Dominant Color and Mean Color Squared

This commit is contained in:
LordGrey 2023-01-25 21:59:31 +01:00
parent fa7a5b6b56
commit af2fa7bfd5
7 changed files with 382 additions and 97 deletions

View File

@ -279,7 +279,7 @@
"edt_conf_color_heading_title": "Color Calibration",
"edt_conf_color_id_expl": "User given name",
"edt_conf_color_id_title": "ID",
"edt_conf_color_imageToLedMappingType_expl": "Overwrites the LED area assignment of your LED layout if it's not \"multicolor\"",
"edt_conf_color_imageToLedMappingType_expl": "Overwrites the LED area assignment of your LED layout if it's not \"Mean Color Simple\"",
"edt_conf_color_imageToLedMappingType_title": "LED area assignment",
"edt_conf_color_leds_expl": "Assign this adjustment to all LEDs (*) or just some (0-24).",
"edt_conf_color_leds_title": "LED index",
@ -320,6 +320,7 @@
"edt_conf_enum_color": "Color",
"edt_conf_enum_custom": "Custom",
"edt_conf_enum_decay": "Decay",
"edt_conf_enum_delay": "Delay only",
"edt_conf_enum_dl_error": "Error",
"edt_conf_enum_dl_informational": "Informational",
"edt_conf_enum_dl_nodebug": "No Debug output",
@ -328,6 +329,7 @@
"edt_conf_enum_dl_verbose1": "Verbosity level 1",
"edt_conf_enum_dl_verbose2": "Verbosity level 2",
"edt_conf_enum_dl_verbose3": "Verbosity level 3",
"edt_conf_enum_dominant_color": "Dominant Color - per LED",
"edt_conf_enum_effect": "Effect",
"edt_conf_enum_gbr": "GBR",
"edt_conf_enum_grb": "GRB",
@ -338,7 +340,8 @@
"edt_conf_enum_logsilent": "Silent",
"edt_conf_enum_logverbose": "Verbose",
"edt_conf_enum_logwarn": "Warning",
"edt_conf_enum_multicolor_mean": "Multicolor",
"edt_conf_enum_multicolor_mean": "Mean Color Simple - per LED",
"edt_conf_enum_multicolor_mean_squared": "Mean Color Squared - per LED",
"edt_conf_enum_please_select": "Please Select",
"edt_conf_enum_rbg": "RBG",
"edt_conf_enum_rgb": "RGB",
@ -348,7 +351,7 @@
"edt_conf_enum_transeffect_sudden": "Sudden",
"edt_conf_enum_udp_ddp": "DDP",
"edt_conf_enum_udp_raw": "RAW",
"edt_conf_enum_unicolor_mean": "Unicolor",
"edt_conf_enum_unicolor_mean": "Mean Color Image - applied to all LEDs",
"edt_conf_fbs_heading_title": "Flatbuffers Server",
"edt_conf_fbs_timeout_expl": "If no data is received for the given period, the component will be (soft) disabled.",
"edt_conf_fbs_timeout_title": "Timeout",

