Merge remote-tracking branch 'origin/master' into config

This commit is contained in:
LordGrey
2024-08-01 23:08:14 +02:00
58 changed files with 1964 additions and 232 deletions

View File

@@ -593,6 +593,10 @@ QJsonArray JsonInfo::discoverScreenInputs(const QJsonObject& params) const
discoverGrabber<DirectXGrabber>(screenInputs, params);
#endif
#ifdef ENABLE_DDA
discoverGrabber<DDAGrabber>(screenInputs, params);
#endif
#ifdef ENABLE_X11
discoverGrabber<X11Grabber>(screenInputs, params);
#endif

View File

@@ -34,6 +34,10 @@ if(ENABLE_DX)
add_subdirectory(directx)
endif(ENABLE_DX)
if(ENABLE_DDA)
add_subdirectory(dda)
endif(ENABLE_DDA)
if(ENABLE_AUDIO)
add_subdirectory(audio)
endif()

View File

@@ -0,0 +1,12 @@
add_library(dda-grabber
${CMAKE_SOURCE_DIR}/include/grabber/dda/DDAGrabber.h
${CMAKE_SOURCE_DIR}/include/grabber/dda/DDAWrapper.h
${CMAKE_SOURCE_DIR}/libsrc/grabber/dda/DDAGrabber.cpp
${CMAKE_SOURCE_DIR}/libsrc/grabber/dda/DDAWrapper.cpp
)
target_link_libraries(dda-grabber
hyperion
d3d11.lib
dxgi.lib
)

View File

@@ -0,0 +1,357 @@
#include "grabber/dda/DDAGrabber.h"
#include <atlbase.h>
#include <d3d11.h>
#include <dxgi1_2.h>
#include <physicalmonitorenumerationapi.h>
#include <windows.h>
#pragma comment(lib, "d3d9.lib")
#pragma comment(lib, "dxva2.lib")
namespace
{
// Driver types supported.
constexpr D3D_DRIVER_TYPE kDriverTypes[] = {
D3D_DRIVER_TYPE_HARDWARE,
D3D_DRIVER_TYPE_WARP,
D3D_DRIVER_TYPE_REFERENCE,
};
// Feature levels supported.
D3D_FEATURE_LEVEL kFeatureLevels[] = {D3D_FEATURE_LEVEL_11_0, D3D_FEATURE_LEVEL_10_1, D3D_FEATURE_LEVEL_10_0,
D3D_FEATURE_LEVEL_9_1};
// Returns true if the two texture descriptors are compatible for copying.
bool areTextureDescriptionsCompatible(D3D11_TEXTURE2D_DESC a, D3D11_TEXTURE2D_DESC b)
{
return a.Width == b.Width && a.Height == b.Height && a.MipLevels == b.MipLevels && a.ArraySize == b.ArraySize &&
a.Format == b.Format;
}
} // namespace
// Logs a message along with the hex error HRESULT.
#define LOG_ERROR(hr, msg) Error(_log, msg ": 0x%x", hr)
// Checks if the HRESULT is an error, and if so, logs it and returns from the
// current function.
#define RETURN_IF_ERROR(hr, msg, returnValue) \
if (FAILED(hr)) \
{ \
LOG_ERROR(hr, msg); \
return returnValue; \
}
// Checks if the condition is false, and if so, logs an error and returns from
// the current function.
#define RET_CHECK(cond, returnValue) \
if (!(cond)) \
{ \
Error(_log, "Assertion failed: " #cond); \
return returnValue; \
}
// Private implementation. These member variables are here and not in the .h
// so we don't have to include <atlbase.h> in the header and pollute everything
// else that includes it.
class DDAGrabberImpl
{
public:
int display = 0;
int desktopWidth = 0;
int desktopHeight = 0;
// Created in the constructor.
CComPtr<ID3D11Device> device;
CComPtr<ID3D11DeviceContext> deviceContext;
CComPtr<IDXGIDevice> dxgiDevice;
CComPtr<IDXGIAdapter> dxgiAdapter;
// Created in restartCapture - only valid while desktop capture is in
// progress.
CComPtr<IDXGIOutputDuplication> desktopDuplication;
CComPtr<ID3D11Texture2D> intermediateTexture;
D3D11_TEXTURE2D_DESC intermediateTextureDesc;
};
DDAGrabber::DDAGrabber(int display, int cropLeft, int cropRight, int cropTop, int cropBottom)
: Grabber("GRABBER-DDA", cropLeft, cropRight, cropTop, cropBottom), d(new DDAGrabberImpl)
{
d->display = display;
HRESULT hr = S_OK;
// Iterate through driver types until we find one that succeeds.
D3D_FEATURE_LEVEL featureLevel;
for (D3D_DRIVER_TYPE driverType : kDriverTypes)
{
hr = D3D11CreateDevice(nullptr, driverType, nullptr, 0, kFeatureLevels, std::size(kFeatureLevels),
D3D11_SDK_VERSION, &d->device, &featureLevel, &d->deviceContext);
if (SUCCEEDED(hr))
{
break;
}
}
RETURN_IF_ERROR(hr, "CreateDevice failed", );
// Get the DXGI factory.
hr = d->device.QueryInterface(&d->dxgiDevice);
RETURN_IF_ERROR(hr, "Failed to get DXGI device", );
// Get the factory's adapter.
hr = d->dxgiDevice->GetAdapter(&d->dxgiAdapter);
RETURN_IF_ERROR(hr, "Failed to get DXGI Adapter", );
}
DDAGrabber::~DDAGrabber()
{
}
bool DDAGrabber::restartCapture()
{
if (!d->dxgiAdapter)
{
return false;
}
HRESULT hr = S_OK;
d->desktopDuplication.Release();
// Get the output that was selected.
CComPtr<IDXGIOutput> output;
hr = d->dxgiAdapter->EnumOutputs(d->display, &output);
RETURN_IF_ERROR(hr, "Failed to get output", false);
// Get the descriptor which has the size of the display.
DXGI_OUTPUT_DESC desc;
hr = output->GetDesc(&desc);
RETURN_IF_ERROR(hr, "Failed to get output description", false);
d->desktopWidth = desc.DesktopCoordinates.right - desc.DesktopCoordinates.left;
d->desktopHeight = desc.DesktopCoordinates.bottom - desc.DesktopCoordinates.top;
_width = (d->desktopWidth - _cropLeft - _cropRight) / _pixelDecimation;
_height = (d->desktopHeight - _cropTop - _cropBottom) / _pixelDecimation;
Info(_log, "Desktop size: %dx%d, cropping=%d,%d,%d,%d, decimation=%d, final image size=%dx%d", d->desktopWidth,
d->desktopHeight, _cropLeft, _cropTop, _cropRight, _cropBottom, _pixelDecimation, _width, _height);
// Get the DXGIOutput1 interface.
CComPtr<IDXGIOutput1> output1;
hr = output.QueryInterface(&output1);
RETURN_IF_ERROR(hr, "Failed to get output1", false);
// Create the desktop duplication interface.
hr = output1->DuplicateOutput(d->device, &d->desktopDuplication);
RETURN_IF_ERROR(hr, "Failed to create desktop duplication interface", false);
return true;
}
int DDAGrabber::grabFrame(Image<ColorRgb> &image)
{
// Do nothing if we're disabled.
if (!_isEnabled)
{
return 0;
}
// Start the capture if it's not already running.
if (!d->desktopDuplication && !restartCapture())
{
return -1;
}
HRESULT hr = S_OK;
// Release the last frame, if any.
hr = d->desktopDuplication->ReleaseFrame();
if (FAILED(hr) && hr != DXGI_ERROR_INVALID_CALL)
{
LOG_ERROR(hr, "Failed to release frame");
}
// Acquire the next frame.
CComPtr<IDXGIResource> desktopResource;
DXGI_OUTDUPL_FRAME_INFO frameInfo;
hr = d->desktopDuplication->AcquireNextFrame(500, &frameInfo, &desktopResource);
if (hr == DXGI_ERROR_ACCESS_LOST || hr == DXGI_ERROR_INVALID_CALL)
{
if (!restartCapture())
{
return -1;
}
return 0;
}
if (hr == DXGI_ERROR_WAIT_TIMEOUT)
{
// Nothing changed on the screen in the 500ms we waited.
return 0;
}
RETURN_IF_ERROR(hr, "Failed to acquire next frame", 0);
// Get the 2D texture.
CComPtr<ID3D11Texture2D> texture;
hr = desktopResource.QueryInterface(&texture);
RETURN_IF_ERROR(hr, "Failed to get 2D texture", 0);
// The texture we acquired is on the GPU and can't be accessed from the CPU,
// so we have to copy it into another texture that can.
D3D11_TEXTURE2D_DESC textureDesc;
texture->GetDesc(&textureDesc);
// Create a new intermediate texture if we haven't done so already, or the
// existing one is incompatible with the acquired texture (i.e. it has
// different dimensions).
if (!d->intermediateTexture || !areTextureDescriptionsCompatible(d->intermediateTextureDesc, textureDesc))
{
Info(_log, "Creating intermediate texture");
d->intermediateTexture.Release();
d->intermediateTextureDesc = textureDesc;
d->intermediateTextureDesc.Usage = D3D11_USAGE_STAGING;
d->intermediateTextureDesc.BindFlags = 0;
d->intermediateTextureDesc.CPUAccessFlags = D3D11_CPU_ACCESS_READ;
d->intermediateTextureDesc.MiscFlags = 0;
hr = d->device->CreateTexture2D(&d->intermediateTextureDesc, nullptr, &d->intermediateTexture);
RETURN_IF_ERROR(hr, "Failed to create intermediate texture", 0);
}
// Copy the texture to the intermediate texture.
d->deviceContext->CopyResource(d->intermediateTexture, texture);
RETURN_IF_ERROR(hr, "Failed to copy texture", 0);
// Map the texture so we can access its pixels.
D3D11_MAPPED_SUBRESOURCE resource;
hr = d->deviceContext->Map(d->intermediateTexture, 0, D3D11_MAP_READ, 0, &resource);
RETURN_IF_ERROR(hr, "Failed to map texture", 0);
// Copy the texture to the output image.
RET_CHECK(textureDesc.Format == DXGI_FORMAT_B8G8R8A8_UNORM, 0);
ColorRgb *dest = image.memptr();
for (size_t destY = 0, srcY = _cropTop; destY < image.height(); destY++, srcY += _pixelDecimation)
{
uint32_t *src =
reinterpret_cast<uint32_t *>(reinterpret_cast<unsigned char *>(resource.pData) + srcY * resource.RowPitch) +
_cropLeft;
for (size_t destX = 0; destX < image.width(); destX++, src += _pixelDecimation, dest++)
{
*dest = ColorRgb{static_cast<uint8_t>(((*src) >> 16) & 0xff), static_cast<uint8_t>(((*src) >> 8) & 0xff),
static_cast<uint8_t>(((*src) >> 0) & 0xff)};
}
}
return 0;
}
void DDAGrabber::setVideoMode(VideoMode mode)
{
Grabber::setVideoMode(mode);
restartCapture();
}
bool DDAGrabber::setPixelDecimation(int pixelDecimation)
{
if (Grabber::setPixelDecimation(pixelDecimation))
return restartCapture();
return false;
}
void DDAGrabber::setCropping(int cropLeft, int cropRight, int cropTop, int cropBottom)
{
// Grabber::setCropping rejects the cropped size if it is larger than _width
// and _height, so temporarily set those back to the original pre-cropped full
// desktop sizes first. They'll be set back to the cropped sizes by
// restartCapture.
_width = d->desktopWidth;
_height = d->desktopHeight;
Grabber::setCropping(cropLeft, cropRight, cropTop, cropBottom);
restartCapture();
}
bool DDAGrabber::setDisplayIndex(int index)
{
bool rc = true;
if (d->display != index)
{
d->display = index;
rc = restartCapture();
}
return rc;
}
QJsonObject DDAGrabber::discover(const QJsonObject &params)
{
QJsonObject ret;
if (!d->dxgiAdapter)
{
return ret;
}
HRESULT hr = S_OK;
// Enumerate through the outputs.
QJsonArray videoInputs;
for (int i = 0;; ++i)
{
CComPtr<IDXGIOutput> output;
hr = d->dxgiAdapter->EnumOutputs(i, &output);
if (!output || !SUCCEEDED(hr))
{
break;
}
// Get the output description.
DXGI_OUTPUT_DESC desc;
hr = output->GetDesc(&desc);
if (FAILED(hr))
{
Error(_log, "Failed to get output description");
continue;
}
// Add it to the JSON.
const int width = desc.DesktopCoordinates.right - desc.DesktopCoordinates.left;
const int height = desc.DesktopCoordinates.bottom - desc.DesktopCoordinates.top;
videoInputs.append(QJsonObject{
{"inputIdx", i},
{"name", QString::fromWCharArray(desc.DeviceName)},
{"formats",
QJsonArray{
QJsonObject{
{"resolutions",
QJsonArray{
QJsonObject{
{"width", width},
{"height", height},
{"fps", QJsonArray{1, 5, 10, 15, 20, 25, 30, 40, 50, 60, 120, 144}},
},
}},
},
}},
});
}
ret["video_inputs"] = videoInputs;
if (!videoInputs.isEmpty())
{
ret["device"] = "dda";
ret["device_name"] = "DXGI DDA";
ret["type"] = "screen";
ret["default"] = QJsonObject{
{"video_input",
QJsonObject{
{"inputIdx", 0},
{"resolution",
QJsonObject{
{"fps", 60},
}},
}},
};
}
return ret;
}

