||
{
|
||||
sendto(sockfd, udpbuffer, udpPtr, 0, p->ai_addr, p->ai_addrlen);
|
||||
}
|
||||
}
|
||||
if (ledprotocol == 2) {
|
||||
}
|
||||
if (ledprotocol == 2)
|
||||
{
|
||||
udpPtr = 0;
|
||||
unsigned int ledCtr = 0;
|
||||
fragment_number = 0;
|
||||
@ -150,7 +161,8 @@ int LedDeviceUdp::write(const std::vector<ColorRgb> & ledValues)
|
||||
}
|
||||
}
|
||||
|
||||
if (ledprotocol == 3) {
|
||||
if (ledprotocol == 3)
|
||||
{
|
||||
udpPtr = 0;
|
||||
unsigned int ledCtr = 0;
|
||||
unsigned int fragments = 1;
|
||||
@ -168,13 +180,15 @@ int LedDeviceUdp::write(const std::vector<ColorRgb> & ledValues)
|
||||
|
||||
for (const ColorRgb& color : ledValues)
|
||||
{
|
||||
if (udpPtr<4090) {
|
||||
if (udpPtr<4090)
|
||||
{
|
||||
udpbuffer[udpPtr++] = color.red;
|
||||
udpbuffer[udpPtr++] = color.green;
|
||||
udpbuffer[udpPtr++] = color.blue;
|
||||
}
|
||||
ledCtr++;
|
||||
if ( (ledCtr % leds_per_pkt == 0) || (ledCtr == ledValues.size()) ) {
|
||||
if ( (ledCtr % leds_per_pkt == 0) || (ledCtr == ledValues.size()) )
|
||||
{
|
||||
udpbuffer[udpPtr++] = 0x36;
|
||||
sendto(sockfd, udpbuffer, udpPtr, 0, p->ai_addr, p->ai_addrlen);
|
||||
memset(udpbuffer, 0, sizeof udpbuffer);
|
||||
@ -194,6 +208,6 @@ int LedDeviceUdp::write(const std::vector<ColorRgb> & ledValues)
|
||||
|
||||
int LedDeviceUdp::switchOff()
|
||||
{
|
||||
// return write(std::vector<ColorRgb>(mLedCount, ColorRgb{0,0,0}));
|
||||
// return write(std::vector<ColorRgb>(_ledCount, ColorRgb{0,0,0}));
|
||||
return 0;
|
||||
}
|
||||
|
@ -1,8 +1,5 @@
|
||||
#pragma once
|
||||
|
||||
// STL includes0
|
||||
#include <fstream>
|
||||
|
||||
// Leddevice includes
|
||||
#include <leddevice/LedDevice.h>
|
||||
|
||||
@ -35,7 +32,4 @@ public:
|
||||
/// Switch the leds off
|
||||
virtual int switchOff();
|
||||
|
||||
private:
|
||||
/// the number of leds (needed when switching off)
|
||||
size_t mLedCount;
|
||||
};
|
||||
|
@ -11,18 +11,17 @@
|
||||
// hyperion local includes
|
||||
#include "LedDeviceUdpRaw.h"
|
||||
|
||||
LedDeviceUdpRaw::LedDeviceUdpRaw(const std::string& outputDevice, const unsigned latchTime) :
|
||||
LedUdpDevice(outputDevice, latchTime),
|
||||
mLedCount(0)
|
||||
LedDeviceUdpRaw::LedDeviceUdpRaw(const std::string& outputDevice, const unsigned latchTime)
|
||||
: LedUdpDevice(outputDevice, latchTime)
|
||||
{
|
||||
// empty
|
||||
}
|
||||
|
||||
int LedDeviceUdpRaw::write(const std::vector<ColorRgb> &ledValues)
|
||||
{
|
||||
mLedCount = ledValues.size();
|
||||
_ledCount = ledValues.size();
|
||||
|
||||
const unsigned dataLen = ledValues.size() * sizeof(ColorRgb);
|
||||
const unsigned dataLen = _ledCount * sizeof(ColorRgb);
|
||||
const uint8_t * dataPtr = reinterpret_cast<const uint8_t *>(ledValues.data());
|
||||
|
||||
return writeBytes(dataLen, dataPtr);
|
||||
@ -30,5 +29,5 @@ int LedDeviceUdpRaw::write(const std::vector<ColorRgb> &ledValues)
|
||||
|
||||
int LedDeviceUdpRaw::switchOff()
|
||||
{
|
||||
return write(std::vector<ColorRgb>(mLedCount, ColorRgb{0,0,0}));
|
||||
return write(std::vector<ColorRgb>(_ledCount, ColorRgb{0,0,0}));
|
||||
}
|
||||
|
@ -31,9 +31,4 @@ public:
|
||||
|
||||
/// Switch the leds off
|
||||
virtual int switchOff();
|
||||
|
||||
private:
|
||||
|
||||
/// the number of leds (needed when switching off)
|
||||
size_t mLedCount;
|
||||
};
|
||||
|
@ -232,17 +232,13 @@
|
||||
|
||||
|
||||
|
||||
LedDeviceWS2812b::LedDeviceWS2812b() :
|
||||
LedDevice(),
|
||||
mLedCount(0)
|
||||
|
||||
LedDeviceWS2812b::LedDeviceWS2812b()
|
||||