View File

@ -98,12 +98,12 @@ public:
}
///
/// Processes the image to a list of led colors. This will update the size of the buffer-image
/// if required and call the image-to-leds mapping to determine the mean color per led.
/// Processes the image to a list of LED colors. This will update the size of the buffer-image
/// if required and call the image-to-LEDs mapping to determine the color per LED.
///
/// @param[in] image The image to translate to led values
/// @param[in] image The image to translate to LED values
///
/// @return The color value per led
/// @return The color value per LED
///
template <typename Pixel_T>
std::vector<ColorRgb> process(const Image<Pixel_T>& image)
@ -120,8 +120,17 @@ public:
// Create a result vector and call the 'in place' function
switch (_mappingType)
{
case 1: colors = _imageToLeds->getUniLedColor(image); break;
default: colors = _imageToLeds->getMeanLedColor(image);
case 1:
colors = _imageToLeds->getUniLedColor(image);
break;
case 2:
colors = _imageToLeds->getMeanLedColorSqrt(image);
break;
case 3:
colors = _imageToLeds->getDominantLedColor(image);
break;
default:
colors = _imageToLeds->getMeanLedColor(image);
}
}
else
@ -136,8 +145,8 @@ public:
///
/// Determines the led colors of the image in the buffer.
///
/// @param[in] image The image to translate to led values
/// @param[out] ledColors The color value per led
/// @param[in] image The image to translate to LED values
/// @param[out] ledColors The color value per LED
///
template <typename Pixel_T>
void process(const Image<Pixel_T>& image, std::vector<ColorRgb>& ledColors)
@ -153,8 +162,17 @@ public:
// Determine the mean or uni colors of each led (using the existing mapping)
switch (_mappingType)
{
case 1: _imageToLeds->getUniLedColor(image, ledColors); break;
default: _imageToLeds->getMeanLedColor(image, ledColors);
case 1:
_imageToLeds->getUniLedColor(image, ledColors);
break;
case 2:
_imageToLeds->getMeanLedColorSqrt(image, ledColors);
break;
case 3:
_imageToLeds->getDominantLedColor(image, ledColors);
break;
default:
_imageToLeds->getMeanLedColor(image, ledColors);
}
}
else
@ -164,9 +182,9 @@ public:
}
///
/// Get the hscan and vscan parameters for a single led
/// Get the hscan and vscan parameters for a single LED
///
/// @param[in] led Index of the led
/// @param[in] led Index of the LED
/// @param[out] hscanBegin begin of the hscan
/// @param[out] hscanEnd end of the hscan
/// @param[out] vscanBegin begin of the hscan
@ -208,9 +226,6 @@ private:
// Construct a new buffer and mapping
_imageToLeds = new hyperion::ImageToLedsMap(image.width(), image.height(), border.horizontalSize, border.verticalSize, _ledString.leds());
}
//Debug(Logger::getInstance("BLACKBORDER"), "CURRENT BORDER TYPE: unknown=%d hor.size=%d vert.size=%d",
// border.unknown, border.horizontalSize, border.verticalSize );
}
}
@ -228,7 +243,7 @@ private:
/// The mapping of image-pixels to LEDs
hyperion::ImageToLedsMap* _imageToLeds;
/// Type of image 2 led mapping
/// Type of image to LED mapping
int _mappingType;
/// Type of last requested user type
int _userMappingType;