View File

@@ -0,0 +1,20 @@
#include "grabber/dda/DDAWrapper.h"
DDAWrapper::DDAWrapper(int updateRate_Hz, int display, int pixelDecimation, int cropLeft, int cropRight, int cropTop,
int cropBottom)
: GrabberWrapper(GRABBERTYPE, &_grabber, updateRate_Hz), _grabber(display, cropLeft, cropRight, cropTop, cropBottom)
{
_grabber.setPixelDecimation(pixelDecimation);
}
DDAWrapper::DDAWrapper(const QJsonDocument &grabberConfig)
: DDAWrapper(GrabberWrapper::DEFAULT_RATE_HZ, 0, GrabberWrapper::DEFAULT_PIXELDECIMATION, 0, 0, 0, 0)
{
this->handleSettingsUpdate(settings::SYSTEMCAPTURE, grabberConfig);
}
void DDAWrapper::action()
{
transferFrame(_grabber);
}

View File

@@ -122,18 +122,6 @@ void EncoderThread::process()
else
#endif
{
if (_pixelFormat == PixelFormat::BGR24)
{
if (_flipMode == FlipMode::NO_CHANGE)
_imageResampler.setFlipMode(FlipMode::HORIZONTAL);
else if (_flipMode == FlipMode::HORIZONTAL)
_imageResampler.setFlipMode(FlipMode::NO_CHANGE);
else if (_flipMode == FlipMode::VERTICAL)
_imageResampler.setFlipMode(FlipMode::BOTH);
else if (_flipMode == FlipMode::BOTH)
_imageResampler.setFlipMode(FlipMode::VERTICAL);
}
Image<ColorRgb> image = Image<ColorRgb>();
_imageResampler.processImage(
_localData,
@@ -143,7 +131,7 @@ void EncoderThread::process()
#if defined(ENABLE_V4L2)
_pixelFormat,
#else
PixelFormat::BGR24,
PixelFormat::BGR24, // MF-Grabber always sends RGB24, but memory layout is RGBTRIPLE (b,g,r) -> process as BGR24
#endif
image
);

View File

@@ -363,6 +363,18 @@ done:
_height = props.height;
_frameByteSize = _width * _height * 3;
_lineLength = _width * 3;
// adjust flipMode for bottom-up images
if (props.defstride < 0)
{
if (_flipMode == FlipMode::NO_CHANGE)
_flipMode = FlipMode::HORIZONTAL;
else if (_flipMode == FlipMode::HORIZONTAL)
_flipMode = FlipMode::NO_CHANGE;
else if (_flipMode == FlipMode::VERTICAL)
_flipMode = FlipMode::BOTH;
else if (_flipMode == FlipMode::BOTH)
_flipMode = FlipMode::VERTICAL;
}
}
// Cleanup
@@ -436,6 +448,14 @@ void MFGrabber::enumVideoCaptureDevices()
properties.denominator = denominator;
properties.pf = pixelformat;
properties.guid = format;
HRESULT hr = pType->GetUINT32(MF_MT_DEFAULT_STRIDE, (UINT32*)&properties.defstride);
if (FAILED(hr))
{
hr = MFGetStrideForBitmapInfoHeader(format.Data1, width, &properties.defstride);
if (FAILED(hr))
DebugIf (verbose, _log, "failed to get default stride");
}
devicePropertyList.append(properties);
DebugIf (verbose, _log, "%s %d x %d @ %d fps (%s)", QSTRING_CSTR(dev), properties.width, properties.height, properties.fps, QSTRING_CSTR(pixelFormatToString(properties.pf)));
@@ -797,7 +817,7 @@ QJsonArray MFGrabber::discover(const QJsonObject& params)
resolution_default["width"] = 640;
resolution_default["height"] = 480;
resolution_default["fps"] = 25;
format_default["format"] = "bgr24";
format_default["format"] = "rgb24";
format_default["resolution"] = resolution_default;
video_inputs_default["inputIdx"] = 0;
video_inputs_default["standards"] = "PAL";

View File

@@ -27,7 +27,7 @@
static PixelFormat GetPixelFormatForGuid(const GUID guid)
{
if (IsEqualGUID(guid, MFVideoFormat_RGB32)) return PixelFormat::RGB32;
if (IsEqualGUID(guid, MFVideoFormat_RGB24)) return PixelFormat::BGR24;
if (IsEqualGUID(guid, MFVideoFormat_RGB24)) return PixelFormat::RGB24;
if (IsEqualGUID(guid, MFVideoFormat_YUY2)) return PixelFormat::YUYV;
if (IsEqualGUID(guid, MFVideoFormat_UYVY)) return PixelFormat::UYVY;
#ifdef HAVE_TURBO_JPEG
@@ -145,11 +145,11 @@ public:
}
#ifdef HAVE_TURBO_JPEG
if (_pixelformat != PixelFormat::MJPEG && _pixelformat != PixelFormat::BGR24 && _pixelformat != PixelFormat::NO_CHANGE)
if (_pixelformat != PixelFormat::MJPEG && _pixelformat != PixelFormat::RGB24 && _pixelformat != PixelFormat::NO_CHANGE)
#else
if (_pixelformat != PixelFormat::BGR24 && _pixelformat != PixelFormat::NO_CHANGE)
if (_pixelformat != PixelFormat::RGB24 && _pixelformat != PixelFormat::NO_CHANGE)
#endif
pSample = TransformSample(_transform, pSample);
pSample = TransformSample(_transform, pSample); // forced conversion to RGB24, but memory layout is RGBTRIPLE (b,g,r) -> process as BGR24
_hrStatus = pSample->ConvertToContiguousBuffer(&buffer);
if (FAILED(_hrStatus))
@@ -181,9 +181,9 @@ public:
_bEOS = TRUE; // Reached the end of the stream.
#ifdef HAVE_TURBO_JPEG
if (_pixelformat != PixelFormat::MJPEG && _pixelformat != PixelFormat::BGR24 && _pixelformat != PixelFormat::NO_CHANGE)
if (_pixelformat != PixelFormat::MJPEG && _pixelformat != PixelFormat::RGB24 && _pixelformat != PixelFormat::NO_CHANGE)
#else
if (_pixelformat != PixelFormat::BGR24 && _pixelformat != PixelFormat::NO_CHANGE)
if (_pixelformat != PixelFormat::RGB24 && _pixelformat != PixelFormat::NO_CHANGE)
#endif
SAFE_RELEASE(pSample);
@@ -196,9 +196,9 @@ public:
{
_pixelformat = format;
#ifdef HAVE_TURBO_JPEG
if (format == PixelFormat::MJPEG || format == PixelFormat::BGR24 || format == PixelFormat::NO_CHANGE)
if (format == PixelFormat::MJPEG || format == PixelFormat::RGB24 || format == PixelFormat::NO_CHANGE)
#else
if (format == PixelFormat::BGR24 || format == PixelFormat::NO_CHANGE)
if (format == PixelFormat::RGB24 || format == PixelFormat::NO_CHANGE)
#endif
return S_OK;
@@ -392,10 +392,10 @@ private:
private:
long _nRefCount;
CRITICAL_SECTION _critsec;
MFGrabber* _grabber;
MFGrabber* _grabber;
BOOL _bEOS;
HRESULT _hrStatus;
IMFTransform* _transform;
IMFTransform* _transform;
PixelFormat _pixelformat;
std::atomic<bool> _isBusy;
};