: LedDevice()
|
||||
#ifdef BENCHMARK
|
||||
,
|
||||
runCount(0),
|
||||
combinedNseconds(0),
|
||||
shortestNseconds(2147483647)
|
||||
, runCount(0)
|
||||
, combinedNseconds(0)
|
||||
, shortestNseconds(2147483647)
|
||||
#endif
|
||||
|
||||
{
|
||||
//shortestNseconds = 2147483647;
|
||||
// Init PWM generator and clear LED buffer
|
||||
@ -306,7 +302,7 @@ int LedDeviceWS2812b::write(const std::vector<ColorRgb> &ledValues)
|
||||
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &timeStart);
|
||||
#endif
|
||||
|
||||
mLedCount = ledValues.size();
|
||||
_ledCount = ledValues.size();
|
||||
|
||||
// Read data from LEDBuffer[], translate it into wire format, and write to PWMWaveform
|
||||
unsigned int colorBits = 0; // Holds the GRB color before conversion to wire bit pattern
|
||||
@ -319,11 +315,11 @@ int LedDeviceWS2812b::write(const std::vector<ColorRgb> &ledValues)
|
||||
// 72 bits per pixel / 32 bits per word = 2.25 words per pixel
|
||||
// Add 1 to make sure the PWM FIFO gets the message: "we're sending zeroes"
|
||||
// Times 4 because DMA works in bytes, not words
|
||||
cbp->length = ((mLedCount * 2.25) + 1) * 4;
|
||||
cbp->length = ((_ledCount * 2.25) + 1) * 4;
|
||||
if(cbp->length > NUM_DATA_WORDS * 4)
|
||||
{
|
||||
cbp->length = NUM_DATA_WORDS * 4;
|
||||
mLedCount = (NUM_DATA_WORDS - 1) / 2.25;
|
||||
_ledCount = (NUM_DATA_WORDS - 1) / 2.25;
|
||||
}
|
||||
|
||||
#ifdef WS2812_ASM_OPTI
|
||||
@ -331,7 +327,7 @@ int LedDeviceWS2812b::write(const std::vector<ColorRgb> &ledValues)
|
||||
#endif
|
||||
|
||||
|
||||
for(size_t i=0; i<mLedCount; i++)
|
||||
for(size_t i=0; i<_ledCount; i++)
|
||||
{
|
||||
// Create bits necessary to represent one color triplet (in GRB, not RGB, order)
|
||||
colorBits = ((unsigned int)ledValues[i].red << 8) | ((unsigned int)ledValues[i].green << 16) | ledValues[i].blue;
|
||||
@ -375,7 +371,7 @@ int LedDeviceWS2812b::write(const std::vector<ColorRgb> &ledValues)
|
||||
|
||||
#ifdef WS2812_ASM_OPTI
|
||||
// calculate the bits manually since it is not needed with asm
|
||||
//wireBit += mLedCount * 24 *3;
|
||||
//wireBit += _ledCount * 24 *3;
|
||||
#endif
|
||||
//remove one to undo optimization
|
||||
wireBit --;
|
||||
@ -455,7 +451,7 @@ int LedDeviceWS2812b::write(const std::vector<ColorRgb> &ledValues)
|
||||
|
||||
int LedDeviceWS2812b::switchOff()
|
||||
{
|
||||
return write(std::vector<ColorRgb>(mLedCount, ColorRgb{0,0,0}));
|
||||
return write(std::vector<ColorRgb>(_ledCount, ColorRgb{0,0,0}));
|
||||
}
|
||||
|
||||
LedDeviceWS2812b::~LedDeviceWS2812b()
|
||||
@ -746,7 +742,7 @@ void LedDeviceWS2812b::initHardware()
|
||||
// 72 bits per pixel / 32 bits per word = 2.25 words per pixel
|
||||
// Add 1 to make sure the PWM FIFO gets the message: "we're sending zeroes"
|
||||
// Times 4 because DMA works in bytes, not words
|
||||
cbp->length = ((mLedCount * 2.25) + 1) * 4;
|
||||
cbp->length = ((_ledCount * 2.25) + 1) * 4;
|
||||
if(cbp->length > NUM_DATA_WORDS * 4)
|
||||
{
|
||||
cbp->length = NUM_DATA_WORDS * 4;
|
||||
|
@ -149,10 +149,6 @@ public:
|
||||
virtual int switchOff();
|
||||
|
||||
private:
|
||||
|
||||
/// the number of leds (needed when switching off)
|
||||
size_t mLedCount;
|
||||
|
||||
page_map_t *page_map; // This will hold the page map, which we'll allocate
|
||||
uint8_t *virtbase; // Pointer to some virtual memory that will be allocated
|
||||
|
||||
|
@ -1,75 +1,75 @@
|
||||
#include <iostream>
|
||||
#include <exception>
|
||||
|
||||
#include "LedDeviceWS281x.h"