View File

@ -1,9 +1,10 @@
#pragma once
#ifndef IMAGETOLEDSMAP_H
#define IMAGETOLEDSMAP_H
// STL includes
#include <cassert>
#include <sstream>
#include <cmath>
// hyperion-utils includes
#include <utils/Image.h>
@ -14,18 +15,17 @@
namespace hyperion
{
///
/// The ImageToLedsMap holds a mapping of indices into an image to leds. It can be used to
/// calculate the average (or mean) color per led for a specific region.
/// The ImageToLedsMap holds a mapping of indices into an image to LEDs. It can be used to
/// calculate the average (aka mean) or dominant color per LED for a given region.
///
class ImageToLedsMap
{
public:
///
/// Constructs an mapping from the absolute indices in an image to each led based on the border
/// definition given in the list of leds. The map holds absolute indices to any given image,
/// Constructs an mapping from the absolute indices in an image to each LED based on the border
/// definition given in the list of LEDs. The map holds absolute indices to any given image,
/// provided that it is row-oriented.
/// The mapping is created purely on size (width and height). The given borders are excluded
/// from indexing.
@ -37,10 +37,10 @@ namespace hyperion
/// @param[in] leds The list with led specifications
///
ImageToLedsMap(
const unsigned width,
const unsigned height,
const unsigned horizontalBorder,
const unsigned verticalBorder,
const int width,
const int height,
const int horizontalBorder,
const int verticalBorder,
const std::vector<Led> & leds);
///
@ -48,25 +48,25 @@ namespace hyperion
///
/// @return The width of the indexed image [pixels]
///
unsigned width() const;
int width() const;
///
/// Returns the height of the indexed image
///
/// @return The height of the indexed image [pixels]
///
unsigned height() const;
int height() const;
unsigned horizontalBorder() const { return _horizontalBorder; }
unsigned verticalBorder() const { return _verticalBorder; }
int horizontalBorder() const { return _horizontalBorder; }
int verticalBorder() const { return _verticalBorder; }
///
/// Determines the mean color for each led using the mapping the image given
/// Determines the mean color for each LED using the LED area mapping given
/// at construction.
///
/// @param[in] image The image from which to extract the led colors
///
/// @return ledColors The vector containing the output
/// @return The vector containing the output
///
template <typename Pixel_T>
std::vector<ColorRgb> getMeanLedColor(const Image<Pixel_T> & image) const
@ -77,17 +77,15 @@ namespace hyperion
}
///
/// Determines the mean color for each led using the mapping the image given
/// Determines the mean color for each LED using the LED area mapping given
/// at construction.
///
/// @param[in] image The image from which to extract the led colors
/// @param[in] image The image from which to extract the LED colors
/// @param[out] ledColors The vector containing the output
///
template <typename Pixel_T>
void getMeanLedColor(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
{
// Sanity check for the number of leds
//assert(_colorsMap.size() == ledColors.size());
if(_colorsMap.size() != ledColors.size())
{
Debug(Logger::getInstance("HYPERION"), "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
@ -104,12 +102,52 @@ namespace hyperion
}
///
/// Determines the uni color for each led using the mapping the image given
/// Determines the mean color squared for each LED using the LED area mapping given
/// at construction.
///
/// @param[in] image The image from which to extract the led colors
///
/// @return ledColors The vector containing the output
/// @return The vector containing the output
///
template <typename Pixel_T>
std::vector<ColorRgb> getMeanLedColorSqrt(const Image<Pixel_T> & image) const
{
std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
getMeanLedColorSqrt(image, colors);
return colors;
}
///
/// Determines the mean color squared for each LED using the LED area mapping given
/// at construction.
///
/// @param[in] image The image from which to extract the LED colors
/// @param[out] ledColors The vector containing the output
///
template <typename Pixel_T>
void getMeanLedColorSqrt(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
{
if(_colorsMap.size() != ledColors.size())
{
Debug(Logger::getInstance("HYPERION"), "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
return;
}
// Iterate each led and compute the mean
auto led = ledColors.begin();
for (auto colors = _colorsMap.begin(); colors != _colorsMap.end(); ++colors, ++led)
{
const ColorRgb color = calcMeanColorSqrt(image, *colors);
*led = color;
}
}
///
/// Determines the mean color of the image and assigns it to all LEDs
///
/// @param[in] image The image from which to extract the led color
///