View File

@@ -54,7 +54,9 @@ Q_GLOBAL_STATIC_WITH_ARGS(ControlIDPropertyMap, _controlIDPropertyMap, (initCont
static PixelFormat GetPixelFormat(const unsigned int format)
{
if (format == V4L2_PIX_FMT_RGB32) return PixelFormat::RGB32;
if (format == V4L2_PIX_FMT_RGB24) return PixelFormat::BGR24;
if (format == V4L2_PIX_FMT_BGR32) return PixelFormat::BGR32;
if (format == V4L2_PIX_FMT_RGB24) return PixelFormat::RGB24;
if (format == V4L2_PIX_FMT_BGR24) return PixelFormat::BGR24;
if (format == V4L2_PIX_FMT_YUYV) return PixelFormat::YUYV;
if (format == V4L2_PIX_FMT_UYVY) return PixelFormat::UYVY;
if (format == V4L2_PIX_FMT_NV12) return PixelFormat::NV12;
@@ -557,10 +559,18 @@ void V4L2Grabber::init_device(VideoStandard videoStandard)
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_RGB32;
break;
case PixelFormat::BGR24:
case PixelFormat::BGR32:
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_BGR32;
break;
case PixelFormat::RGB24:
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_RGB24;
break;
case PixelFormat::BGR24:
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_BGR24;
break;
case PixelFormat::YUYV:
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV;
break;
@@ -691,7 +701,23 @@ void V4L2Grabber::init_device(VideoStandard videoStandard)
}
break;
case V4L2_PIX_FMT_BGR32:
{
_pixelFormat = PixelFormat::BGR32;
_frameByteSize = _width * _height * 4;
Debug(_log, "Pixel format=BGR32");
}
break;
case V4L2_PIX_FMT_RGB24:
{
_pixelFormat = PixelFormat::RGB24;
_frameByteSize = _width * _height * 3;
Debug(_log, "Pixel format=RGB24");
}
break;
case V4L2_PIX_FMT_BGR24:
{
_pixelFormat = PixelFormat::BGR24;
_frameByteSize = _width * _height * 3;
@@ -699,7 +725,6 @@ void V4L2Grabber::init_device(VideoStandard videoStandard)
}
break;
case V4L2_PIX_FMT_YUYV:
{
_pixelFormat = PixelFormat::YUYV;
@@ -743,9 +768,9 @@ void V4L2Grabber::init_device(VideoStandard videoStandard)
default:
#ifdef HAVE_TURBO_JPEG
throw_exception("Only pixel formats RGB32, BGR24, YUYV, UYVY, NV12, I420 and MJPEG are supported");
throw_exception("Only pixel formats RGB32, BGR32, RGB24, BGR24, YUYV, UYVY, NV12, I420 and MJPEG are supported");
#else
throw_exception("Only pixel formats RGB32, BGR24, YUYV, UYVY, NV12 and I420 are supported");
throw_exception("Only pixel formats RGB32, BGR32, RGB24, BGR24, YUYV, UYVY, NV12 and I420 are supported");
#endif
return;
}
@@ -1079,6 +1104,22 @@ void V4L2Grabber::newThreadFrame(Image<ColorRgb> image)
}
else
emit newFrame(image);
#ifdef FRAME_BENCH
// calculate average frametime
if (_currentFrame > 1)
{
if (_currentFrame % 100 == 0)
{
Debug(_log, "%d: avg. frametime=%.02fms / %.02fms", int(_currentFrame), _frameTimer.restart()/100.0, 1000.0/_fps);
}
}
else
{
Debug(_log, "%d: frametimer started", int(_currentFrame));
_frameTimer.start();
}
#endif
}
int V4L2Grabber::xioctl(int request, void *arg)

View File

@@ -173,6 +173,10 @@ QStringList GrabberWrapper::availableGrabbers(GrabberTypeFilter type)
#ifdef ENABLE_DX
grabbers << "dx";
#endif
#ifdef ENABLE_DDA
grabbers << "dda";
#endif
}
if (type == GrabberTypeFilter::VIDEO || type == GrabberTypeFilter::ALL)

View File

@@ -19,6 +19,7 @@ include_directories(
dev_spi
dev_rpi_pwm
dev_tinker
dev_ftdi
)
file (GLOB Leddevice_SOURCES
@@ -63,7 +64,11 @@ if(ENABLE_DEV_WS281XPWM)
file (GLOB Leddevice_PWM_SOURCES "${CURRENT_SOURCE_DIR}/dev_rpi_pwm/*.h" "${CURRENT_SOURCE_DIR}/dev_rpi_pwm/*.cpp")
endif()
set(LedDevice_RESOURCES ${CURRENT_SOURCE_DIR}/LedDeviceSchemas.qrc)
if (ENABLE_DEV_FTDI)
FILE ( GLOB Leddevice_FTDI_SOURCES "${CURRENT_SOURCE_DIR}/dev_ftdi/*.h" "${CURRENT_SOURCE_DIR}/dev_ftdi/*.cpp")
endif()
set(LedDevice_RESOURCES ${CURRENT_SOURCE_DIR}/LedDeviceSchemas.qrc )
set(Leddevice_SOURCES
${Leddevice_SOURCES}
@@ -74,6 +79,7 @@ set(Leddevice_SOURCES
${Leddevice_SPI_SOURCES}
${Leddevice_TINKER_SOURCES}
${Leddevice_USB_HID_SOURCES}
${Leddevice_FTDI_SOURCES}
)
# auto generate header file that include all available leddevice headers
@@ -165,3 +171,10 @@ if(ENABLE_MDNS)
target_link_libraries(leddevice mdns)
endif()
if( ENABLE_DEV_FTDI )
find_package(PkgConfig REQUIRED)
pkg_check_modules(LIB_FTDI REQUIRED IMPORTED_TARGET libftdi1 )
target_include_directories(leddevice PRIVATE PkgConfig::LIB_FTDI)
target_link_libraries(leddevice PkgConfig::LIB_FTDI)
endif()

View File

@@ -38,5 +38,8 @@
<file alias="schema-yeelight">schemas/schema-yeelight.json</file>
<file alias="schema-razer">schemas/schema-razer.json</file>
<file alias="schema-cololight">schemas/schema-cololight.json</file>
<file alias="schema-ws2812_ftdi">schemas/schema-ws2812_ftdi.json</file>
<file alias="schema-apa102_ftdi">schemas/schema-apa102_ftdi.json</file>
<file alias="schema-sk6812_ftdi">schemas/schema-sk6812_ftdi.json</file>
</qresource>
</RCC>

View File

@@ -65,7 +65,7 @@ void LedDeviceWrapper::createLedDevice(const QJsonObject& config)
connect(thread, &QThread::started, _ledDevice, &LedDevice::start);
// further signals
connect(this, &LedDeviceWrapper::updateLeds, _ledDevice, &LedDevice::updateLeds, Qt::QueuedConnection);
connect(this, &LedDeviceWrapper::updateLeds, _ledDevice, &LedDevice::updateLeds, Qt::BlockingQueuedConnection);
connect(this, &LedDeviceWrapper::switchOn, _ledDevice, &LedDevice::switchOn, Qt::BlockingQueuedConnection);
connect(this, &LedDeviceWrapper::switchOff, _ledDevice, &LedDevice::switchOff, Qt::BlockingQueuedConnection);

View File

@@ -0,0 +1,52 @@
#include "LedDeviceAPA102_ftdi.h"
#define LED_HEADER 0b11100000
#define LED_BRIGHTNESS_FULL 31
LedDeviceAPA102_ftdi::LedDeviceAPA102_ftdi(const QJsonObject &deviceConfig) : ProviderFtdi(deviceConfig)
{
}
LedDevice *LedDeviceAPA102_ftdi::construct(const QJsonObject &deviceConfig)
{
return new LedDeviceAPA102_ftdi(deviceConfig);
}
bool LedDeviceAPA102_ftdi::init(const QJsonObject &deviceConfig)
{
bool isInitOK = false;
// Initialise sub-class
if (ProviderFtdi::init(deviceConfig))
{
_brightnessControlMaxLevel = deviceConfig["brightnessControlMaxLevel"].toInt(LED_BRIGHTNESS_FULL);
Info(_log, "[%s] Setting maximum brightness to [%d] = %d%%", QSTRING_CSTR(_activeDeviceType), _brightnessControlMaxLevel, _brightnessControlMaxLevel * 100 / LED_BRIGHTNESS_FULL);
CreateHeader();
isInitOK = true;
}
return isInitOK;
}
void LedDeviceAPA102_ftdi::CreateHeader()
{
const unsigned int startFrameSize = 4;
// Endframe, add additional 4 bytes to cover SK9922 Reset frame (in case SK9922 were sold as AP102) - has no effect on APA102
const unsigned int endFrameSize = (_ledCount / 32) * 4 + 4;
const unsigned int APAbufferSize = (_ledCount * 4) + startFrameSize + endFrameSize;
_ledBuffer.resize(APAbufferSize, 0);
Debug(_log, "APA102 buffer created for %d LEDs", _ledCount);
}
int LedDeviceAPA102_ftdi::write(const std::vector<ColorRgb> &ledValues)
{
for (signed iLed = 0; iLed < static_cast<int>(_ledCount); ++iLed)
{
const ColorRgb &rgb = ledValues[iLed];
_ledBuffer[4 + iLed * 4 + 0] = LED_HEADER | _brightnessControlMaxLevel;
_ledBuffer[4 + iLed * 4 + 1] = rgb.red;
_ledBuffer[4 + iLed * 4 + 2] = rgb.green;
_ledBuffer[4 + iLed * 4 + 3] = rgb.blue;
}
return writeBytes(_ledBuffer.size(), _ledBuffer.data());
}