|
||||
|
||||
// Constructor
|
||||
LedDeviceWS281x::LedDeviceWS281x(const int gpio, const int leds, const uint32_t freq, const int dmanum, const int pwmchannel, const int invert, const int rgbw, const std::string& whiteAlgorithm)
|
||||
: LedDevice()
|
||||
, _channel(pwmchannel)
|
||||
, _initialized(false)
|
||||
, _whiteAlgorithm(whiteAlgorithm)
|
||||
{
|
||||
_whiteAlgorithm = whiteAlgorithm;
|
||||
Debug( _log, "whiteAlgorithm : %s", whiteAlgorithm.c_str());
|
||||
|
||||
initialized = false;
|
||||
led_string.freq = freq;
|
||||
led_string.dmanum = dmanum;
|
||||
if (pwmchannel != 0 && pwmchannel != 1) {
|
||||
Error( _log, "WS281x: invalid PWM channel; must be 0 or 1.");
|
||||
throw -1;
|
||||
}
|
||||
chan = pwmchannel;
|
||||
led_string.channel[chan].gpionum = gpio;
|
||||
led_string.channel[chan].invert = invert;
|
||||
led_string.channel[chan].count = leds;
|
||||
led_string.channel[chan].brightness = 255;
|
||||
if (rgbw == 1) {
|
||||
led_string.channel[chan].strip_type = SK6812_STRIP_GRBW;
|
||||
} else {
|
||||
led_string.channel[chan].strip_type = WS2811_STRIP_RGB;
|
||||
_led_string.freq = freq;
|
||||
_led_string.dmanum = dmanum;
|
||||
if (pwmchannel != 0 && pwmchannel != 1)
|
||||
{
|
||||
throw std::runtime_error("WS281x: invalid PWM channel; must be 0 or 1.");
|
||||
}
|
||||
_led_string.channel[_channel].gpionum = gpio;
|
||||
_led_string.channel[_channel].invert = invert;
|
||||
_led_string.channel[_channel].count = leds;
|
||||
_led_string.channel[_channel].brightness = 255;
|
||||
_led_string.channel[_channel].strip_type = ((rgbw == 1) ? SK6812_STRIP_GRBW : WS2811_STRIP_RGB);
|
||||
|
||||
led_string.channel[!chan].gpionum = 0;
|
||||
led_string.channel[!chan].invert = invert;
|
||||
led_string.channel[!chan].count = 0;
|
||||
led_string.channel[!chan].brightness = 0;
|
||||
led_string.channel[!chan].strip_type = WS2811_STRIP_RGB;
|
||||
if (ws2811_init(&led_string) < 0) {
|
||||
Error( _log, "Unable to initialize ws281x library.");
|
||||
throw -1;
|
||||
_led_string.channel[!_channel].gpionum = 0;
|
||||
_led_string.channel[!_channel].invert = invert;
|
||||
_led_string.channel[!_channel].count = 0;
|
||||
_led_string.channel[!_channel].brightness = 0;
|
||||
_led_string.channel[!_channel].strip_type = WS2811_STRIP_RGB;
|
||||
if (ws2811_init(&_led_string) < 0)
|
||||
{
|
||||
throw std::runtime_error("Unable to initialize ws281x library.");
|
||||
}
|
||||
initialized = true;
|
||||
_initialized = true;
|
||||
}
|
||||
|
||||
// Send new values down the LED chain
|
||||
int LedDeviceWS281x::write(const std::vector<ColorRgb> &ledValues)
|
||||
{
|
||||
if (!initialized)
|
||||
if (!_initialized)
|
||||
return -1;
|
||||
|
||||
int idx = 0;
|
||||
for (const ColorRgb& color : ledValues)
|
||||
{
|
||||
if (idx >= led_string.channel[chan].count)
|
||||
if (idx >= _led_string.channel[_channel].count)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
_temp_rgbw.red = color.red;
|
||||
_temp_rgbw.green = color.green;
|
||||
_temp_rgbw.blue = color.blue;
|
||||
_temp_rgbw.white = 0;
|
||||
|
||||
if (led_string.channel[chan].strip_type == SK6812_STRIP_GRBW) {
|
||||
if (_led_string.channel[_channel].strip_type == SK6812_STRIP_GRBW)
|
||||
{
|
||||
Rgb_to_Rgbw(color, &_temp_rgbw, _whiteAlgorithm);
|
||||
}
|
||||
|
||||
led_string.channel[chan].leds[idx++] =
|
||||
_led_string.channel[_channel].leds[idx++] =
|
||||
((uint32_t)_temp_rgbw.white << 24) + ((uint32_t)_temp_rgbw.red << 16) + ((uint32_t)_temp_rgbw.green << 8) + _temp_rgbw.blue;
