Remove unnecessary code

- reenable timer


Former-commit-id: b1a175a1f1e5c3a7da753240030815252b1b22bb
This commit is contained in:
bimsarck 2014-07-12 14:56:39 +02:00
parent c4c7ed0331
commit e6d39b047c
2 changed files with 37 additions and 47 deletions

View File

@ -14,16 +14,16 @@
LedDevicePhilipsHue::LedDevicePhilipsHue(const std::string &output) :
host(output.c_str()), username("newdeveloper") {
http = new QHttp(host);
/* timer.setInterval(3000);
timer.setInterval(3000);
timer.setSingleShot(true);
connect(&timer, SIGNAL(timeout()), this, SLOT(restoreStates()));*/
connect(&timer, SIGNAL(timeout()), this, SLOT(restoreStates()));
}
LedDevicePhilipsHue::~LedDevicePhilipsHue() {
delete http;
}
int LedDevicePhilipsHue::write(const std::vector<ColorRgb> &ledValues) {
int LedDevicePhilipsHue::write(const std::vector<ColorRgb> & ledValues) {
// Save light states if not done before.
if (!statesSaved())
saveStates(ledValues.size());
@ -65,15 +65,15 @@ int LedDevicePhilipsHue::write(const std::vector<ColorRgb> &ledValues) {
switchLampOn(lightId);
float bri;
CGPoint p = CGPointMake(0, 0);
CGPoint p = {0.0f, 0.0f};
// Scale colors from [0, 255] to [0, 1] and convert to xy space.
rgbToXYBrightness(r, g, b, &p, bri);
rgbToXYBrightness(r, g, b, p, bri);
// Send adjust color and brightness command in JSON format.
put(getStateRoute(lightId),
QString("{\"xy\": [%1, %2], \"bri\": %3}").arg(p.x).arg(p.y).arg(qRound(b * 255.0f)));
}
oldLedValues = ledValues;
//timer.start();
timer.start();
return 0;
}
@ -95,7 +95,7 @@ bool LedDevicePhilipsHue::hasColorChanged(unsigned int lightId, const ColorRgb *
}
int LedDevicePhilipsHue::switchOff() {
//timer.stop();
timer.stop();
// If light states have been saved before, ...
if (statesSaved()) {
// ... restore them.
@ -122,7 +122,6 @@ void LedDevicePhilipsHue::put(QString route, QString content) {
http->request(header, content.toAscii());
// Go into the loop until the request is finished.
loop.exec();
//std::cout << http->readAll().data() << std::endl;
}
QByteArray LedDevicePhilipsHue::get(QString route) {
@ -203,23 +202,15 @@ bool LedDevicePhilipsHue::statesSaved() {
return !states.empty();
}
CGPoint LedDevicePhilipsHue::CGPointMake(float x, float y) {
CGPoint p;
p.x = x;
p.y = y;
return p;
}
float LedDevicePhilipsHue::CrossProduct(CGPoint p1, CGPoint p2) {
float LedDevicePhilipsHue::CrossProduct(CGPoint& p1, CGPoint& p2) {
return (p1.x * p2.y - p1.y * p2.x);
}
bool LedDevicePhilipsHue::CheckPointInLampsReach(CGPoint p) {
CGPoint v1 = CGPointMake(Green.x - Red.x, Green.y - Red.y);
CGPoint v2 = CGPointMake(Blue.x - Red.x, Blue.y - Red.y);
bool LedDevicePhilipsHue::CheckPointInLampsReach(CGPoint& p) {
CGPoint v1 = {Green.x - Red.x, Green.y - Red.y};
CGPoint v2 = {Blue.x - Red.x, Blue.y - Red.y};
CGPoint q = CGPointMake(p.x - Red.x, p.y - Red.y);
CGPoint q = {p.x - Red.x, p.y - Red.y};
float s = CrossProduct(q, v2) / CrossProduct(v1, v2);
float t = CrossProduct(v1, q) / CrossProduct(v1, v2);
@ -229,9 +220,9 @@ bool LedDevicePhilipsHue::CheckPointInLampsReach(CGPoint p) {
return false;
}
CGPoint LedDevicePhilipsHue::GetClosestPointToPoint(CGPoint A, CGPoint B, CGPoint P) {
CGPoint AP = CGPointMake(P.x - A.x, P.y - A.y);
CGPoint AB = CGPointMake(B.x - A.x, B.y - A.y);
CGPoint LedDevicePhilipsHue::GetClosestPointToPoint(CGPoint& A, CGPoint& B, CGPoint& P) {
CGPoint AP = {P.x - A.x, P.y - A.y};
CGPoint AB = {B.x - A.x, B.y - A.y};
float ab2 = AB.x * AB.x + AB.y * AB.y;
float ap_ab = AP.x * AB.x + AP.y * AB.y;
@ -242,10 +233,10 @@ CGPoint LedDevicePhilipsHue::GetClosestPointToPoint(CGPoint A, CGPoint B, CGPoin
else if (t > 1.0f)
t = 1.0f;
return CGPointMake(A.x + AB.x * t, A.y + AB.y * t);
return {A.x + AB.x * t, A.y + AB.y * t};
}
float LedDevicePhilipsHue::GetDistanceBetweenTwoPoints(CGPoint one, CGPoint two) {
float LedDevicePhilipsHue::GetDistanceBetweenTwoPoints(CGPoint& one, CGPoint& two) {
float dx = one.x - two.x; // horizontal difference
float dy = one.y - two.y; // vertical difference
float dist = sqrt(dx * dx + dy * dy);
@ -253,7 +244,7 @@ float LedDevicePhilipsHue::GetDistanceBetweenTwoPoints(CGPoint one, CGPoint two)
return dist;
}
void LedDevicePhilipsHue::rgbToXYBrightness(float red, float green, float blue, CGPoint *xyPoint, float &brightness) {
void LedDevicePhilipsHue::rgbToXYBrightness(float red, float green, float blue, CGPoint& xyPoint, float& brightness) {
//Apply gamma correction.
float r = (red > 0.04045f) ? powf((red + 0.055f) / (1.0f + 0.055f), 2.4f) : (red / 12.92f);
float g = (green > 0.04045f) ? powf((green + 0.055f) / (1.0f + 0.055f), 2.4f) : (green / 12.92f);
@ -271,25 +262,25 @@ void LedDevicePhilipsHue::rgbToXYBrightness(float red, float green, float blue,
if (isnan(cy))
cy = 0.0f;
(*xyPoint).x = cx;
(*xyPoint).y = cy;
xyPoint.x = cx;
xyPoint.y = cy;
//Check if the given XY value is within the colourreach of our lamps.
bool inReachOfLamps = CheckPointInLampsReach(*xyPoint);
bool inReachOfLamps = CheckPointInLampsReach(xyPoint);
if (!inReachOfLamps) {
//It seems the colour is out of reach
//let's find the closes colour we can produce with our lamp and send this XY value out.
//Find the closest point on each line in the triangle.
CGPoint pAB = GetClosestPointToPoint(Red, Green, *xyPoint);
CGPoint pAC = GetClosestPointToPoint(Blue, Red, *xyPoint);
CGPoint pBC = GetClosestPointToPoint(Green, Blue, *xyPoint);
CGPoint pAB = GetClosestPointToPoint(Red, Green, xyPoint);
CGPoint pAC = GetClosestPointToPoint(Blue, Red, xyPoint);
CGPoint pBC = GetClosestPointToPoint(Green, Blue, xyPoint);
//Get the distances per point and see which point is closer to our Point.
float dAB = GetDistanceBetweenTwoPoints(*xyPoint, pAB);
float dAC = GetDistanceBetweenTwoPoints(*xyPoint, pAC);
float dBC = GetDistanceBetweenTwoPoints(*xyPoint, pBC);
float dAB = GetDistanceBetweenTwoPoints(xyPoint, pAB);
float dAC = GetDistanceBetweenTwoPoints(xyPoint, pAC);
float dBC = GetDistanceBetweenTwoPoints(xyPoint, pBC);
float lowest = dAB;
CGPoint closestPoint = pAB;
@ -304,8 +295,8 @@ void LedDevicePhilipsHue::rgbToXYBrightness(float red, float green, float blue,
}
//Change the xy value to a value which is within the reach of the lamp.
(*xyPoint).x = closestPoint.x;
(*xyPoint).y = closestPoint.y;
xyPoint.x = closestPoint.x;
xyPoint.y = closestPoint.y;
}
// Brightness is simply Y in the XYZ space.