View File

@@ -0,0 +1,50 @@
#ifndef LEDEVICET_APA102_H
#define LEDEVICET_APA102_H
#include "ProviderFtdi.h"
class LedDeviceAPA102_ftdi : public ProviderFtdi
{
Q_OBJECT
public:
///
/// @brief Constructs an APA102 LED-device
///
/// @param deviceConfig Device's configuration as JSON-Object
///
explicit LedDeviceAPA102_ftdi(const QJsonObject& deviceConfig);
///
/// @brief Constructs the LED-device
///
/// @param[in] deviceConfig Device's configuration as JSON-Object
/// @return LedDevice constructed
static LedDevice* construct(const QJsonObject& deviceConfig);
private:
///
/// @brief Initialise the device's configuration
///
/// @param[in] deviceConfig the JSON device configuration
/// @return True, if success
///
bool init(const QJsonObject& deviceConfig) override;
void CreateHeader();
///
/// @brief Writes the RGB-Color values to the LEDs.
///
/// @param[in] ledValues The RGB-color per LED
/// @return Zero on success, else negative
///
int write(const std::vector<ColorRgb>& ledValues) override;
/// The brighness level. Possibile values 1 .. 31.
int _brightnessControlMaxLevel;
};
#endif // LEDEVICET_APA102_H

View File

@@ -0,0 +1,96 @@
#include "LedDeviceSk6812_ftdi.h"
LedDeviceSk6812_ftdi::LedDeviceSk6812_ftdi(const QJsonObject &deviceConfig)
: ProviderFtdi(deviceConfig),
_whiteAlgorithm(RGBW::WhiteAlgorithm::INVALID),
SPI_BYTES_PER_COLOUR(4),
bitpair_to_byte{
0b10001000,
0b10001100,
0b11001000,
0b11001100}
{
}
LedDevice *LedDeviceSk6812_ftdi::construct(const QJsonObject &deviceConfig)
{
return new LedDeviceSk6812_ftdi(deviceConfig);
}
bool LedDeviceSk6812_ftdi::init(const QJsonObject &deviceConfig)
{
bool isInitOK = false;
// Initialise sub-class
if (ProviderFtdi::init(deviceConfig))
{
_brightnessControlMaxLevel = deviceConfig["brightnessControlMaxLevel"].toInt(255);
Info(_log, "[%s] Setting maximum brightness to [%d]", QSTRING_CSTR(_activeDeviceType), _brightnessControlMaxLevel);
QString whiteAlgorithm = deviceConfig["whiteAlgorithm"].toString("white_off");
_whiteAlgorithm = RGBW::stringToWhiteAlgorithm(whiteAlgorithm);
if (_whiteAlgorithm == RGBW::WhiteAlgorithm::INVALID)
{
QString errortext = QString ("unknown whiteAlgorithm: %1").arg(whiteAlgorithm);
this->setInError(errortext);
isInitOK = false;
}
else
{
Debug(_log, "whiteAlgorithm : %s", QSTRING_CSTR(whiteAlgorithm));
WarningIf((_baudRate_Hz < 2050000 || _baudRate_Hz > 3750000), _log, "Baud rate %d outside recommended range (2050000 -> 3750000)", _baudRate_Hz);
const int SPI_FRAME_END_LATCH_BYTES = 3;
_ledBuffer.resize(_ledRGBWCount * SPI_BYTES_PER_COLOUR + SPI_FRAME_END_LATCH_BYTES, 0x00);
isInitOK = true;
}
}
return isInitOK;
}
inline __attribute__((always_inline)) uint8_t LedDeviceSk6812_ftdi::scale(uint8_t i, uint8_t scale) {
return (((uint16_t)i) * (1+(uint16_t)(scale))) >> 8;
}
int LedDeviceSk6812_ftdi::write(const std::vector<ColorRgb> &ledValues)
{
unsigned spi_ptr = 0;
const int SPI_BYTES_PER_LED = sizeof(ColorRgbw) * SPI_BYTES_PER_COLOUR;
ColorRgbw temp_rgbw;
ColorRgb scaled_color;
for (const ColorRgb &color : ledValues)
{
scaled_color.red = scale(color.red, _brightnessControlMaxLevel);
scaled_color.green = scale(color.green, _brightnessControlMaxLevel);
scaled_color.blue = scale(color.blue, _brightnessControlMaxLevel);
RGBW::Rgb_to_Rgbw(scaled_color, &temp_rgbw, _whiteAlgorithm);
uint32_t colorBits =
((uint32_t)temp_rgbw.red << 24) +
((uint32_t)temp_rgbw.green << 16) +
((uint32_t)temp_rgbw.blue << 8) +
temp_rgbw.white;
for (int j = SPI_BYTES_PER_LED - 1; j >= 0; j--)
{
_ledBuffer[spi_ptr + j] = bitpair_to_byte[colorBits & 0x3];
colorBits >>= 2;
}
spi_ptr += SPI_BYTES_PER_LED;
}
_ledBuffer[spi_ptr++] = 0;
_ledBuffer[spi_ptr++] = 0;
_ledBuffer[spi_ptr++] = 0;
return writeBytes(_ledBuffer.size(), _ledBuffer.data());
}

View File

@@ -0,0 +1,52 @@
#ifndef LEDEVICESK6812ftdi_H
#define LEDEVICESK6812ftdi_H
#include "ProviderFtdi.h"
class LedDeviceSk6812_ftdi : public ProviderFtdi
{
public:
///
/// @brief Constructs a Sk6801 LED-device
///
/// @param deviceConfig Device's configuration as JSON-Object
///
explicit LedDeviceSk6812_ftdi(const QJsonObject& deviceConfig);
///
/// @brief Constructs the LED-device
///
/// @param[in] deviceConfig Device's configuration as JSON-Object
/// @return LedDevice constructed
static LedDevice* construct(const QJsonObject& deviceConfig);
private:
///
/// @brief Initialise the device's configuration
///
/// @param[in] deviceConfig the JSON device configuration
/// @return True, if success
///
bool init(const QJsonObject& deviceConfig) override;
///
/// @brief Writes the RGB-Color values to the LEDs.
///
/// @param[in] ledValues The RGB-color per LED
/// @return Zero on success, else negative
///
int write(const std::vector<ColorRgb>& ledValues) override;
inline __attribute__((always_inline)) uint8_t scale(uint8_t i, uint8_t scale);
RGBW::WhiteAlgorithm _whiteAlgorithm;
const int SPI_BYTES_PER_COLOUR;
uint8_t bitpair_to_byte[4];
int _brightnessControlMaxLevel;
};
#endif // LEDEVICESK6812ftdi_H

View File

@@ -0,0 +1,93 @@
#include "LedDeviceWs2812_ftdi.h"
/*
From the data sheet:
(TH+TL=1.25μs±600ns)
T0H, 0 code, high level time, 0.40µs ±0.150ns
T0L, 0 code, low level time, 0.85µs ±0.150ns
T1H, 1 code, high level time, 0.80µs ±0.150ns
T1L, 1 code, low level time, 0.45µs ±0.150ns
WT, Wait for the processing time, NA
Trst, Reset code,low level time, 50µs (not anymore... need 300uS for latest revision)
To normalise the pulse times so they fit in 4 SPI bits:
On the assumption that the "low" time doesnt matter much
A SPI bit time of 0.40uS = 2.5 Mbit/sec
T0 is sent as 1000
T1 is sent as 1100
With a bit of excel testing, we can work out the maximum and minimum speeds:
2106000 MIN
2590500 AVG
3075000 MAX
Wait time:
Not Applicable for WS2812
Reset time:
using the max of 3075000, the bit time is 0.325
Reset time is 300uS = 923 bits = 116 bytes
*/
LedDeviceWs2812_ftdi::LedDeviceWs2812_ftdi(const QJsonObject &deviceConfig)
: ProviderFtdi(deviceConfig),
SPI_BYTES_PER_COLOUR(4),
SPI_FRAME_END_LATCH_BYTES(116),
bitpair_to_byte{
0b10001000,
0b10001100,
0b11001000,
0b11001100,
}
{
}
LedDevice *LedDeviceWs2812_ftdi::construct(const QJsonObject &deviceConfig)
{
return new LedDeviceWs2812_ftdi(deviceConfig);
}
bool LedDeviceWs2812_ftdi::init(const QJsonObject &deviceConfig)
{
bool isInitOK = false;
// Initialise sub-class
if (ProviderFtdi::init(deviceConfig))
{
WarningIf((_baudRate_Hz < 2106000 || _baudRate_Hz > 3075000), _log, "Baud rate %d outside recommended range (2106000 -> 3075000)", _baudRate_Hz);
_ledBuffer.resize(_ledRGBCount * SPI_BYTES_PER_COLOUR + SPI_FRAME_END_LATCH_BYTES, 0x00);
isInitOK = true;
}
return isInitOK;
}
int LedDeviceWs2812_ftdi::write(const std::vector<ColorRgb> &ledValues)
{
unsigned spi_ptr = 0;
const int SPI_BYTES_PER_LED = sizeof(ColorRgb) * SPI_BYTES_PER_COLOUR;
for (const ColorRgb &color : ledValues)
{
uint32_t colorBits = ((unsigned int)color.red << 16) | ((unsigned int)color.green << 8) | color.blue;
for (int j = SPI_BYTES_PER_LED - 1; j >= 0; j--)
{
_ledBuffer[spi_ptr + j] = bitpair_to_byte[colorBits & 0x3];
colorBits >>= 2;
}
spi_ptr += SPI_BYTES_PER_LED;
}
for (int j = 0; j < SPI_FRAME_END_LATCH_BYTES; j++)
{
_ledBuffer[spi_ptr++] = 0;
}
return writeBytes(_ledBuffer.size(), _ledBuffer.data());
}