|
||||
|
||||
}
|
||||
while (idx < led_string.channel[chan].count)
|
||||
led_string.channel[chan].leds[idx++] = 0;
|
||||
while (idx < _led_string.channel[_channel].count)
|
||||
{
|
||||
_led_string.channel[_channel].leds[idx++] = 0;
|
||||
}
|
||||
|
||||
if (ws2811_render(&led_string))
|
||||
return -1;
|
||||
|
||||
return 0;
|
||||
return ws2811_render(&_led_string) ? -1 : 0;
|
||||
}
|
||||
|
||||
// Turn off the LEDs by sending 000000's
|
||||
@ -77,25 +77,24 @@ int LedDeviceWS281x::write(const std::vector<ColorRgb> &ledValues)
|
||||
// make it more likely we don't accidentally drive data into an off strip
|
||||
int LedDeviceWS281x::switchOff()
|
||||
{
|
||||
if (!initialized)
|
||||
if (!_initialized)
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
|
||||
int idx = 0;
|
||||
while (idx < led_string.channel[chan].count)
|
||||
led_string.channel[chan].leds[idx++] = 0;
|
||||
while (idx < _led_string.channel[_channel].count)
|
||||
_led_string.channel[_channel].leds[idx++] = 0;
|
||||
|
||||
if (ws2811_render(&led_string))
|
||||
return -1;
|
||||
|
||||
return 0;
|
||||
return ws2811_render(&_led_string) ? -1 : 0;
|
||||
}
|
||||
|
||||
// Destructor
|
||||
LedDeviceWS281x::~LedDeviceWS281x()
|
||||
{
|
||||
if (initialized)
|
||||
if (_initialized)
|
||||
{
|
||||
ws2811_fini(&led_string);
|
||||
ws2811_fini(&_led_string);
|
||||
}
|
||||
initialized = false;
|
||||
_initialized = false;
|
||||
}
|
||||
|
@ -1,6 +1,3 @@
|
||||
#ifndef LEDDEVICEWS281X_H_
|
||||
#define LEDDEVICEWS281X_H_
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <leddevice/LedDevice.h>
|
||||
@ -41,11 +38,9 @@ public:
|
||||
virtual int switchOff();
|
||||
|
||||
private:
|
||||
ws2811_t led_string;
|
||||
int chan;
|
||||
bool initialized;
|
||||
ws2811_t _led_string;
|
||||
int _channel;
|
||||
bool _initialized;
|
||||
std::string _whiteAlgorithm;
|
||||
ColorRgbw _temp_rgbw;
|
||||
};
|
||||
|
||||
#endif /* LEDDEVICEWS281X_H_ */
|
||||
|
@ -14,14 +14,13 @@
|
||||
LedDeviceWs2801::LedDeviceWs2801(const std::string& outputDevice, const unsigned baudrate, const unsigned latchTime,
|
||||
const int spiMode, const bool spiDataInvert)
|
||||
: LedSpiDevice(outputDevice, baudrate, latchTime, spiMode, spiDataInvert)
|
||||
, mLedCount(0)
|
||||
{
|
||||
// empty
|
||||
}
|
||||
|
||||
int LedDeviceWs2801::write(const std::vector<ColorRgb> &ledValues)
|
||||
{
|
||||
mLedCount = ledValues.size();
|
||||
_ledCount = ledValues.size();
|
||||
|
||||
const unsigned dataLen = ledValues.size() * sizeof(ColorRgb);
|
||||
const uint8_t * dataPtr = reinterpret_cast<const uint8_t *>(ledValues.data());
|
||||
@ -31,5 +30,5 @@ int LedDeviceWs2801::write(const std::vector<ColorRgb> &ledValues)
|
||||
|
||||
int LedDeviceWs2801::switchOff()
|
||||
{
|
||||
return write(std::vector<ColorRgb>(mLedCount, ColorRgb{0,0,0}));
|
||||
return write(std::vector<ColorRgb>(_ledCount, ColorRgb{0,0,0}));
|
||||
}
|
||||
|
@ -35,9 +35,4 @@ public:
|
||||
|
||||
/// Switch the leds off
|
||||
virtual int switchOff();
|
||||
|
||||
private:
|
||||
|
||||
/// the number of leds (needed when switching off)
|
||||
size_t mLedCount;
|
||||
};
|
||||
|
@ -11,55 +11,53 @@
|
||||
// hyperion local includes
|
||||
#include "LedDeviceWs2812SPI.h"
|
||||
|
||||
LedDeviceWs2812SPI::LedDeviceWs2812SPI(const std::string& outputDevice, const unsigned baudrate,
|
||||
const int spiMode, const bool spiDataInvert)
|
||||
LedDeviceWs2812SPI::LedDeviceWs2812SPI(const std::string& outputDevice, const unsigned baudrate, const int spiMode, const bool spiDataInvert)