/// @return The vector containing the output
///
template <typename Pixel_T>
std::vector<ColorRgb> getUniLedColor(const Image<Pixel_T> & image) const
@ -120,57 +158,95 @@ namespace hyperion
}
///
/// Determines the uni color for each led using the mapping the image given
/// at construction.
/// Determines the mean color of the image and assigns it to all LEDs
///
/// @param[in] image The image from which to extract the led colors
/// @param[in] image The image from which to extract the LED colors
/// @param[out] ledColors The vector containing the output
///
template <typename Pixel_T>
void getUniLedColor(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
{
// Sanity check for the number of leds
// assert(_colorsMap.size() == ledColors.size());
if(_colorsMap.size() != ledColors.size())
{
Debug(Logger::getInstance("HYPERION"), "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
return;
}
// calculate uni color
const ColorRgb color = calcMeanColor(image);
//Update all LEDs with same color
std::fill(ledColors.begin(),ledColors.end(), color);
}
///
/// Determines the dominant color for each LED using the LED area mapping given
/// at construction.
///
/// @param[in] image The image from which to extract the LED color
///
/// @return The vector containing the output
///
template <typename Pixel_T>
std::vector<ColorRgb> getDominantLedColor(const Image<Pixel_T> & image) const
{
std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
getDominantLedColor(image, colors);
return colors;
}
///
/// Determines the dominant color for each LED using the LED area mapping given
/// at construction.
///
/// @param[in] image The image from which to extract the LED colors
/// @param[out] ledColors The vector containing the output
///
template <typename Pixel_T>
void getDominantLedColor(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
{
// Sanity check for the number of LEDs
if(_colorsMap.size() != ledColors.size())
{
Debug(Logger::getInstance("HYPERION"), "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
return;
}
// Iterate each led and compute the dominant color
auto led = ledColors.begin();
for (auto colors = _colorsMap.begin(); colors != _colorsMap.end(); ++colors, ++led)
{
const ColorRgb color = calculateDominantColor(image, *colors);
*led = color;
}
}
private:
/// The width of the indexed image
const unsigned _width;
const int _width;
/// The height of the indexed image
const unsigned _height;
const int _height;
const unsigned _horizontalBorder;
const int _horizontalBorder;
const unsigned _verticalBorder;
const int _verticalBorder;
/// The absolute indices into the image for each led
std::vector<std::vector<int32_t>> _colorsMap;
std::vector<std::vector<int>> _colorsMap;
///
/// Calculates the 'mean color' of the given list. This is the mean over each color-channel
/// Calculates the 'mean color' over the given image. This is the mean over each color-channel
/// (red, green, blue)
///
/// @param[in] image The image a section from which an average color must be computed
/// @param[in] colors The list with colors
/// @param[in] pixels The list of pixel indices for the given image to be evaluated///
///
/// @return The mean of the given list of colors (or black when empty)
///
template <typename Pixel_T>
ColorRgb calcMeanColor(const Image<Pixel_T> & image, const std::vector<int32_t> & colors) const
ColorRgb calcMeanColor(const Image<Pixel_T> & image, const std::vector<int32_t> & pixels) const
{
const auto colorVecSize = colors.size();
if (colorVecSize == 0)
const auto pixelNum = pixels.size();
if (pixelNum == 0)
{
return ColorRgb::BLACK;
}
@ -179,20 +255,20 @@ namespace hyperion
uint_fast32_t cummRed = 0;
uint_fast32_t cummGreen = 0;
uint_fast32_t cummBlue = 0;
const auto& imgData = image.memptr();
for (const unsigned colorOffset : colors)
const auto& imgData = image.memptr();
for (const int pixelOffset : pixels)
{
const auto& pixel = imgData[colorOffset];
const auto& pixel = imgData[pixelOffset];
cummRed += pixel.red;
cummGreen += pixel.green;
cummBlue += pixel.blue;
}
// Compute the average of each color channel
const uint8_t avgRed = uint8_t(cummRed/colorVecSize);
const uint8_t avgGreen = uint8_t(cummGreen/colorVecSize);
const uint8_t avgBlue = uint8_t(cummBlue/colorVecSize);
const uint8_t avgRed = uint8_t(cummRed/pixelNum);
const uint8_t avgGreen = uint8_t(cummGreen/pixelNum);
const uint8_t avgBlue = uint8_t(cummBlue/pixelNum);
// Return the computed color
return {avgRed, avgGreen, avgBlue};
@ -213,11 +289,11 @@ namespace hyperion
uint_fast32_t cummRed = 0;
uint_fast32_t cummGreen = 0;
uint_fast32_t cummBlue = 0;
const unsigned imageSize = image.width() * image.height();
const unsigned pixelNum = image.width() * image.height();
const auto& imgData = image.memptr();
for (unsigned idx=0; idx<imageSize; idx++)