View File

@ -49,7 +49,7 @@ public:
///
/// @return Zero on success else negative
///
virtual int write(const std::vector<ColorRgb> &ledValues);
virtual int write(const std::vector<ColorRgb> & ledValues);
/// Restores the original state of the leds.
virtual int switchOff();
@ -59,18 +59,17 @@ private slots:
void restoreStates();
private:
// ModelIds
/// Available modelIds
const std::vector<QString> hueBulbs = {"LCT001", "LCT002", "LCT003"};
const std::vector<QString> livingColors = {"LLC001", "LLC005", "LLC006", "LLC007",
"LLC011", "LLC012", "LLC013", "LST001"};
/// LivingColors color gamut triangle
/// Color gamut triangle
CGPoint Red , Green, Blue;
CGPoint CGPointMake(float x, float y);
float CrossProduct(CGPoint p1, CGPoint p2);
bool CheckPointInLampsReach(CGPoint p);
CGPoint GetClosestPointToPoint(CGPoint A, CGPoint B, CGPoint P);
float GetDistanceBetweenTwoPoints(CGPoint one, CGPoint two);
float CrossProduct(CGPoint& p1, CGPoint& p2);
bool CheckPointInLampsReach(CGPoint& p);
CGPoint GetClosestPointToPoint(CGPoint& A, CGPoint& B, CGPoint& P);
float GetDistanceBetweenTwoPoints(CGPoint& one, CGPoint& two);
/// Array to save the light states.
std::vector<QString> states;
@ -159,6 +158,6 @@ private:
///
/// @param brightness converted brightness component
///
void rgbToXYBrightness(float red, float green, float blue, CGPoint *xyPoint, float &brightness);
void rgbToXYBrightness(float red, float green, float blue, CGPoint& xyPoint, float& brightness);
};