|
||||
: LedSpiDevice(outputDevice, baudrate, 0, spiMode, spiDataInvert)
|
||||
, mLedCount(0)
|
||||
, bitpair_to_byte {
|
||||
0b10001000,
|
||||
0b10001100,
|
||||
0b11001000,
|
||||
0b11001100,
|
||||
}
|
||||
|
||||
{
|
||||
// empty
|
||||
}
|
||||
|
||||
int LedDeviceWs2812SPI::write(const std::vector<ColorRgb> &ledValues)
|
||||
{
|
||||
mLedCount = ledValues.size();
|
||||
_ledCount = ledValues.size();
|
||||
|
||||
// 3 colours, 4 spi bytes per colour + 3 frame end latch bytes
|
||||
#define COLOURS_PER_LED 3
|
||||
#define SPI_BYTES_PER_COLOUR 4
|
||||
#define SPI_BYTES_PER_LED COLOURS_PER_LED * SPI_BYTES_PER_COLOUR
|
||||
// 3 colours, 4 spi bytes per colour + 3 frame end latch bytes
|
||||
const int SPI_BYTES_PER_LED = 3 * 4;
|
||||
unsigned spi_size = _ledCount * SPI_BYTES_PER_LED + 3;
|
||||
|
||||
unsigned spi_size = mLedCount * SPI_BYTES_PER_LED + 3;
|
||||
if(_spiBuffer.size() != spi_size){
|
||||
_spiBuffer.resize(spi_size, 0x00);
|
||||
if(_ledBuffer.size() != spi_size)
|
||||
{
|
||||
_ledBuffer.resize(spi_size, 0x00);
|
||||
}
|
||||
|
||||
unsigned spi_ptr = 0;
|
||||
for (unsigned i=0; i< mLedCount; ++i) {
|
||||
for (unsigned i=0; i< (unsigned)_ledCount; ++i)
|
||||
{
|
||||
uint32_t colorBits = ((unsigned int)ledValues[i].red << 16)
|
||||
| ((unsigned int)ledValues[i].green << 8)
|
||||
| ledValues[i].blue;
|
||||
|
||||
for (int j=SPI_BYTES_PER_LED - 1; j>=0; j--) {
|
||||
_spiBuffer[spi_ptr+j] = bitpair_to_byte[ colorBits & 0x3 ];
|
||||
for (int j=SPI_BYTES_PER_LED - 1; j>=0; j--)
|
||||
{
|
||||
_ledBuffer[spi_ptr+j] = bitpair_to_byte[ colorBits & 0x3 ];
|
||||
colorBits >>= 2;
|
||||
}
|
||||
spi_ptr += SPI_BYTES_PER_LED;
|
||||
}
|
||||
_spiBuffer[spi_ptr++] = 0;
|
||||
_spiBuffer[spi_ptr++] = 0;
|
||||
_spiBuffer[spi_ptr++] = 0;
|
||||
_ledBuffer[spi_ptr++] = 0;
|
||||
_ledBuffer[spi_ptr++] = 0;
|
||||
_ledBuffer[spi_ptr++] = 0;
|
||||
|
||||
return writeBytes(spi_size, _spiBuffer.data());
|
||||
return writeBytes(spi_size, _ledBuffer.data());
|
||||
}
|
||||
|
||||
int LedDeviceWs2812SPI::switchOff()
|
||||
{
|
||||
return write(std::vector<ColorRgb>(mLedCount, ColorRgb{0,0,0}));
|
||||
return write(std::vector<ColorRgb>(_ledCount, ColorRgb{0,0,0}));
|
||||
}
|
||||
|
@ -33,10 +33,5 @@ public:
|
||||
virtual int switchOff();
|
||||
|
||||
private:
|
||||
|
||||
/// the number of leds (needed when switching off)
|
||||
size_t mLedCount;
|
||||
std::vector<uint8_t> _spiBuffer;
|
||||
|
||||
uint8_t bitpair_to_byte[4];
|
||||
};
|
||||
|
@ -9,13 +9,13 @@
|
||||
// Local Hyperion includes
|
||||
#include "LedHIDDevice.h"
|
||||
|
||||
LedHIDDevice::LedHIDDevice(const unsigned short VendorId, const unsigned short ProductId, int delayAfterConnect_ms, const bool useFeature) :
|
||||
_VendorId(VendorId),
|
||||
_ProductId(ProductId),
|
||||
_useFeature(useFeature),
|
||||
_deviceHandle(nullptr),
|
||||
_delayAfterConnect_ms(delayAfterConnect_ms),
|
||||
_blockedForDelay(false)
|
||||
LedHIDDevice::LedHIDDevice(const unsigned short VendorId, const unsigned short ProductId, int delayAfterConnect_ms, const bool useFeature)
|
||||
: _VendorId(VendorId)
|
||||
, _ProductId(ProductId)
|
||||
, _useFeature(useFeature)
|
||||
, _deviceHandle(nullptr)
|
||||
, _delayAfterConnect_ms(delayAfterConnect_ms)
|
||||
, _blockedForDelay(false)
|
||||
{
|
||||
// empty
|
||||
}
|
||||
|
@ -11,7 +11,7 @@
|
||||
///
|
||||
/// The LedHIDDevice implements an abstract base-class for LedDevices using an HID-device.