for (unsigned idx=0; idx<pixelNum; idx++)
{
const auto& pixel = imgData[idx];
cummRed += pixel.red;
@ -226,13 +302,152 @@ namespace hyperion
}
// Compute the average of each color channel
const uint8_t avgRed = uint8_t(cummRed/imageSize);
const uint8_t avgGreen = uint8_t(cummGreen/imageSize);
const uint8_t avgBlue = uint8_t(cummBlue/imageSize);
const uint8_t avgRed = uint8_t(cummRed/pixelNum);
const uint8_t avgGreen = uint8_t(cummGreen/pixelNum);
const uint8_t avgBlue = uint8_t(cummBlue/pixelNum);
// Return the computed color
return {avgRed, avgGreen, avgBlue};
}
///
/// Calculates the 'mean color' squared over the given image. This is the mean over each color-channel
/// (red, green, blue)
///
/// @param[in] image The image a section from which an average color must be computed
/// @param[in] pixels The list of pixel indices for the given image to be evaluated
///
/// @return The mean of the given list of colors (or black when empty)
///
template <typename Pixel_T>
ColorRgb calcMeanColorSqrt(const Image<Pixel_T> & image, const std::vector<int32_t> & pixels) const
{
const auto pixelNum = pixels.size();
if (pixelNum == 0)
{
return ColorRgb::BLACK;
}
// Accumulate the squared sum of each separate color channel
uint_fast32_t cummRed = 0;
uint_fast32_t cummGreen = 0;
uint_fast32_t cummBlue = 0;
const auto& imgData = image.memptr();
for (const int colorOffset : pixels)
{
const auto& pixel = imgData[colorOffset];
cummRed += pixel.red * pixel.red;
cummGreen += pixel.green * pixel.green;
cummBlue += pixel.blue * pixel.blue;
}
// Compute the average of each color channel
const uint8_t avgRed = uint8_t(std::min(std::lround(sqrt(static_cast<double>(cummRed/pixelNum))), 255L));
const uint8_t avgGreen = uint8_t(std::min(std::lround(sqrt(static_cast<double>(cummGreen/pixelNum))), 255L));
const uint8_t avgBlue = uint8_t(std::min(std::lround(sqrt(static_cast<double>(cummBlue/pixelNum))), 255L));
// Return the computed color
return {avgRed, avgGreen, avgBlue};
}
///
/// Calculates the 'mean color' squared over the given image. This is the mean over each color-channel
/// (red, green, blue)
///
/// @param[in] image The image a section from which an average color must be computed
///
/// @return The mean of the given list of colors (or black when empty)
///
template <typename Pixel_T>
ColorRgb calcMeanColorSqrt(const Image<Pixel_T> & image) const
{
// Accumulate the squared sum of each separate color channel
uint_fast32_t cummRed = 0;
uint_fast32_t cummGreen = 0;
uint_fast32_t cummBlue = 0;
const unsigned pixelNum = image.width() * image.height();
const auto& imgData = image.memptr();
for (int idx=0; idx<pixelNum; ++idx)
{
const auto& pixel = imgData[idx];
cummRed += pixel.red * pixel.red;
cummGreen += pixel.green * pixel.green;
cummBlue += pixel.blue * pixel.blue;
}
// Compute the average of each color channel
const uint8_t avgRed = uint8_t(std::lround(sqrt(static_cast<double>(cummRed/pixelNum))));
const uint8_t avgGreen = uint8_t(std::lround(sqrt(static_cast<double>(cummGreen/pixelNum))));
const uint8_t avgBlue = uint8_t(std::lround(sqrt(static_cast<double>(cummBlue/pixelNum))));
// Return the computed color
return {avgRed, avgGreen, avgBlue};
}
///
/// Calculates the 'dominant color' of an image area defined by a list of pixel indices
///
/// @param[in] image The image for which a dominant color is to be computed
/// @param[in] pixels The list of pixel indices for the given image to be evaluated
///
/// @return The image area's dominant color or black, if no pixel indices provided
///
template <typename Pixel_T>
ColorRgb calculateDominantColor(const Image<Pixel_T> & image, const std::vector<int> & pixels) const
{
ColorRgb dominantColor {ColorRgb::BLACK};
const auto pixelNum = pixels.size();
if (pixelNum > 0)
{
const auto& imgData = image.memptr();
QMap<QRgb,int> colorDistributionMap;
int count = 0;
for (const int pixelOffset : pixels)
{
QRgb color = imgData[pixelOffset].rgb();
if (colorDistributionMap.contains(color)) {
colorDistributionMap[color] = colorDistributionMap[color] + 1;
}
else {
colorDistributionMap[color] = 1;
}
int colorsFound = colorDistributionMap[color];
if (colorsFound > count) {
dominantColor.setRgb(color);
count = colorsFound;
}
}
}
return dominantColor;
}
///
/// Calculates the 'dominant color' of an image
///
/// @param[in] image The image for which a dominant color is to be computed
///
/// @return The image's dominant color
///
template <typename Pixel_T>
ColorRgb calculateDominantColor(const Image<Pixel_T> & image) const
{
const unsigned pixelNum = image.width() * image.height();
std::vector<int> pixels(pixelNum);
std::iota(pixels.begin(), pixels.end(), 0);
return calculateDominantColor(image, pixels);
}
};
} // end namespace hyperion
#endif // IMAGETOLEDSMAP_H