View File

@@ -0,0 +1,49 @@
#ifndef LEDEVICEWS2812_ftdi_H
#define LEDEVICEWS2812_ftdi_H
#include "ProviderFtdi.h"
class LedDeviceWs2812_ftdi : public ProviderFtdi
{
public:
///
/// @brief Constructs a Ws2812 LED-device
///
/// @param deviceConfig Device's configuration as JSON-Object
///
explicit LedDeviceWs2812_ftdi(const QJsonObject& deviceConfig);
///
/// @brief Constructs the LED-device
///
/// @param[in] deviceConfig Device's configuration as JSON-Object
/// @return LedDevice constructed
static LedDevice* construct(const QJsonObject& deviceConfig);
private:
///
/// @brief Initialise the device's configuration
///
/// @param[in] deviceConfig the JSON device configuration
/// @return True, if success
///
bool init(const QJsonObject& deviceConfig) override;
///
/// @brief Writes the RGB-Color values to the LEDs.
///
/// @param[in] ledValues The RGB-color per LED
/// @return Zero on success, else negative
///
int write(const std::vector<ColorRgb>& ledValues) override;
const int SPI_BYTES_PER_COLOUR;
const int SPI_FRAME_END_LATCH_BYTES;
uint8_t bitpair_to_byte[4];
};
#endif // LEDEVICEWS2812_ftdi_H

View File

@@ -0,0 +1,208 @@
// LedDevice includes
#include <leddevice/LedDevice.h>
#include "ProviderFtdi.h"
#include <utils/WaitTime.h>
#include <ftdi.h>
#include <libusb.h>
#define ANY_FTDI_VENDOR 0x0
#define ANY_FTDI_PRODUCT 0x0
#define FTDI_CHECK_RESULT(statement) if (statement) {setInError(ftdi_get_error_string(_ftdic)); return rc;}
namespace Pin
{
// enumerate the AD bus for convenience.
enum bus_t
{
SK = 0x01, // ADBUS0, SPI data clock
DO = 0x02, // ADBUS1, SPI data out
CS = 0x08, // ADBUS3, SPI chip select, active low
};
}
const uint8_t pinInitialState = Pin::CS;
// Use these pins as outputs
const uint8_t pinDirection = Pin::SK | Pin::DO | Pin::CS;
const QString ProviderFtdi::AUTO_SETTING = QString("auto");
ProviderFtdi::ProviderFtdi(const QJsonObject &deviceConfig)
: LedDevice(deviceConfig),
_ftdic(nullptr),
_baudRate_Hz(1000000)
{
}
bool ProviderFtdi::init(const QJsonObject &deviceConfig)
{
bool isInitOK = false;
if (LedDevice::init(deviceConfig))
{
_baudRate_Hz = deviceConfig["rate"].toInt(_baudRate_Hz);
_deviceName = deviceConfig["output"].toString(AUTO_SETTING);
Debug(_log, "_baudRate_Hz [%d]", _baudRate_Hz);
Debug(_log, "_deviceName [%s]", QSTRING_CSTR(_deviceName));
isInitOK = true;
}
return isInitOK;
}
int ProviderFtdi::open()
{
int rc = 0;
_ftdic = ftdi_new();
if (ftdi_init(_ftdic) < 0)
{
_ftdic = nullptr;
setInError("Could not initialize the ftdi library");
return -1;
}
Debug(_log, "Opening FTDI device=%s", QSTRING_CSTR(_deviceName));
FTDI_CHECK_RESULT((rc = ftdi_usb_open_string(_ftdic, QSTRING_CSTR(_deviceName))) < 0);
/* doing this disable resets things if they were in a bad state */
FTDI_CHECK_RESULT((rc = ftdi_disable_bitbang(_ftdic)) < 0);
FTDI_CHECK_RESULT((rc = ftdi_setflowctrl(_ftdic, SIO_DISABLE_FLOW_CTRL)) < 0);
FTDI_CHECK_RESULT((rc = ftdi_set_bitmode(_ftdic, 0x00, BITMODE_RESET)) < 0);
FTDI_CHECK_RESULT((rc = ftdi_set_bitmode(_ftdic, 0xff, BITMODE_MPSSE)) < 0);
double reference_clock = 60e6;
int divisor = (reference_clock / 2 / _baudRate_Hz) - 1;
std::vector<uint8_t> buf = {
DIS_DIV_5,
TCK_DIVISOR,
static_cast<unsigned char>(divisor),
static_cast<unsigned char>(divisor >> 8),
SET_BITS_LOW, // opcode: set low bits (ADBUS[0-7]
pinInitialState, // argument: inital pin state
pinDirection
};
FTDI_CHECK_RESULT((rc = ftdi_write_data(_ftdic, buf.data(), buf.size())) != buf.size());
_isDeviceReady = true;
return rc;
}
int ProviderFtdi::close()
{
LedDevice::close();
if (_ftdic != nullptr) {
Debug(_log, "Closing FTDI device");
// Delay to give time to push color black from writeBlack() into the led,
// otherwise frame transmission will be terminated half way through
wait(30);
ftdi_set_bitmode(_ftdic, 0x00, BITMODE_RESET);
ftdi_usb_close(_ftdic);
ftdi_free(_ftdic);
_ftdic = nullptr;
}
return 0;
}
void ProviderFtdi::setInError(const QString &errorMsg, bool isRecoverable)
{
close();
LedDevice::setInError(errorMsg, isRecoverable);
}
int ProviderFtdi::writeBytes(const qint64 size, const uint8_t *data)
{
int rc;
int count_arg = size - 1;
std::vector<uint8_t> buf = {
SET_BITS_LOW,
pinInitialState & ~Pin::CS,
pinDirection,
MPSSE_DO_WRITE | MPSSE_WRITE_NEG,
static_cast<unsigned char>(count_arg),
static_cast<unsigned char>(count_arg >> 8),
SET_BITS_LOW,
pinInitialState | Pin::CS,
pinDirection
};
// insert before last SET_BITS_LOW command
// SET_BITS_LOW takes 2 arguments, so we're inserting data in -3 position from the end
buf.insert(buf.end() - 3, &data[0], &data[size]);
FTDI_CHECK_RESULT((rc = ftdi_write_data(_ftdic, buf.data(), buf.size())) != buf.size());
return rc;
}
QJsonObject ProviderFtdi::discover(const QJsonObject & /*params*/)
{
QJsonObject devicesDiscovered;
QJsonArray deviceList;
struct ftdi_device_list *devlist;
struct ftdi_context *ftdic;
ftdic = ftdi_new();
if (ftdi_usb_find_all(ftdic, &devlist, ANY_FTDI_VENDOR, ANY_FTDI_PRODUCT) > 0)
{
struct ftdi_device_list *curdev = devlist;
QMap<QString, uint8_t> deviceIndexes;
while (curdev)
{
libusb_device_descriptor desc;
int rc = libusb_get_device_descriptor(curdev->dev, &desc);
if (rc == 0)
{
QString vendorIdentifier = QString("0x%1").arg(desc.idVendor, 4, 16, QChar{'0'});
QString productIdentifier = QString("0x%1").arg(desc.idProduct, 4, 16, QChar{'0'});
QString vendorAndProduct = QString("%1:%2")
.arg(vendorIdentifier)
.arg(productIdentifier);
uint8_t deviceIndex = deviceIndexes.value(vendorAndProduct, 0);
char serial_string[128] = {0};
char manufacturer_string[128] = {0};
char description_string[128] = {0};
ftdi_usb_get_strings2(ftdic, curdev->dev, manufacturer_string, 128, description_string, 128, serial_string, 128);
QString serialNumber {serial_string};
QString ftdiOpenString;
if(!serialNumber.isEmpty())
{
ftdiOpenString = QString("s:%1:%2").arg(vendorAndProduct).arg(serialNumber);
}
else
{
ftdiOpenString = QString("i:%1:%2").arg(vendorAndProduct).arg(deviceIndex);
}
deviceList.push_back(QJsonObject{
{"ftdiOpenString", ftdiOpenString},
{"vendorIdentifier", vendorIdentifier},
{"productIdentifier", productIdentifier},
{"deviceIndex", deviceIndex},
{"serialNumber", serialNumber},
{"manufacturer", manufacturer_string},
{"description", description_string}
});
deviceIndexes.insert(vendorAndProduct, deviceIndex + 1);
}
curdev = curdev->next;
}
}
ftdi_list_free(&devlist);
ftdi_free(ftdic);
devicesDiscovered.insert("ledDeviceType", _activeDeviceType);
devicesDiscovered.insert("devices", deviceList);
Debug(_log, "FTDI devices discovered: [%s]", QString(QJsonDocument(devicesDiscovered).toJson(QJsonDocument::Compact)).toUtf8().constData());
return devicesDiscovered;
}