|
||||
///
|
||||
class LedHIDDevice : public QObject, public LedDevice
|
||||
class LedHIDDevice : public LedDevice
|
||||
{
|
||||
Q_OBJECT
|
||||
|
||||
|
@ -18,8 +18,6 @@ LedRs232Device::LedRs232Device(const std::string& outputDevice, const unsigned b
|
||||
, _stateChanged(true)
|
||||
{
|
||||
connect(&_rs232Port, SIGNAL(error(QSerialPort::SerialPortError)), this, SLOT(error(QSerialPort::SerialPortError)));
|
||||
|
||||
|
||||
}
|
||||
|
||||
void LedRs232Device::error(QSerialPort::SerialPortError error)
|
||||
@ -109,7 +107,9 @@ bool LedRs232Device::tryOpen()
|
||||
int LedRs232Device::writeBytes(const unsigned size, const uint8_t * data)
|
||||
{
|
||||
if (_blockedForDelay)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!_rs232Port.isOpen())
|
||||
{
|
||||
|
@ -9,7 +9,7 @@
|
||||
///
|
||||
/// The LedRs232Device implements an abstract base-class for LedDevices using a RS232-device.
|
||||
///
|
||||
class LedRs232Device : public QObject, public LedDevice
|
||||
class LedRs232Device : public LedDevice
|
||||
{
|
||||
Q_OBJECT
|
||||
|
||||
@ -49,6 +49,7 @@ private slots:
|
||||
/// Unblock the device after a connection delay
|
||||
void unblockAfterDelay();
|
||||
void error(QSerialPort::SerialPortError error);
|
||||
|
||||
private:
|
||||
// tries to open device if not opened
|
||||
bool tryOpen();
|
||||
|
@ -14,47 +14,46 @@
|
||||
#include <utils/Logger.h>
|
||||
|
||||
|
||||
LedSpiDevice::LedSpiDevice(const std::string& outputDevice, const unsigned baudrate, const int latchTime_ns,
|
||||
const int spiMode, const bool spiDataInvert)
|
||||
: mDeviceName(outputDevice)
|
||||
, mBaudRate_Hz(baudrate)
|
||||
, mLatchTime_ns(latchTime_ns)
|
||||
, mFid(-1)
|
||||
, mSpiMode(spiMode)
|
||||
, mSpiDataInvert(spiDataInvert)
|
||||
LedSpiDevice::LedSpiDevice(const std::string& outputDevice, const unsigned baudrate, const int latchTime_ns, const int spiMode, const bool spiDataInvert)
|
||||
: _deviceName(outputDevice)
|
||||
, _baudRate_Hz(baudrate)
|
||||
, _latchTime_ns(latchTime_ns)
|
||||
, _fid(-1)
|
||||
, _spiMode(spiMode)
|
||||
, _spiDataInvert(spiDataInvert)
|
||||
{
|
||||
memset(&spi, 0, sizeof(spi));
|
||||
memset(&_spi, 0, sizeof(_spi));
|
||||
Debug(_log, "_spiDataInvert %d, _spiMode %d", _spiDataInvert, _spiMode);
|
||||
}
|
||||
|
||||
LedSpiDevice::~LedSpiDevice()
|
||||
{
|
||||
// close(mFid);
|
||||
// close(_fid);
|
||||
}
|
||||
|
||||
int LedSpiDevice::open()
|
||||
{
|
||||
//printf ("mSpiDataInvert %d mSpiMode %d\n",mSpiDataInvert, mSpiMode);
|
||||
const int bitsPerWord = 8;
|
||||
|
||||
mFid = ::open(mDeviceName.c_str(), O_RDWR);
|
||||
_fid = ::open(_deviceName.c_str(), O_RDWR);
|
||||
|
||||
if (mFid < 0)
|
||||
if (_fid < 0)
|
||||
{
|
||||
Error( _log, "Failed to open device (%s). Error message: %s", mDeviceName.c_str(), strerror(errno) );
|
||||
Error( _log, "Failed to open device (%s). Error message: %s", _deviceName.c_str(), strerror(errno) );
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (ioctl(mFid, SPI_IOC_WR_MODE, &mSpiMode) == -1 || ioctl(mFid, SPI_IOC_RD_MODE, &mSpiMode) == -1)
|