View File

@ -6,6 +6,7 @@
#include <QString>
#include <QTextStream>
#include <QRgb>
///
/// Plain-Old-Data structure containing the red-green-blue color specification. Size of the
@ -52,6 +53,18 @@ struct ColorRgb
return a;
}
QRgb rgb() const
{
return qRgb(red,green,blue);
}
void setRgb(QRgb rgb)
{
red = static_cast<uint8_t>(qRed(rgb));
green = static_cast<uint8_t>(qGreen(rgb));
blue = static_cast<uint8_t>(qBlue(rgb));
}
QString toQString() const
{
return QString("(%1,%2,%3)").arg(red).arg(green).arg(blue);

View File

@ -7,23 +7,47 @@
// Blacborder includes
#include <blackborder/BlackBorderProcessor.h>
#include <QRgb>
using namespace hyperion;
// global transform method
int ImageProcessor::mappingTypeToInt(const QString& mappingType)
{
if (mappingType == "unicolor_mean" )
{
return 1;
}
else if (mappingType == "multicolor_mean_squared" )
{
return 2;
}
else if (mappingType == "dominant_color" )
{
return 3;
}
return 0;
}
// global transform method
QString ImageProcessor::mappingTypeToStr(int mappingType)
{
if (mappingType == 1 )
return "unicolor_mean";
QString typeText;
switch (mappingType) {
case 1:
typeText = "unicolor_mean";
break;
case 2:
typeText = "multicolor_mean_squared";
break;
case 3:
typeText = "dominant_color";
break;
default:
typeText = "multicolor_mean";
break;
}
return "multicolor_mean";
return typeText;
}
ImageProcessor::ImageProcessor(const LedString& ledString, Hyperion* hyperion)

