Improved philip hue device:

add lamp types autodetection
add full xy-Colorspace implementations
reduce http requests to the hue bridge. This prevents DDOS -> 503
add color black -> lamps off
save state is temporary disabled


Former-commit-id: 5a0328fe80a06a9f670c5190190e239857cbd15c
This commit is contained in:
bimsarck 2014-07-04 12:11:37 +02:00
parent 7aa88088f4
commit c4c7ed0331
2 changed files with 220 additions and 44 deletions

View File

@ -1,3 +1,4 @@
#include <iostream>
// Local-Hyperion includes // Local-Hyperion includes
#include "LedDevicePhilipsHue.h" #include "LedDevicePhilipsHue.h"
@ -10,43 +11,91 @@
#include <QHttpRequestHeader> #include <QHttpRequestHeader>
#include <QEventLoop> #include <QEventLoop>
LedDevicePhilipsHue::LedDevicePhilipsHue(const std::string& output) : LedDevicePhilipsHue::LedDevicePhilipsHue(const std::string &output) :
host(output.c_str()), username("newdeveloper") { host(output.c_str()), username("newdeveloper") {
http = new QHttp(host); http = new QHttp(host);
timer.setInterval(3000); /* timer.setInterval(3000);
timer.setSingleShot(true); timer.setSingleShot(true);
connect(&timer, SIGNAL(timeout()), this, SLOT(restoreStates())); connect(&timer, SIGNAL(timeout()), this, SLOT(restoreStates()));*/
} }
LedDevicePhilipsHue::~LedDevicePhilipsHue() { LedDevicePhilipsHue::~LedDevicePhilipsHue() {
delete http; delete http;
} }
int LedDevicePhilipsHue::write(const std::vector<ColorRgb> & ledValues) { int LedDevicePhilipsHue::write(const std::vector<ColorRgb> &ledValues) {
// Save light states if not done before. // Save light states if not done before.
if (!statesSaved()) { if (!statesSaved())
saveStates(ledValues.size()); saveStates(ledValues.size());
switchOn(ledValues.size());
}
// Iterate through colors and set light states. // Iterate through colors and set light states.
unsigned int lightId = 1; unsigned int lightId = 0;
for (const ColorRgb& color : ledValues) { for (const ColorRgb &color : ledValues) {
float x, y, b;
// Scale colors from [0, 255] to [0, 1] and convert to xy space.
rgbToXYBrightness(color.red / 255.0f, color.green / 255.0f, color.blue / 255.0f, x, y, b);
// Send adjust color command in JSON format.
put(getStateRoute(lightId), QString("{\"xy\": [%1, %2]}").arg(x).arg(y));
// Send brightness color command in JSON format.
put(getStateRoute(lightId), QString("{\"bri\": %1}").arg(qRound(b * 255.0f)));
// Next light id.
lightId++; lightId++;
// Send only request to the brigde if color changed (prevents DDOS --> 503)
if (!oldLedValues.empty())
if(!hasColorChanged(lightId, &color))
continue;
float r = color.red / 255.0f;
float g = color.green / 255.0f;
float b = color.blue / 255.0f;
//set color gamut triangle
if(std::find(hueBulbs.begin(), hueBulbs.end(), modelIds[(lightId - 1)]) != hueBulbs.end()) {
Red = {0.675f, 0.322f};
Green = {0.4091f, 0.518f};
Blue = {0.167f, 0.04f};
} else if (std::find(livingColors.begin(),
livingColors.end(), modelIds[(lightId - 1)]) != livingColors.end()) {
Red = {0.703f, 0.296f};
Green = {0.214f, 0.709f};
Blue = {0.139f, 0.081f};
} else {
Red = {1.0f, 0.0f};
Green = {0.0f, 1.0f};
Blue = {0.0f, 0.0f};
}
// if color equal black, switch off lamp ...
if (r == 0.0f && g == 0.0f && b == 0.0f) {
switchLampOff(lightId);
continue;
}
// ... and if lamp off, switch on
if (!checkOnStatus(states[(lightId - 1)]))
switchLampOn(lightId);
float bri;
CGPoint p = CGPointMake(0, 0);
// Scale colors from [0, 255] to [0, 1] and convert to xy space.
rgbToXYBrightness(r, g, b, &p, bri);
// Send adjust color and brightness command in JSON format.