||||
if (ioctl(_fid, SPI_IOC_WR_MODE, &_spiMode) == -1 || ioctl(_fid, SPI_IOC_RD_MODE, &_spiMode) == -1)
|
||||
{
|
||||
return -2;
|
||||
}
|
||||
|
||||
if (ioctl(mFid, SPI_IOC_WR_BITS_PER_WORD, &bitsPerWord) == -1 || ioctl(mFid, SPI_IOC_RD_BITS_PER_WORD, &bitsPerWord) == -1)
|
||||
if (ioctl(_fid, SPI_IOC_WR_BITS_PER_WORD, &bitsPerWord) == -1 || ioctl(_fid, SPI_IOC_RD_BITS_PER_WORD, &bitsPerWord) == -1)
|
||||
{
|
||||
return -4;
|
||||
}
|
||||
|
||||
if (ioctl(mFid, SPI_IOC_WR_MAX_SPEED_HZ, &mBaudRate_Hz) == -1 || ioctl(mFid, SPI_IOC_RD_MAX_SPEED_HZ, &mBaudRate_Hz) == -1)
|
||||
if (ioctl(_fid, SPI_IOC_WR_MAX_SPEED_HZ, &_baudRate_Hz) == -1 || ioctl(_fid, SPI_IOC_RD_MAX_SPEED_HZ, &_baudRate_Hz) == -1)
|
||||
{
|
||||
return -6;
|
||||
}
|
||||
@ -64,30 +63,31 @@ int LedSpiDevice::open()
|
||||
|
||||
int LedSpiDevice::writeBytes(const unsigned size, const uint8_t * data)
|
||||
{
|
||||
if (mFid < 0)
|
||||
if (_fid < 0)
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
|
||||
spi.tx_buf = __u64(data);
|
||||
spi.len = __u32(size);
|
||||
_spi.tx_buf = __u64(data);
|
||||
_spi.len = __u32(size);
|
||||
|
||||
if (mSpiDataInvert) {
|
||||
if (_spiDataInvert)
|
||||
{
|
||||
uint8_t * newdata = (uint8_t *)malloc(size);
|
||||
for (unsigned i = 0; i<size; i++) {
|
||||
newdata[i] = data[i] ^ 0xff;
|
||||
}
|
||||
spi.tx_buf = __u64(newdata);
|
||||
_spi.tx_buf = __u64(newdata);
|
||||
}
|
||||
|
||||
int retVal = ioctl(mFid, SPI_IOC_MESSAGE(1), &spi);
|
||||
int retVal = ioctl(_fid, SPI_IOC_MESSAGE(1), &_spi);
|
||||
|
||||
if (retVal == 0 && mLatchTime_ns > 0)
|
||||
if (retVal == 0 && _latchTime_ns > 0)
|
||||
{
|
||||
// The 'latch' time for latching the shifted-value into the leds
|
||||
timespec latchTime;
|
||||
latchTime.tv_sec = 0;
|
||||
latchTime.tv_nsec = mLatchTime_ns;
|
||||
latchTime.tv_nsec = _latchTime_ns;
|
||||
|
||||
// Sleep to latch the leds (only if write succesfull)
|
||||
nanosleep(&latchTime, NULL);
|
||||
|
@ -50,21 +50,23 @@ protected:
|
||||
|
||||
private:
|
||||
/// The name of the output device
|
||||
const std::string mDeviceName;
|
||||
const std::string _deviceName;
|
||||
|
||||
/// The used baudrate of the output device
|
||||
const int mBaudRate_Hz;
|
||||
const int _baudRate_Hz;
|
||||
|
||||
/// The time which the device should be untouched after a write
|
||||
const int mLatchTime_ns;
|
||||
const int _latchTime_ns;
|
||||
|
||||
/// The File Identifier of the opened output device (or -1 if not opened)
|
||||
int mFid;
|
||||
int _fid;
|
||||
|
||||
/// which spi clock mode do we use? (0..3)
|
||||
int mSpiMode;
|
||||
int _spiMode;
|
||||
|
||||
/// 1=>invert the data pattern
|
||||
bool mSpiDataInvert;
|
||||
bool _spiDataInvert;
|
||||
|
||||
/// The transfer structure for writing to the spi-device
|
||||
spi_ioc_transfer spi;
|
||||
spi_ioc_transfer _spi;
|
||||
};
|
||||
|
@ -15,35 +15,37 @@
|
||||
// Local Hyperion includes
|
||||
#include "LedUdpDevice.h"
|
||||
|
||||
LedUdpDevice::LedUdpDevice(const std::string& output, const int latchTime_ns) :
|
||||
_target(output),
|
||||
