mirror of
https://github.com/hyperion-project/hyperion.ng.git
synced 2023-10-10 13:36:59 +02:00
reformated code
(Arduino IDE auto-reformat) Former-commit-id: 8f94b2bb865337ba7b0538617857432ea0376aea
This commit is contained in:
parent
cf359e5182
commit
f910c717bb
@ -71,7 +71,7 @@
|
||||
// XOR 0x55). LED data follows, 3 bytes per LED, in order R, G, B,
|
||||
// where 0 = off and 255 = max brightness.
|
||||
|
||||
static const uint8_t magic[] = {'A','d','a'};
|
||||
static const uint8_t magic[] = {'A', 'd', 'a'};
|
||||
#define MAGICSIZE sizeof(magic)
|
||||
#define HEADERSIZE (MAGICSIZE + 3)
|
||||
|
||||
@ -96,25 +96,25 @@ void setup()
|
||||
// masking and/or conditional code every time one of these indices
|
||||
// needs to change, slowing things down tremendously.
|
||||
uint8_t
|
||||
buffer[256],
|
||||
indexIn = 0,
|
||||
indexOut = 0,
|
||||
mode = MODE_HEADER,
|
||||
hi, lo, chk, i, spiFlag;
|
||||
buffer[256],
|
||||
indexIn = 0,
|
||||
indexOut = 0,
|
||||
mode = MODE_HEADER,
|
||||
hi, lo, chk, i, spiFlag;
|
||||
int16_t
|
||||
bytesBuffered = 0,
|
||||
hold = 0,
|
||||
c;
|
||||
bytesBuffered = 0,
|
||||
hold = 0,
|
||||
c;
|
||||
int32_t
|
||||
bytesRemaining;
|
||||
bytesRemaining;
|
||||
unsigned long
|
||||
startTime,
|
||||
lastByteTime,
|
||||
lastAckTime,
|
||||
t;
|
||||
startTime,
|
||||
lastByteTime,
|
||||
lastAckTime,
|
||||
t;
|
||||
bool
|
||||
data_in_led = false,
|
||||
spi_out_led = false;
|
||||
data_in_led = false,
|
||||
spi_out_led = false;
|
||||
|
||||
LED_DDR |= LED_PIN; // Enable output for LED
|
||||
LED_PORT &= ~LED_PIN; // LED off
|
||||
@ -135,18 +135,18 @@ void setup()
|
||||
// green, blue, then off. Once you're confident everything is working
|
||||
// end-to-end, it's OK to comment this out and reprogram the Arduino.
|
||||
uint8_t testcolor[] = { 0, 0, 0, 255, 0, 0 };
|
||||
for(int i=0; i<4; i++){ //Start Frame
|
||||
for(SPDR = 0x00; !(SPSR & _BV(SPIF)); );
|
||||
for (int i = 0; i < 4; i++) { //Start Frame
|
||||
for (SPDR = 0x00; !(SPSR & _BV(SPIF)); );
|
||||
}
|
||||
for(char n=3; n>=0; n--) {
|
||||
for(c=0; c<25000; c++) {
|
||||
for(SPDR = 0xFF; !(SPSR & _BV(SPIF)); ); //Brightness byte
|
||||
for(i=0; i<3; i++) {
|
||||
for(SPDR = testcolor[n + i]; !(SPSR & _BV(SPIF)); ); //BGR
|
||||
for (char n = 3; n >= 0; n--) {
|
||||
for (c = 0; c < 25000; c++) {
|
||||
for (SPDR = 0xFF; !(SPSR & _BV(SPIF)); ); //Brightness byte
|
||||
for (i = 0; i < 3; i++) {
|
||||
for (SPDR = testcolor[n + i]; !(SPSR & _BV(SPIF)); ); //BGR
|
||||
}
|
||||
}
|
||||
for(int i=0; i<4; i++){ //Stop Frame
|
||||
for(SPDR = 0xFF; !(SPSR & _BV(SPIF)); );
|
||||
for (int i = 0; i < 4; i++) { //Stop Frame
|
||||
for (SPDR = 0xFF; !(SPSR & _BV(SPIF)); );
|
||||
}
|
||||
delay(1); // One millisecond pause = latch
|
||||
digitalWrite(SPI_LED, spi_out_led = !spi_out_led);
|
||||
@ -160,109 +160,109 @@ void setup()
|
||||
// loop() is avoided as even that small bit of function overhead
|
||||
// has a measurable impact on this code's overall throughput.
|
||||
|
||||
for(;;) {
|
||||
for (;;) {
|
||||
digitalWrite(DATA_LED, LOW);
|
||||
digitalWrite(SPI_LED, LOW);
|
||||
// Implementation is a simple finite-state machine.