put(getStateRoute(lightId),
QString("{\"xy\": [%1, %2], \"bri\": %3}").arg(p.x).arg(p.y).arg(qRound(b * 255.0f)));
} }
timer.start(); oldLedValues = ledValues;
//timer.start();
return 0; return 0;
} }
bool LedDevicePhilipsHue::hasColorChanged(unsigned int lightId, const ColorRgb *color) {
bool matchFound = true;
const ColorRgb &tmpOldColor = oldLedValues[(lightId - 1)];
if ((*color).red == tmpOldColor.red)
matchFound = false;
if (!matchFound && (*color).green == tmpOldColor.green)
matchFound = false;
else
matchFound = true;
if (!matchFound && (*color).blue == tmpOldColor.blue)
matchFound = false;
else
matchFound = true;
return matchFound;
}
int LedDevicePhilipsHue::switchOff() { int LedDevicePhilipsHue::switchOff() {
timer.stop(); //timer.stop();
// If light states have been saved before, ... // If light states have been saved before, ...
if (statesSaved()) { if (statesSaved()) {
// ... restore them. // ... restore them.
@ -55,6 +104,10 @@ int LedDevicePhilipsHue::switchOff() {
return 0; return 0;
} }
bool LedDevicePhilipsHue::checkOnStatus(QString status) {
return status.contains("\"on\":true");
}
void LedDevicePhilipsHue::put(QString route, QString content) { void LedDevicePhilipsHue::put(QString route, QString content) {
QString url = QString("/api/%1/%2").arg(username).arg(route); QString url = QString("/api/%1/%2").arg(username).arg(route);
QHttpRequestHeader header("PUT", url); QHttpRequestHeader header("PUT", url);
@ -69,6 +122,7 @@ void LedDevicePhilipsHue::put(QString route, QString content) {
http->request(header, content.toAscii()); http->request(header, content.toAscii());
// Go into the loop until the request is finished. // Go into the loop until the request is finished.
loop.exec(); loop.exec();
//std::cout << http->readAll().data() << std::endl;
} }
QByteArray LedDevicePhilipsHue::get(QString route) { QByteArray LedDevicePhilipsHue::get(QString route) {
@ -96,6 +150,7 @@ QString LedDevicePhilipsHue::getRoute(unsigned int lightId) {
void LedDevicePhilipsHue::saveStates(unsigned int nLights) { void LedDevicePhilipsHue::saveStates(unsigned int nLights) {
// Clear saved light states. // Clear saved light states.
states.clear(); states.clear();
modelIds.clear();
// Use json parser to parse reponse. // Use json parser to parse reponse.
Json::Reader reader; Json::Reader reader;
Json::FastWriter writer; Json::FastWriter writer;
@ -117,14 +172,19 @@ void LedDevicePhilipsHue::saveStates(unsigned int nLights) {
state["bri"] = json["state"]["bri"]; state["bri"] = json["state"]["bri"];
} }
// Save state object. // Save state object.
modelIds.push_back(QString(writer.write(json["modelid"]).c_str()).trimmed().replace("\"", ""));
states.push_back(QString(writer.write(state).c_str()).trimmed()); states.push_back(QString(writer.write(state).c_str()).trimmed());
} }
} }
void LedDevicePhilipsHue::switchOn(unsigned int nLights) { void LedDevicePhilipsHue::switchLampOn(unsigned int lightId) {
for (unsigned int i = 0; i < nLights; i++) { put(getStateRoute(lightId), "{\"on\": true}");
put(getStateRoute(i + 1), "{\"on\": true}"); states[(lightId - 1)].replace("\"on\":false", "\"on\":true");
} }
void LedDevicePhilipsHue::switchLampOff(unsigned int lightId) {
put(getStateRoute(lightId), "{\"on\": false}");
states[(lightId - 1)].replace("\"on\":true", "\"on\":false");
} }
void LedDevicePhilipsHue::restoreStates() { void LedDevicePhilipsHue::restoreStates() {
@ -135,30 +195,119 @@ void LedDevicePhilipsHue::restoreStates() {
} }
// Clear saved light states. // Clear saved light states.