_LatchTime_ns(latchTime_ns)
|
||||
LedUdpDevice::LedUdpDevice(const std::string& output, const int latchTime_ns)
|
||||
: _target(output)
|
||||
, _LatchTime_ns(latchTime_ns)
|
||||
{
|
||||
udpSocket = new QUdpSocket();
|
||||
_udpSocket = new QUdpSocket();
|
||||
QString str = QString::fromStdString(_target);
|
||||
QStringList _list = str.split(":");
|
||||
if (_list.size() != 2) {
|
||||
QStringList str_splitted = str.split(":");
|
||||
if (str_splitted.size() != 2)
|
||||
{
|
||||
throw("Error parsing hostname:port");
|
||||
}
|
||||
QHostInfo info = QHostInfo::fromName(_list.at(0));
|
||||
if (!info.addresses().isEmpty()) {
|
||||
_address = info.addresses().first();
|
||||
QHostInfo info = QHostInfo::fromName(str_splitted.at(0));
|
||||
if (!info.addresses().isEmpty())
|
||||
{
|
||||
// use the first IP address
|
||||
_address = info.addresses().first();
|
||||
}
|
||||
_port = _list.at(1).toInt();
|
||||
_port = str_splitted.at(1).toInt();
|
||||
}
|
||||
|
||||
LedUdpDevice::~LedUdpDevice()
|
||||
{
|
||||
udpSocket->close();
|
||||
_udpSocket->close();
|
||||
}
|
||||
|
||||
int LedUdpDevice::open()
|
||||
{
|
||||
QHostAddress _localAddress = QHostAddress::Any;
|
||||
quint16 _localPort = 0;
|
||||
QHostAddress localAddress = QHostAddress::Any;
|
||||
quint16 localPort = 0;
|
||||
|
||||
WarningIf( !udpSocket->bind(_localAddress, _localPort), _log, "Couldnt bind local address: %s", strerror(errno));
|
||||
WarningIf( !_udpSocket->bind(localAddress, localPort), _log, "Couldnt bind local address: %s", strerror(errno));
|
||||
|
||||
return 0;
|
||||
}
|
||||
@ -51,7 +53,7 @@ int LedUdpDevice::open()
|
||||
int LedUdpDevice::writeBytes(const unsigned size, const uint8_t * data)
|
||||
{
|
||||
|
||||
qint64 retVal = udpSocket->writeDatagram((const char *)data,size,_address,_port);
|
||||
qint64 retVal = _udpSocket->writeDatagram((const char *)data,size,_address,_port);
|
||||
|
||||
if (retVal >= 0 && _LatchTime_ns > 0)
|
||||
{
|
||||
@ -62,7 +64,9 @@ int LedUdpDevice::writeBytes(const unsigned size, const uint8_t * data)
|
||||
|
||||
// Sleep to latch the leds (only if write succesfull)
|
||||
nanosleep(&latchTime, NULL);
|
||||
} else {
|
||||
}
|
||||
else
|
||||
{
|
||||
Warning( _log, "Error sending: %s", strerror(errno));
|
||||
}
|
||||
|
||||
|
@ -38,7 +38,7 @@ protected:
|
||||
/// Writes the given bytes/bits to the SPI-device and sleeps the latch time to ensure that the
|
||||
/// values are latched.
|
||||
///
|
||||
/// @param[in[ size The length of the data
|
||||
/// @param[in] size The length of the data
|
||||
/// @param[in] data The data
|
||||
///
|
||||
/// @return Zero on succes else negative
|
||||
@ -48,11 +48,12 @@ protected:
|
||||
private:
|
||||
/// The UDP destination as "host:port"
|
||||
const std::string _target;
|
||||
|
||||
/// The time which the device should be untouched after a write
|
||||
const int _LatchTime_ns;
|
||||
|
||||
///
|
||||
QUdpSocket *udpSocket;
|
||||
QUdpSocket * _udpSocket;
|
||||
QHostAddress _address;
|
||||
quint16 _port;
|
||||
};
|
||||
|
Loading…
Reference in New Issue
Block a user