|
||||
// Regardless of mode, check for serial input each time:
|
||||
t = millis();
|
||||
if((bytesBuffered < 256) && ((c = Serial.read()) >= 0)) {
|
||||
if ((bytesBuffered < 256) && ((c = Serial.read()) >= 0)) {
|
||||
buffer[indexIn++] = c;
|
||||
bytesBuffered++;
|
||||
lastByteTime = lastAckTime = t; // Reset timeout counters
|
||||
} else {
|
||||
// No data received. If this persists, send an ACK packet
|
||||
// to host once every second to alert it to our presence.
|
||||
if((t - lastAckTime) > 1000) {
|
||||
if ((t - lastAckTime) > 1000) {
|
||||
Serial.print("Ada\n"); // Send ACK string to host
|
||||
lastAckTime = t; // Reset counter
|
||||
}
|
||||
// If no data received for an extended time, turn off all LEDs.
|
||||
if((t - lastByteTime) > serialTimeout) {
|
||||
for(i=0;i<4;i++) { //Start Frame
|
||||
for(SPDR = 0x00; !(SPSR & _BV(SPIF)); );
|
||||
if ((t - lastByteTime) > serialTimeout) {
|
||||
for (i = 0; i < 4; i++) { //Start Frame
|
||||
for (SPDR = 0x00; !(SPSR & _BV(SPIF)); );
|
||||
}
|
||||
for(c=0; c<25000; c++) {
|
||||
for(SPDR = 0xFF; !(SPSR & _BV(SPIF)); ); //Brightness Byte
|
||||
for(i=0; i<3; i++) {
|
||||
for(SPDR = 0x00; !(SPSR & _BV(SPIF)); ); //BGR
|
||||
for (c = 0; c < 25000; c++) {
|
||||
for (SPDR = 0xFF; !(SPSR & _BV(SPIF)); ); //Brightness Byte
|
||||
for (i = 0; i < 3; i++) {
|
||||
for (SPDR = 0x00; !(SPSR & _BV(SPIF)); ); //BGR
|
||||
}
|
||||
}
|
||||
for(i=0;i<4;i++) { //Stop Frame
|
||||
for(SPDR = 0xFF; !(SPSR & _BV(SPIF)); );
|
||||
for (i = 0; i < 4; i++) { //Stop Frame
|
||||
for (SPDR = 0xFF; !(SPSR & _BV(SPIF)); );
|
||||
}
|
||||
delay(1); // One millisecond pause = latch
|
||||
lastByteTime = t; // Reset counter
|
||||
}
|
||||
}
|
||||
|
||||
switch(mode) {
|
||||
switch (mode) {
|
||||
|
||||
case MODE_HEADER:
|
||||
case MODE_HEADER:
|
||||
|
||||
// In header-seeking mode. Is there enough data to check?
|
||||
if(bytesBuffered >= HEADERSIZE) {
|
||||
// Indeed. Check for a 'magic word' match.
|
||||
for(i=0; (i<MAGICSIZE) && (buffer[indexOut++] == magic[i++]););
|
||||
if(i == MAGICSIZE) {
|
||||
// Magic word matches. Now how about the checksum?
|
||||
hi = buffer[indexOut++];
|
||||
lo = buffer[indexOut++];
|
||||
chk = buffer[indexOut++];
|
||||
if(chk == (hi ^ lo ^ 0x55)) {
|
||||
// Checksum looks valid. Get 16-bit LED count, add 1
|
||||
// (# LEDs is always > 0) and multiply by 3 for R,G,B.
|
||||
bytesRemaining = 4L * (256L * (long)hi + (long)lo) +4L + (256L *(long)hi + (long)lo +15)/16;
|
||||
bytesBuffered -= 3;
|
||||
spiFlag = 0; // No data out yet
|
||||
mode = MODE_HOLD; // Proceed to latch wait mode
|
||||
digitalWrite(DATA_LED, data_in_led = !data_in_led);
|
||||
} else {
|
||||
// Checksum didn't match; search resumes after magic word.
|
||||
indexOut -= 3; // Rewind
|
||||
}
|
||||
} // else no header match. Resume at first mismatched byte.
|
||||
bytesBuffered -= i;
|
||||
}
|
||||
break;
|
||||
|
||||
case MODE_HOLD:
|
||||
|
||||
// Ostensibly "waiting for the latch from the prior frame
|
||||
// to complete" mode, but may also revert to this mode when
|
||||
// underrun prevention necessitates a delay.
|
||||
|
||||
if((micros() - startTime) < hold) break; // Still holding; keep buffering
|
||||
|
||||
// Latch/delay complete. Advance to data-issuing mode...