states.clear(); states.clear();
modelIds.clear();
oldLedValues.clear();
} }
bool LedDevicePhilipsHue::statesSaved() { bool LedDevicePhilipsHue::statesSaved() {
return !states.empty(); return !states.empty();
} }
void LedDevicePhilipsHue::rgbToXYBrightness(float red, float green, float blue, float& x, float& y, float& brightness) { CGPoint LedDevicePhilipsHue::CGPointMake(float x, float y) {
// Apply gamma correction. CGPoint p;
red = (red > 0.04045f) ? qPow((red + 0.055f) / (1.0f + 0.055f), 2.4f) : (red / 12.92f); p.x = x;
green = (green > 0.04045f) ? qPow((green + 0.055f) / (1.0f + 0.055f), 2.4f) : (green / 12.92f); p.y = y;
blue = (blue > 0.04045f) ? qPow((blue + 0.055f) / (1.0f + 0.055f), 2.4f) : (blue / 12.92f);
// Convert to XYZ space. return p;
float X = red * 0.649926f + green * 0.103455f + blue * 0.197109f; }
float Y = red * 0.234327f + green * 0.743075f + blue * 0.022598f;
float Z = red * 0.0000000f + green * 0.053077f + blue * 1.035763f; float LedDevicePhilipsHue::CrossProduct(CGPoint p1, CGPoint p2) {
// Convert to x,y space. return (p1.x * p2.y - p1.y * p2.x);
x = X / (X + Y + Z); }
y = Y / (X + Y + Z);
if (isnan(x)) { bool LedDevicePhilipsHue::CheckPointInLampsReach(CGPoint p) {
x = 0.0f; CGPoint v1 = CGPointMake(Green.x - Red.x, Green.y - Red.y);
} CGPoint v2 = CGPointMake(Blue.x - Red.x, Blue.y - Red.y);
if (isnan(y)) {
y = 0.0f; CGPoint q = CGPointMake(p.x - Red.x, p.y - Red.y);
float s = CrossProduct(q, v2) / CrossProduct(v1, v2);
float t = CrossProduct(v1, q) / CrossProduct(v1, v2);
if ((s >= 0.0f) && (t >= 0.0f) && (s + t <= 1.0f))
return true;
else
return false;
}
CGPoint LedDevicePhilipsHue::GetClosestPointToPoint(CGPoint A, CGPoint B, CGPoint P) {
CGPoint AP = CGPointMake(P.x - A.x, P.y - A.y);
CGPoint AB = CGPointMake(B.x - A.x, B.y - A.y);
float ab2 = AB.x * AB.x + AB.y * AB.y;
float ap_ab = AP.x * AB.x + AP.y * AB.y;
float t = ap_ab / ab2;
if (t < 0.0f)
t = 0.0f;
else if (t > 1.0f)
t = 1.0f;
return CGPointMake(A.x + AB.x * t, A.y + AB.y * t);
}
float LedDevicePhilipsHue::GetDistanceBetweenTwoPoints(CGPoint one, CGPoint two) {
float dx = one.x - two.x; // horizontal difference
float dy = one.y - two.y; // vertical difference
float dist = sqrt(dx * dx + dy * dy);
return dist;
}
void LedDevicePhilipsHue::rgbToXYBrightness(float red, float green, float blue, CGPoint *xyPoint, float &brightness) {
//Apply gamma correction.
float r = (red > 0.04045f) ? powf((red + 0.055f) / (1.0f + 0.055f), 2.4f) : (red / 12.92f);
float g = (green > 0.04045f) ? powf((green + 0.055f) / (1.0f + 0.055f), 2.4f) : (green / 12.92f);
float b = (blue > 0.04045f) ? powf((blue + 0.055f) / (1.0f + 0.055f), 2.4f) : (blue / 12.92f);
//Convert to XYZ space.
float X = r * 0.649926f + g * 0.103455f + b * 0.197109f;
float Y = r * 0.234327f + g * 0.743075f + b * 0.022598f;
float Z = r * 0.0000000f + g * 0.053077f + b * 1.035763f;
//Convert to x,y space.
float cx = X / (X + Y + Z + 0.0000001f);
float cy = Y / (X + Y + Z + 0.0000001f);
if (isnan(cx))
cx = 0.0f;
if (isnan(cy))
cy = 0.0f;
(*xyPoint).x = cx;
(*xyPoint).y = cy;
//Check if the given XY value is within the colourreach of our lamps.
bool inReachOfLamps = CheckPointInLampsReach(*xyPoint);
if (!inReachOfLamps) {
//It seems the colour is out of reach
//let's find the closes colour we can produce with our lamp and send this XY value out.