View File

@@ -0,0 +1,76 @@
#ifndef PROVIDERFtdi_H
#define PROVIDERFtdi_H
// LedDevice includes
#include <leddevice/LedDevice.h>
#include <ftdi.h>
///
/// The ProviderFtdi implements an abstract base-class for LedDevices using a Ftdi-device.
///
class ProviderFtdi : public LedDevice
{
Q_OBJECT
public:
///
/// @brief Constructs a Ftdi LED-device
///
ProviderFtdi(const QJsonObject& deviceConfig);
static const QString AUTO_SETTING;
protected:
///
/// @brief Opens the output device.
///
/// @return Zero on success (i.e. device is ready), else negative
///
int open() override;
///
/// Sets configuration
///
/// @param deviceConfig the json device config
/// @return true if success
bool init(const QJsonObject& deviceConfig) override;
///
/// @brief Closes the UDP device.
///
/// @return Zero on success (i.e. device is closed), else negative
///
int close() override;
/// @brief Write the given bytes to the Ftdi-device
///
/// @param[in[ size The length of the data
/// @param[in] data The data
/// @return Zero on success, else negative
///
int writeBytes(const qint64 size, const uint8_t* data);
QJsonObject discover(const QJsonObject& params) override;
/// The Ftdi serial-device
struct ftdi_context *_ftdic;
/// The used baud-rate of the output device
qint32 _baudRate_Hz;
QString _deviceName;
protected slots:
///
/// @brief Set device in error state
///
/// @param errorMsg The error message to be logged
///
void setInError(const QString& errorMsg, bool isRecoverable=true) override;
};
#endif // PROVIDERFtdi_H

View File

@@ -895,6 +895,7 @@ void LedDevicePhilipsHueBridge::setBridgeDetails(const QJsonDocument &doc, bool
log( "API-Version", "%u.%u.%u", _api_major, _api_minor, _api_patch );
log( "API v2 ready", "%s", _isAPIv2Ready ? "Yes" : "No" );
log( "Entertainment ready", "%s", _isHueEntertainmentReady ? "Yes" : "No" );
log( "Use Entertainment API", "%s", _useEntertainmentAPI ? "Yes" : "No" );
log( "DIYHue", "%s", _isDiyHue ? "Yes" : "No" );
}
}
@@ -1799,11 +1800,11 @@ bool LedDevicePhilipsHue::init(const QJsonObject &deviceConfig)
if (LedDevicePhilipsHueBridge::init(_devConfig))
{
log( "Off on Black", "%s", _switchOffOnBlack ? "Yes" : "No" );
log( "Brightness Factor", "%f", _brightnessFactor );
log( "Transition Time", "%d", _transitionTime );
log( "Restore Original State", "%s", _isRestoreOrigState ? "Yes" : "No" );
log( "Use Hue Entertainment API", "%s", _useEntertainmentAPI ? "Yes" : "No" );
log("Off on Black", "%s", _switchOffOnBlack ? "Yes" : "No" );
log("Brightness Factor", "%f", _brightnessFactor );
log("Transition Time", "%d", _transitionTime );
log("Restore Original State", "%s", _isRestoreOrigState ? "Yes" : "No" );
log("Use Hue Entertainment API", "%s", _useEntertainmentAPI ? "Yes" : "No" );
log("Brightness Threshold", "%f", _blackLevel);
log("CandyGamma", "%s", _candyGamma ? "Yes" : "No" );
log("Time powering off when black", "%s", _onBlackTimeToPowerOff ? "Yes" : "No" );
@@ -1864,7 +1865,7 @@ bool LedDevicePhilipsHue::setLights()
Debug(_log, "Lights configured: %d", configuredLightsCount );
if (updateLights( getLightMap()))
{
if (_useApiV2)
if (_useApiV2 && _useEntertainmentAPI)
{
_channelsCount = getGroupChannelsCount (_groupId);
@@ -2208,15 +2209,14 @@ int LedDevicePhilipsHue::write(const std::vector<ColorRgb> & ledValues)
int rc {0};
if (_isOn)
{
if (!_useApiV2)
{
rc = writeSingleLights( ledValues );
}
if (_useEntertainmentAPI && _isInitLeds)
{
rc= writeStreamData(ledValues);
}
else
{
rc = writeSingleLights( ledValues );
}
}
return rc;
}
@@ -2482,7 +2482,7 @@ void LedDevicePhilipsHue::setColor(PhilipsHueLight& light, CiColor& color)
QJsonObject colorXY;
colorXY[API_X_COORDINATE] = color.x;
colorXY[API_Y_COORDINATE] = color.y;
cmd.insert(API_COLOR, QJsonObject {{API_DURATION, colorXY }});
cmd.insert(API_COLOR, QJsonObject {{API_XY_COORDINATES, colorXY }});
cmd.insert(API_DIMMING, QJsonObject {{API_BRIGHTNESS, bri }});
}
else
@@ -2556,7 +2556,7 @@ void LedDevicePhilipsHue::setState(PhilipsHueLight& light, bool on, const CiColo
QJsonObject colorXY;
colorXY[API_X_COORDINATE] = color.x;
colorXY[API_Y_COORDINATE] = color.y;
cmd.insert(API_COLOR, QJsonObject {{API_DURATION, colorXY }});
cmd.insert(API_COLOR, QJsonObject {{API_XY_COORDINATES, colorXY }});
cmd.insert(API_DIMMING, QJsonObject {{API_BRIGHTNESS, bri }});
}
else

View File

@@ -30,7 +30,8 @@ enum HttpStatusCode {
BadRequest = 400,
UnAuthorized = 401,
Forbidden = 403,
NotFound = 404
NotFound = 404,
TooManyRequests = 429
};
} //End of constants
@@ -336,6 +337,15 @@ httpResponse ProviderRestApi::getResponse(QNetworkReply* const& reply)
case HttpStatusCode::NotFound:
advise = "Check Resource given";
break;
case HttpStatusCode::TooManyRequests:
{
QString retryAfterTime = response.getHeader("Retry-After");
if (!retryAfterTime.isEmpty())
{
advise = "Retry-After: " + response.getHeader("Retry-After");
}
}
break;
default:
advise = httpReason;
break;

View File

@@ -58,6 +58,11 @@ bool LedDeviceAdalight::init(const QJsonObject &deviceConfig)
case Adalight::ADA:
Debug( _log, "Adalight driver uses standard Adalight protocol");
break;
case Adalight::SKYDIMO:
Debug( _log, "Adalight driver uses Skydimo protocol");
break;
default:
Error( _log, "Adalight driver - unsupported protocol");
return false;
@@ -71,10 +76,6 @@ bool LedDeviceAdalight::init(const QJsonObject &deviceConfig)
void LedDeviceAdalight::prepareHeader()
{
// create ledBuffer
uint totalLedCount = _ledCount;
_bufferLength = static_cast<qint64>(HEADER_SIZE + _ledRGBCount);
switch (_streamProtocol) {
case Adalight::LBAPA:
{
@@ -82,7 +83,6 @@ void LedDeviceAdalight::prepareHeader()
const unsigned int bytesPerRGBLed = 4;
const unsigned int endFrameSize = qMax<unsigned int>(((_ledCount + 15) / 16), bytesPerRGBLed);
_bufferLength = HEADER_SIZE + (_ledCount * bytesPerRGBLed) + startFrameSize + endFrameSize;
_ledBuffer.resize(static_cast<size_t>(_bufferLength), 0x00);
// init constant data values
@@ -91,39 +91,47 @@ void LedDeviceAdalight::prepareHeader()
_ledBuffer[iLed*4+HEADER_SIZE] = 0xFF;
}
}
break;
break;
case Adalight::SKYDIMO:
{
_bufferLength = static_cast<qint64>(HEADER_SIZE + _ledRGBCount);
_ledBuffer.resize(static_cast<size_t>(_bufferLength), 0x00);
_ledBuffer[0] = 'A';
_ledBuffer[1] = 'd';
_ledBuffer[2] = 'a';
_ledBuffer[3] = 0;
_ledBuffer[4] = 0;
_ledBuffer[5] = static_cast<quint8>(_ledCount);
}
break;
case Adalight::AWA:
_bufferLength += 8;
[[fallthrough]];
{
_bufferLength = static_cast<qint64>(HEADER_SIZE + _ledRGBCount + 8);
_ledBuffer.resize(static_cast<size_t>(_bufferLength), 0x00);
_ledBuffer[0] = 'A';
_ledBuffer[1] = 'w';
_ledBuffer[2] = _white_channel_calibration ? 'A' : 'a';
qToBigEndian<quint16>(static_cast<quint16>(_ledCount-1), &_ledBuffer[3]);
_ledBuffer[5] = _ledBuffer[3] ^ _ledBuffer[4] ^ 0x55; // Checksum
}
break;
case Adalight::ADA:
[[fallthrough]];
default:
totalLedCount -= 1;
_bufferLength = static_cast<qint64>(HEADER_SIZE + _ledRGBCount);
_ledBuffer.resize(static_cast<size_t>(_bufferLength), 0x00);
break;
}
_ledBuffer[0] = 'A';
if (_streamProtocol == Adalight::AWA )
{
_ledBuffer[1] = 'w';
_ledBuffer[2] = _white_channel_calibration ? 'A' : 'a';
}
else
{
_ledBuffer[0] = 'A';
_ledBuffer[1] = 'd';
_ledBuffer[2] = 'a';
qToBigEndian<quint16>(static_cast<quint16>(_ledCount-1), &_ledBuffer[3]);
_ledBuffer[5] = _ledBuffer[3] ^ _ledBuffer[4] ^ 0x55; // Checksum
break;
}
qToBigEndian<quint16>(static_cast<quint16>(totalLedCount), &_ledBuffer[3]);
_ledBuffer[5] = _ledBuffer[3] ^ _ledBuffer[4] ^ 0x55; // Checksum
Debug( _log, "Adalight header for %d leds (size: %d): %c%c%c 0x%02x 0x%02x 0x%02x", _ledCount, _ledBuffer.size(),
_ledBuffer[0], _ledBuffer[1], _ledBuffer[2], _ledBuffer[3], _ledBuffer[4], _ledBuffer[5] );
}
int LedDeviceAdalight::write(const std::vector<ColorRgb> & ledValues)
{
if (_ledCount != ledValues.size())