|
||||
LED_PORT &= ~LED_PIN; // LED off
|
||||
mode = MODE_DATA; // ...and fall through (no break):
|
||||
|
||||
case MODE_DATA:
|
||||
digitalWrite(SPI_LED, spi_out_led = !spi_out_led);
|
||||
while(spiFlag && !(SPSR & _BV(SPIF))); // Wait for prior byte
|
||||
if(bytesRemaining > 0) {
|
||||
if(bytesBuffered > 0) {
|
||||
SPDR = buffer[indexOut++]; // Issue next byte
|
||||
bytesBuffered--;
|
||||
bytesRemaining--;
|
||||
spiFlag = 1;
|
||||
// In header-seeking mode. Is there enough data to check?
|
||||
if (bytesBuffered >= HEADERSIZE) {
|
||||
// Indeed. Check for a 'magic word' match.
|
||||
for (i = 0; (i < MAGICSIZE) && (buffer[indexOut++] == magic[i++]););
|
||||
if (i == MAGICSIZE) {
|
||||
// Magic word matches. Now how about the checksum?
|
||||
hi = buffer[indexOut++];
|
||||
lo = buffer[indexOut++];
|
||||
chk = buffer[indexOut++];
|
||||
if (chk == (hi ^ lo ^ 0x55)) {
|
||||
// Checksum looks valid. Get 16-bit LED count, add 1
|
||||
// (# LEDs is always > 0) and multiply by 3 for R,G,B.
|
||||
bytesRemaining = 4L * (256L * (long)hi + (long)lo) + 4L + (256L * (long)hi + (long)lo + 15) / 16;
|
||||
bytesBuffered -= 3;
|
||||
spiFlag = 0; // No data out yet
|
||||
mode = MODE_HOLD; // Proceed to latch wait mode
|
||||
digitalWrite(DATA_LED, data_in_led = !data_in_led);
|
||||
} else {
|
||||
// Checksum didn't match; search resumes after magic word.
|
||||
indexOut -= 3; // Rewind
|
||||
}
|
||||
} // else no header match. Resume at first mismatched byte.
|
||||
bytesBuffered -= i;
|
||||
}
|
||||
break;
|
||||
|
||||
case MODE_HOLD:
|
||||
|
||||
// Ostensibly "waiting for the latch from the prior frame
|
||||
// to complete" mode, but may also revert to this mode when
|
||||
// underrun prevention necessitates a delay.
|
||||
|
||||
if ((micros() - startTime) < hold) break; // Still holding; keep buffering
|
||||
|
||||
// Latch/delay complete. Advance to data-issuing mode...
|
||||
LED_PORT &= ~LED_PIN; // LED off
|
||||
mode = MODE_DATA; // ...and fall through (no break):
|
||||
|
||||
case MODE_DATA:
|
||||
digitalWrite(SPI_LED, spi_out_led = !spi_out_led);
|
||||
while (spiFlag && !(SPSR & _BV(SPIF))); // Wait for prior byte
|
||||
if (bytesRemaining > 0) {
|
||||
if (bytesBuffered > 0) {
|
||||
SPDR = buffer[indexOut++]; // Issue next byte
|
||||
bytesBuffered--;
|
||||
bytesRemaining--;
|
||||
spiFlag = 1;
|
||||
}
|
||||
// If serial buffer is threatening to underrun, start
|
||||
// introducing progressively longer pauses to allow more
|
||||
// data to arrive (up to a point).
|
||||
// if((bytesBuffered < 32) && (bytesRemaining > bytesBuffered)) {
|
||||
// startTime = micros();
|
||||
// hold = 100 + (32 - bytesBuffered) * 10;
|
||||
// mode = MODE_HOLD;
|
||||
//}
|
||||
} else {
|
||||
// End of data -- issue latch:
|
||||
startTime = micros();
|
||||
hold = 1000; // Latch duration = 1000 uS
|
||||
LED_PORT |= LED_PIN; // LED on
|
||||
mode = MODE_HEADER; // Begin next header search
|
||||
}
|
||||
// If serial buffer is threatening to underrun, start
|
||||
// introducing progressively longer pauses to allow more
|
||||
// data to arrive (up to a point).
|
||||
// if((bytesBuffered < 32) && (bytesRemaining > bytesBuffered)) {
|
||||
// startTime = micros();
|
||||
// hold = 100 + (32 - bytesBuffered) * 10;
|
||||
// mode = MODE_HOLD;
|
||||
//}
|
||||
} else {
|
||||
// End of data -- issue latch:
|
||||
startTime = micros();
|
||||
hold = 1000; // Latch duration = 1000 uS
|
||||
LED_PORT |= LED_PIN; // LED on
|
||||
mode = MODE_HEADER; // Begin next header search
|
||||
}
|
||||
} // end switch
|
||||
} // end for(;;)
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user