//Find the closest point on each line in the triangle.
CGPoint pAB = GetClosestPointToPoint(Red, Green, *xyPoint);
CGPoint pAC = GetClosestPointToPoint(Blue, Red, *xyPoint);
CGPoint pBC = GetClosestPointToPoint(Green, Blue, *xyPoint);
//Get the distances per point and see which point is closer to our Point.
float dAB = GetDistanceBetweenTwoPoints(*xyPoint, pAB);
float dAC = GetDistanceBetweenTwoPoints(*xyPoint, pAC);
float dBC = GetDistanceBetweenTwoPoints(*xyPoint, pBC);
float lowest = dAB;
CGPoint closestPoint = pAB;
if (dAC < lowest) {
lowest = dAC;
closestPoint = pAC;
}
if (dBC < lowest) {
lowest = dBC;
closestPoint = pBC;
}
//Change the xy value to a value which is within the reach of the lamp.
(*xyPoint).x = closestPoint.x;
(*xyPoint).y = closestPoint.y;
} }
// Brightness is simply Y in the XYZ space. // Brightness is simply Y in the XYZ space.
brightness = Y; brightness = Y;
} }

View File

@ -22,6 +22,11 @@
* *
* @author ntim (github) * @author ntim (github)
*/ */
struct CGPoint;
struct CGPoint {
float x;
float y;
};
class LedDevicePhilipsHue: public QObject, public LedDevice { class LedDevicePhilipsHue: public QObject, public LedDevice {
Q_OBJECT Q_OBJECT
public: public:
@ -44,7 +49,7 @@ public:
/// ///
/// @return Zero on success else negative /// @return Zero on success else negative
/// ///
virtual int write(const std::vector<ColorRgb> & ledValues); virtual int write(const std::vector<ColorRgb> &ledValues);
/// Restores the original state of the leds. /// Restores the original state of the leds.
virtual int switchOff(); virtual int switchOff();
@ -54,6 +59,19 @@ private slots:
void restoreStates(); void restoreStates();
private: private:
// ModelIds
const std::vector<QString> hueBulbs = {"LCT001", "LCT002", "LCT003"};
const std::vector<QString> livingColors = {"LLC001", "LLC005", "LLC006", "LLC007",
"LLC011", "LLC012", "LLC013", "LST001"};
/// LivingColors color gamut triangle
CGPoint Red , Green, Blue;
CGPoint CGPointMake(float x, float y);
float CrossProduct(CGPoint p1, CGPoint p2);
bool CheckPointInLampsReach(CGPoint p);
CGPoint GetClosestPointToPoint(CGPoint A, CGPoint B, CGPoint P);
float GetDistanceBetweenTwoPoints(CGPoint one, CGPoint two);
/// Array to save the light states. /// Array to save the light states.
std::vector<QString> states; std::vector<QString> states;
/// Ip address of the bridge /// Ip address of the bridge
@ -65,6 +83,13 @@ private:
/// Use timer to reset lights when we got into "GRABBINGMODE_OFF". /// Use timer to reset lights when we got into "GRABBINGMODE_OFF".
QTimer timer; QTimer timer;
std::vector<ColorRgb> oldLedValues;
std::vector<QString> modelIds;
bool hasColorChanged(unsigned int lightId, const ColorRgb *color);
bool checkOnStatus(QString status);
/// ///
/// Sends a HTTP GET request (blocking). /// Sends a HTTP GET request (blocking).
/// ///
@ -109,7 +134,9 @@ private:
/// ///
/// @param nLights the number of lights /// @param nLights the number of lights
/// ///
void switchOn(unsigned int nLights); void switchLampOn(unsigned int lightId);
void switchLampOff(unsigned int lightId);
/// ///
/// @return true if light states have been saved. /// @return true if light states have been saved.
@ -132,6 +159,6 @@ private:
/// ///
/// @param brightness converted brightness component /// @param brightness converted brightness component
/// ///
void rgbToXYBrightness(float red, float green, float blue, float& x, float& y, float& brightness); void rgbToXYBrightness(float red, float green, float blue, CGPoint *xyPoint, float &brightness);
}; };