View File

@ -3,10 +3,10 @@
using namespace hyperion;
ImageToLedsMap::ImageToLedsMap(
unsigned width,
unsigned height,
unsigned horizontalBorder,
unsigned verticalBorder,
int width,
int height,
int horizontalBorder,
int verticalBorder,
const std::vector<Led>& leds)
: _width(width)
, _height(height)
@ -23,10 +23,13 @@ ImageToLedsMap::ImageToLedsMap(
// Reserve enough space in the map for the leds
_colorsMap.reserve(leds.size());
const unsigned xOffset = _verticalBorder;
const unsigned actualWidth = _width - 2 * _verticalBorder;
const unsigned yOffset = _horizontalBorder;
const unsigned actualHeight = _height - 2 * _horizontalBorder;
const int xOffset = _verticalBorder;
const int actualWidth = _width - 2 * _verticalBorder;
const int yOffset = _horizontalBorder;
const int actualHeight = _height - 2 * _horizontalBorder;
size_t totalCount = 0;
size_t totalCapacity = 0;
for (const Led& led : leds)
{
@ -38,10 +41,10 @@ ImageToLedsMap::ImageToLedsMap(
}
// Compute the index boundaries for this led
unsigned minX_idx = xOffset + unsigned(qRound(actualWidth * led.minX_frac));
unsigned maxX_idx = xOffset + unsigned(qRound(actualWidth * led.maxX_frac));
unsigned minY_idx = yOffset + unsigned(qRound(actualHeight * led.minY_frac));
unsigned maxY_idx = yOffset + unsigned(qRound(actualHeight * led.maxY_frac));
int minX_idx = xOffset + int32_t(qRound(actualWidth * led.minX_frac));
int maxX_idx = xOffset + int32_t(qRound(actualWidth * led.maxX_frac));
int minY_idx = yOffset + int32_t(qRound(actualHeight * led.minY_frac));
int maxY_idx = yOffset + int32_t(qRound(actualHeight * led.maxY_frac));
// make sure that the area is at least a single led large
minX_idx = qMin(minX_idx, xOffset + actualWidth - 1);
@ -56,15 +59,20 @@ ImageToLedsMap::ImageToLedsMap(
}
// Add all the indices in the above defined rectangle to the indices for this led
const auto maxYLedCount = qMin(maxY_idx, yOffset+actualHeight);
const auto maxXLedCount = qMin(maxX_idx, xOffset+actualWidth);
const int maxYLedCount = qMin(maxY_idx, yOffset+actualHeight);
const int maxXLedCount = qMin(maxX_idx, xOffset+actualWidth);
std::vector<int32_t> ledColors;
ledColors.reserve((size_t) maxXLedCount*maxYLedCount);
const int realYLedCount = qAbs(maxYLedCount - minY_idx);
const int realXLedCount = qAbs(maxXLedCount - minX_idx);
for (unsigned y = minY_idx; y < maxYLedCount; ++y)
size_t totalSize = realYLedCount* realXLedCount;
std::vector<int> ledColors;
ledColors.reserve(totalSize);
for (int y = minY_idx; y < maxYLedCount; ++y)
{
for (unsigned x = minX_idx; x < maxXLedCount; ++x)
for (int x = minX_idx; x < maxXLedCount; ++x)
{
ledColors.push_back( y * width + x);
}
@ -72,15 +80,22 @@ ImageToLedsMap::ImageToLedsMap(
// Add the constructed vector to the map
_colorsMap.push_back(ledColors);
totalCount += ledColors.size();
totalCapacity += ledColors.capacity();
}
Debug(Logger::getInstance("HYPERION"), "Total index number is: %d (memory: %d). image size: %d x %d, LED areas: %d",
totalCount, totalCapacity, width, height, leds.size());
}
unsigned ImageToLedsMap::width() const
int ImageToLedsMap::width() const
{
return _width;
}
unsigned ImageToLedsMap::height() const
int ImageToLedsMap::height() const
{
return _height;
}

View File

@ -9,10 +9,10 @@
"type" : "string",
"required" : true,
"title" : "edt_conf_color_imageToLedMappingType_title",
"enum" : ["multicolor_mean", "unicolor_mean"],
"enum" : ["multicolor_mean", "unicolor_mean", "multicolor_mean_squared", "dominant_color"],
"default" : "multicolor_mean",
"options" : {
"enum_titles" : ["edt_conf_enum_multicolor_mean", "edt_conf_enum_unicolor_mean"]
"enum_titles" : ["edt_conf_enum_multicolor_mean", "edt_conf_enum_unicolor_mean", "edt_conf_enum_multicolor_mean_squared", "edt_conf_enum_dominant_color"]
},
"propertyOrder" : 1
},