View File

@@ -10,7 +10,8 @@ typedef enum ProtocolType
{
ADA = 0,
LBAPA,
AWA
AWA,
SKYDIMO
} PROTOCOLTYPE;
}

View File

@@ -11,10 +11,10 @@
"streamProtocol": {
"type": "string",
"title": "edt_dev_spec_stream_protocol_title",
"enum": [ "0", "1", "2" ],
"enum": [ "0", "1", "2", "3" ],
"default": "0",
"options": {
"enum_titles": [ "edt_dev_spec_ada_mode_title", "edt_dev_spec_LBap102Mode_title","edt_dev_spec_awa_mode_title" ]
"enum_titles": [ "edt_dev_spec_ada_mode_title", "edt_dev_spec_LBap102Mode_title","edt_dev_spec_awa_mode_title", "edt_dev_spec_skydimo_mode_title" ]
},
"propertyOrder": 2
},

View File

@@ -0,0 +1,27 @@
{
"type": "object",
"required": true,
"properties": {
"output": {
"type": "string",
"title":"edt_dev_spec_outputPath_title",
"propertyOrder": 1
},
"rate": {
"type": "integer",
"title": "edt_dev_spec_baudrate_title",
"default": 5000000,
"propertyOrder": 2
},
"brightnessControlMaxLevel": {
"type": "integer",
"title": "edt_conf_color_brightness_title",
"default": 31,
"minimum": 1,
"maximum": 31,
"propertyOrder": 3
}
},
"additionalProperties": true
}

View File

@@ -0,0 +1,60 @@
{
"type": "object",
"required": true,
"properties": {
"output": {
"type": "string",
"title": "edt_dev_spec_outputPath_title",
"required": true,
"propertyOrder": 1
},
"rate": {
"type": "integer",
"step": 100000,
"title": "edt_dev_spec_baudrate_title",
"default": 3200000,
"minimum": 2050000,
"maximum": 3750000,
"propertyOrder": 2
},
"brightnessControlMaxLevel": {
"type": "integer",
"title": "edt_conf_color_brightness_title",
"default": 255,
"minimum": 1,
"maximum": 255,
"propertyOrder": 3
},
"whiteAlgorithm": {
"type": "string",
"title": "edt_dev_spec_whiteLedAlgor_title",
"enum": [
"subtract_minimum",
"sub_min_cool_adjust",
"sub_min_warm_adjust",
"cold_white",
"neutral_white",
"auto",
"auto_max",
"auto_accurate",
"white_off"
],
"default": "white_off",
"options": {
"enum_titles": [
"edt_dev_enum_subtract_minimum",
"edt_dev_enum_sub_min_cool_adjust",
"edt_dev_enum_sub_min_warm_adjust",
"edt_dev_enum_cold_white",
"edt_dev_enum_neutral_white",
"edt_dev_enum_auto",
"edt_dev_enum_auto_max",
"edt_dev_enum_auto_accurate",
"edt_dev_enum_white_off"
]
},
"propertyOrder": 4
}
},
"additionalProperties": true
}

View File

@@ -22,10 +22,30 @@
"whiteAlgorithm": {
"type": "string",
"title":"edt_dev_spec_whiteLedAlgor_title",
"enum" : ["subtract_minimum","sub_min_cool_adjust","sub_min_warm_adjust","white_off"],
"enum" : [
"subtract_minimum",
"sub_min_cool_adjust",
"sub_min_warm_adjust",
"cold_white",
"neutral_white",
"auto",
"auto_max",
"auto_accurate",
"white_off"
],
"default": "subtract_minimum",
"options" : {
"enum_titles" : ["edt_dev_enum_subtract_minimum", "edt_dev_enum_sub_min_cool_adjust","edt_dev_enum_sub_min_warm_adjust", "edt_dev_enum_white_off"]
"enum_titles" : [
"edt_dev_enum_subtract_minimum",
"edt_dev_enum_sub_min_cool_adjust",
"edt_dev_enum_sub_min_warm_adjust",
"edt_dev_enum_cold_white",
"edt_dev_enum_neutral_white",
"edt_dev_enum_auto",
"edt_dev_enum_auto_max",
"edt_dev_enum_auto_accurate",
"edt_dev_enum_white_off"
]
},
"propertyOrder" : 4
},

View File

@@ -0,0 +1,20 @@
{
"type": "object",
"required": true,
"properties": {
"output": {
"type": "string",
"title": "edt_dev_spec_outputPath_title",
"propertyOrder": 1
},
"rate": {
"type": "integer",
"title": "edt_dev_spec_baudrate_title",
"default": 3075000,
"minimum": 2106000,
"maximum": 3075000,
"propertyOrder": 2
}
},
"additionalProperties": true
}

View File

@@ -43,10 +43,30 @@
"whiteAlgorithm": {
"type": "string",
"title":"edt_dev_spec_whiteLedAlgor_title",
"enum" : ["subtract_minimum","sub_min_cool_adjust","sub_min_warm_adjust","white_off"],
"enum" : [
"subtract_minimum",
"sub_min_cool_adjust",
"sub_min_warm_adjust",
"cold_white",
"neutral_white",
"auto",
"auto_max",
"auto_accurate",
"white_off"
],
"default": "subtract_minimum",
"options" : {
"enum_titles" : ["edt_dev_enum_subtract_minimum", "edt_dev_enum_sub_min_cool_adjust","edt_dev_enum_sub_min_warm_adjust", "edt_dev_enum_white_off"]
"enum_titles" : [
"edt_dev_enum_subtract_minimum",
"edt_dev_enum_sub_min_cool_adjust",
"edt_dev_enum_sub_min_warm_adjust",
"edt_dev_enum_cold_white",
"edt_dev_enum_neutral_white",
"edt_dev_enum_auto",
"edt_dev_enum_auto_max",
"edt_dev_enum_auto_accurate",
"edt_dev_enum_white_off"
]
},
"propertyOrder" : 7
},

View File

@@ -29,9 +29,6 @@ void ImageResampler::processImage(const uint8_t * data, int width, int height, i
int cropTop = _cropTop;
int cropBottom = _cropBottom;
int xDestFlip = 0, yDestFlip = 0;
int uOffset = 0, vOffset = 0;
// handle 3D mode
switch (_videoMode)
{
@@ -53,118 +50,191 @@ void ImageResampler::processImage(const uint8_t * data, int width, int height, i
outputImage.resize(outputWidth, outputHeight);
for (int yDest = 0, ySource = cropTop + (_verticalDecimation >> 1); yDest < outputHeight; ySource += _verticalDecimation, ++yDest)
int xDestStart, xDestEnd;
int yDestStart, yDestEnd;
switch (_flipMode)
{
int yOffset = lineLength * ySource;
if (pixelFormat == PixelFormat::NV12)
{
uOffset = (height + ySource / 2) * lineLength;
}
else if (pixelFormat == PixelFormat::I420)
{
uOffset = width * height + (ySource/2) * width/2;
vOffset = width * height * 1.25 + (ySource/2) * width/2;
}
case FlipMode::NO_CHANGE:
xDestStart = 0;
xDestEnd = outputWidth-1;
yDestStart = 0;
yDestEnd = outputHeight-1;
break;
case FlipMode::HORIZONTAL:
xDestStart = 0;
xDestEnd = outputWidth-1;
yDestStart = -(outputHeight-1);
yDestEnd = 0;
break;
case FlipMode::VERTICAL:
xDestStart = -(outputWidth-1);
xDestEnd = 0;
yDestStart = 0;
yDestEnd = outputHeight-1;
break;
case FlipMode::BOTH:
xDestStart = -(outputWidth-1);
xDestEnd = 0;
yDestStart = -(outputHeight-1);
yDestEnd = 0;
break;
}
for (int xDest = 0, xSource = cropLeft + (_horizontalDecimation >> 1); xDest < outputWidth; xSource += _horizontalDecimation, ++xDest)
switch (pixelFormat)
{
case PixelFormat::UYVY:
{
switch (_flipMode)
for (int yDest = yDestStart, ySource = cropTop + (_verticalDecimation >> 1); yDest <= yDestEnd; ySource += _verticalDecimation, ++yDest)
{
case FlipMode::HORIZONTAL:
xDestFlip = xDest;
yDestFlip = outputHeight-yDest-1;
break;
case FlipMode::VERTICAL:
xDestFlip = outputWidth-xDest-1;
yDestFlip = yDest;
break;
case FlipMode::BOTH:
xDestFlip = outputWidth-xDest-1;
yDestFlip = outputHeight-yDest-1;
break;
case FlipMode::NO_CHANGE:
xDestFlip = xDest;
yDestFlip = yDest;
break;
}
ColorRgb &rgb = outputImage(xDestFlip, yDestFlip);
switch (pixelFormat)
{
case PixelFormat::UYVY:
for (int xDest = xDestStart, xSource = cropLeft + (_horizontalDecimation >> 1); xDest <= xDestEnd; xSource += _horizontalDecimation, ++xDest)
{
int index = yOffset + (xSource << 1);
ColorRgb & rgb = outputImage(abs(xDest), abs(yDest));
int index = lineLength * ySource + (xSource << 1);
uint8_t y = data[index+1];
uint8_t u = ((xSource&1) == 0) ? data[index ] : data[index-2];
uint8_t v = ((xSource&1) == 0) ? data[index+2] : data[index ];
ColorSys::yuv2rgb(y, u, v, rgb.red, rgb.green, rgb.blue);
}
break;
case PixelFormat::YUYV:
}
break;
}
case PixelFormat::YUYV:
{
for (int yDest = yDestStart, ySource = cropTop + (_verticalDecimation >> 1); yDest <= yDestEnd; ySource += _verticalDecimation, ++yDest)
{
for (int xDest = xDestStart, xSource = cropLeft + (_horizontalDecimation >> 1); xDest <= xDestEnd; xSource += _horizontalDecimation, ++xDest)
{
int index = yOffset + (xSource << 1);
ColorRgb & rgb = outputImage(abs(xDest), abs(yDest));
int index = lineLength * ySource + (xSource << 1);
uint8_t y = data[index];
uint8_t u = ((xSource&1) == 0) ? data[index+1] : data[index-1];
uint8_t v = ((xSource&1) == 0) ? data[index+3] : data[index+1];
ColorSys::yuv2rgb(y, u, v, rgb.red, rgb.green, rgb.blue);
}
break;
case PixelFormat::BGR16:
}
break;
}
case PixelFormat::BGR16:
{
for (int yDest = yDestStart, ySource = cropTop + (_verticalDecimation >> 1); yDest <= yDestEnd; ySource += _verticalDecimation, ++yDest)
{
for (int xDest = xDestStart, xSource = cropLeft + (_horizontalDecimation >> 1); xDest <= xDestEnd; xSource += _horizontalDecimation, ++xDest)
{
int index = yOffset + (xSource << 1);
ColorRgb & rgb = outputImage(abs(xDest), abs(yDest));
int index = lineLength * ySource + (xSource << 1);
rgb.blue = (data[index] & 0x1f) << 3;
rgb.green = (((data[index+1] & 0x7) << 3) | (data[index] & 0xE0) >> 5) << 2;
rgb.red = (data[index+1] & 0xF8);
}
break;
case PixelFormat::BGR24:
}
break;
}
case PixelFormat::RGB24:
{
for (int yDest = yDestStart, ySource = cropTop + (_verticalDecimation >> 1); yDest <= yDestEnd; ySource += _verticalDecimation, ++yDest)
{
for (int xDest = xDestStart, xSource = cropLeft + (_horizontalDecimation >> 1); xDest <= xDestEnd; xSource += _horizontalDecimation, ++xDest)
{
int index = yOffset + (xSource << 1) + xSource;
rgb.blue = data[index ];
rgb.green = data[index+1];
rgb.red = data[index+2];
}
break;
case PixelFormat::RGB32:
{
int index = yOffset + (xSource << 2);
ColorRgb & rgb = outputImage(abs(xDest), abs(yDest));
int index = lineLength * ySource + (xSource << 1) + xSource;
rgb.red = data[index ];
rgb.green = data[index+1];
rgb.blue = data[index+2];
}
break;
case PixelFormat::BGR32:
}
break;
}
case PixelFormat::BGR24:
{
for (int yDest = yDestStart, ySource = cropTop + (_verticalDecimation >> 1); yDest <= yDestEnd; ySource += _verticalDecimation, ++yDest)
{
for (int xDest = xDestStart, xSource = cropLeft + (_horizontalDecimation >> 1); xDest <= xDestEnd; xSource += _horizontalDecimation, ++xDest)
{
int index = yOffset + (xSource << 2);
ColorRgb & rgb = outputImage(abs(xDest), abs(yDest));
int index = lineLength * ySource + (xSource << 1) + xSource;
rgb.blue = data[index ];
rgb.green = data[index+1];
rgb.red = data[index+2];
}
break;
case PixelFormat::NV12:
}
break;
}
case PixelFormat::RGB32:
{
for (int yDest = yDestStart, ySource = cropTop + (_verticalDecimation >> 1); yDest <= yDestEnd; ySource += _verticalDecimation, ++yDest)
{
for (int xDest = xDestStart, xSource = cropLeft + (_horizontalDecimation >> 1); xDest <= xDestEnd; xSource += _horizontalDecimation, ++xDest)
{
uint8_t y = data[yOffset + xSource];
ColorRgb & rgb = outputImage(abs(xDest), abs(yDest));
int index = lineLength * ySource + (xSource << 2);
rgb.red = data[index ];
rgb.green = data[index+1];
rgb.blue = data[index+2];
}
}
break;
}
case PixelFormat::BGR32:
{
for (int yDest = yDestStart, ySource = cropTop + (_verticalDecimation >> 1); yDest <= yDestEnd; ySource += _verticalDecimation, ++yDest)
{
for (int xDest = xDestStart, xSource = cropLeft + (_horizontalDecimation >> 1); xDest <= xDestEnd; xSource += _horizontalDecimation, ++xDest)
{
ColorRgb & rgb = outputImage(abs(xDest), abs(yDest));
int index = lineLength * ySource + (xSource << 2);
rgb.blue = data[index ];
rgb.green = data[index+1];
rgb.red = data[index+2];
}
}
break;
}
case PixelFormat::NV12:
{
for (int yDest = yDestStart, ySource = cropTop + (_verticalDecimation >> 1); yDest <= yDestEnd; ySource += _verticalDecimation, ++yDest)
{
int uOffset = (height + ySource / 2) * lineLength;
for (int xDest = xDestStart, xSource = cropLeft + (_horizontalDecimation >> 1); xDest <= xDestEnd; xSource += _horizontalDecimation, ++xDest)
{
ColorRgb & rgb = outputImage(abs(xDest), abs(yDest));
uint8_t y = data[lineLength * ySource + xSource];
uint8_t u = data[uOffset + ((xSource >> 1) << 1)];
uint8_t v = data[uOffset + ((xSource >> 1) << 1) + 1];
ColorSys::yuv2rgb(y, u, v, rgb.red, rgb.green, rgb.blue);
}
break;
case PixelFormat::I420:
}
break;
}
case PixelFormat::I420:
{
for (int yDest = yDestStart, ySource = cropTop + (_verticalDecimation >> 1); yDest <= yDestEnd; ySource += _verticalDecimation, ++yDest)
{
int uOffset = width * height + (ySource/2) * width/2;
int vOffset = width * height * 1.25 + (ySource/2) * width/2;
for (int xDest = xDestStart, xSource = cropLeft + (_horizontalDecimation >> 1); xDest <= xDestEnd; xSource += _horizontalDecimation, ++xDest)
{
int y = data[yOffset + xSource];
ColorRgb & rgb = outputImage(abs(xDest), abs(yDest));
int y = data[lineLength * ySource + xSource];
int u = data[uOffset + (xSource >> 1)];
int v = data[vOffset + (xSource >> 1)];
ColorSys::yuv2rgb(y, u, v, rgb.red, rgb.green, rgb.blue);
break;
}
break;
case PixelFormat::MJPEG:
break;
case PixelFormat::NO_CHANGE:
Error(Logger::getInstance("ImageResampler"), "Invalid pixel format given");
break;
}
break;
}
case PixelFormat::MJPEG:
break;
case PixelFormat::NO_CHANGE:
Error(Logger::getInstance("ImageResampler"), "Invalid pixel format given");
break;
}
}

View File

@@ -3,6 +3,8 @@
#include <utils/RgbToRgbw.h>
#include <utils/Logger.h>
#define ROUND_DIVIDE(number, denom) (((number) + (denom) / 2) / (denom))
namespace RGBW {
WhiteAlgorithm stringToWhiteAlgorithm(const QString& str)
@@ -19,7 +21,27 @@ WhiteAlgorithm stringToWhiteAlgorithm(const QString& str)
{
return WhiteAlgorithm::SUB_MIN_COOL_ADJUST;
}
if (str.isEmpty() || str == "white_off")
if (str == "cold_white")
{
return WhiteAlgorithm::COLD_WHITE;
}
if (str == "neutral_white")
{
return WhiteAlgorithm::NEUTRAL_WHITE;
}
if (str == "auto")
{
return WhiteAlgorithm::AUTO;
}
if (str == "auto_max")
{
return WhiteAlgorithm::AUTO_MAX;
}
if (str == "auto_accurate")
{
return WhiteAlgorithm::AUTO_ACCURATE;
}
if (str.isEmpty() || str == "white_off")
{
return WhiteAlgorithm::WHITE_OFF;
}
@@ -77,6 +99,63 @@ void Rgb_to_Rgbw(ColorRgb input, ColorRgbw * output, WhiteAlgorithm algorithm)
output->white = 0;
break;
}
case WhiteAlgorithm::AUTO_MAX:
{
output->red = input.red;
output->green = input.green;
output->blue = input.blue;
output->white = input.red > input.green ? (input.red > input.blue ? input.red : input.blue) : (input.green > input.blue ? input.green : input.blue);
break;
}
case WhiteAlgorithm::AUTO_ACCURATE:
{
output->white = input.red < input.green ? (input.red < input.blue ? input.red : input.blue) : (input.green < input.blue ? input.green : input.blue);
output->red = input.red - output->white;
output->green = input.green - output->white;
output->blue = input.blue - output->white;
break;
}
case WhiteAlgorithm::AUTO:
{
output->red = input.red;
output->green = input.green;
output->blue = input.blue;
output->white = input.red < input.green ? (input.red < input.blue ? input.red : input.blue) : (input.green < input.blue ? input.green : input.blue);
break;
}
case WhiteAlgorithm::NEUTRAL_WHITE:
case WhiteAlgorithm::COLD_WHITE:
{
//cold white config
uint8_t gain = 0xFF;
uint8_t red = 0xA0;
uint8_t green = 0xA0;
uint8_t blue = 0xA0;
if (algorithm == WhiteAlgorithm::NEUTRAL_WHITE) {
gain = 0xFF;
red = 0xB0;
green = 0xB0;
blue = 0x70;
}
uint8_t _r = qMin((uint32_t)(ROUND_DIVIDE(red * input.red, 0xFF)), (uint32_t)0xFF);
uint8_t _g = qMin((uint32_t)(ROUND_DIVIDE(green * input.green, 0xFF)), (uint32_t)0xFF);
uint8_t _b = qMin((uint32_t)(ROUND_DIVIDE(blue * input.blue, 0xFF)), (uint32_t)0xFF);
output->white = qMin(_r, qMin(_g, _b));
output->red = input.red - _r;
output->green = input.green - _g;
output->blue = input.blue - _b;
uint8_t _w = qMin((uint32_t)(ROUND_DIVIDE(gain * output->white, 0xFF)), (uint32_t)0xFF);
output->white = _w;
break;
}
default:
break;
}