// Qt includes #include #include #include #include #include #include #include #if defined(COMPILER_GCC) #define ALWAYS_INLINE inline __attribute__((__always_inline__)) #elif defined(COMPILER_MSVC) #define ALWAYS_INLINE __forceinline #else #define ALWAYS_INLINE inline #endif /// Clamps the rounded values to the byte-interval of [0, 255]. ALWAYS_INLINE long clampRounded(const floatT x) { return std::min(255L, std::max(0L, std::lroundf(x))); } // Constants namespace { const bool verbose = false; /// The number of microseconds per millisecond = 1000. const int64_t MS_PER_MICRO = 1000; /// The number of bits that are used for shifting the fixed point values const int FPShift = (sizeof(uint64_t)*8 - (12 + 9)); /// The number of bits that are reduce the shifting when converting from fixed to floating point. 8 bits = 256 values const int SmallShiftBis = sizeof(uint8_t)*8; /// The number of bits that are used for shifting the fixed point values plus SmallShiftBis const int FPShiftSmall = (sizeof(uint64_t)*8 - (12 + 9 + SmallShiftBis)); const char* SETTINGS_KEY_SMOOTHING_TYPE = "type"; const char* SETTINGS_KEY_SETTLING_TIME = "time_ms"; const char* SETTINGS_KEY_UPDATE_FREQUENCY = "updateFrequency"; const char* SETTINGS_KEY_OUTPUT_DELAY = "updateDelay"; const char* SETTINGS_KEY_DECAY = "decay"; const char* SETTINGS_KEY_INTERPOLATION_RATE = "interpolationRate"; const char* SETTINGS_KEY_DITHERING = "dithering"; const int64_t DEFAULT_SETTLINGTIME = 200; // in ms const int DEFAULT_UPDATEFREQUENCY = 25; // in Hz constexpr std::chrono::milliseconds DEFAULT_UPDATEINTERVALL{MS_PER_MICRO/ DEFAULT_UPDATEFREQUENCY}; const unsigned DEFAULT_OUTPUTDEPLAY = 0; // in frames } using namespace hyperion; LinearColorSmoothing::LinearColorSmoothing(const QJsonDocument &config, Hyperion *hyperion) : QObject(hyperion) , _log(nullptr) , _hyperion(hyperion) , _prioMuxer(_hyperion->getMuxerInstance()) , _updateInterval(DEFAULT_UPDATEINTERVALL.count()) , _settlingTime(DEFAULT_SETTLINGTIME) , _timer(nullptr) , _outputDelay(DEFAULT_OUTPUTDEPLAY) , _pause(false) , _currentConfigId(SmoothingConfigID::SYSTEM) , _enabled(false) , _enabledSystemCfg(false) , _smoothingType(SmoothingType::Linear) , tempValues(std::vector(0, 0L)) { QString subComponent = hyperion->property("instance").toString(); _log= Logger::getInstance("SMOOTHING", subComponent); // timer _timer = new QTimer(this); _timer->setTimerType(Qt::PreciseTimer); // init cfg (default) updateConfig(SmoothingConfigID::SYSTEM, DEFAULT_SETTLINGTIME, DEFAULT_UPDATEFREQUENCY, DEFAULT_OUTPUTDEPLAY); handleSettingsUpdate(settings::SMOOTHING, config); // add pause on cfg 1 SmoothingCfg cfg {true, 0, 0}; _cfgList.append(cfg); // listen for comp changes connect(_hyperion, &Hyperion::compStateChangeRequest, this, &LinearColorSmoothing::componentStateChange); connect(_timer, &QTimer::timeout, this, &LinearColorSmoothing::updateLeds); connect(_prioMuxer, &PriorityMuxer::prioritiesChanged, this, [=] (int priority){ const PriorityMuxer::InputInfo priorityInfo = _prioMuxer->getInputInfo(priority); int smooth_cfg = priorityInfo.smooth_cfg; if (smooth_cfg != _currentConfigId || smooth_cfg == SmoothingConfigID::EFFECT_DYNAMIC) { this->selectConfig(smooth_cfg, false); } }); } LinearColorSmoothing::~LinearColorSmoothing() { delete _timer; } void LinearColorSmoothing::handleSettingsUpdate(settings::type type, const QJsonDocument &config) { if (type == settings::type::SMOOTHING) { QJsonObject obj = config.object(); setEnable(obj["enable"].toBool(_enabled)); _enabledSystemCfg = _enabled; int64_t settlingTime_ms = static_cast(obj[SETTINGS_KEY_SETTLING_TIME].toInt(DEFAULT_SETTLINGTIME)); int _updateInterval_ms =static_cast(MS_PER_MICRO / obj[SETTINGS_KEY_UPDATE_FREQUENCY].toDouble(DEFAULT_UPDATEFREQUENCY)); SmoothingCfg cfg(false, settlingTime_ms, _updateInterval_ms); const QString typeString = obj[SETTINGS_KEY_SMOOTHING_TYPE].toString(); if(typeString == SETTINGS_KEY_DECAY) { cfg._type = SmoothingType::Decay; } else { cfg._type = SmoothingType::Linear; } cfg._pause = false; cfg._outputDelay = static_cast(obj[SETTINGS_KEY_OUTPUT_DELAY].toInt(DEFAULT_OUTPUTDEPLAY)); cfg._interpolationRate = obj[SETTINGS_KEY_INTERPOLATION_RATE].toDouble(DEFAULT_UPDATEFREQUENCY); cfg._dithering = obj[SETTINGS_KEY_DITHERING].toBool(false); cfg._decay = obj[SETTINGS_KEY_DECAY].toDouble(1.0); _cfgList[SmoothingConfigID::SYSTEM] = cfg; DebugIf(_enabled,_log,"%s", QSTRING_CSTR(getConfig(SmoothingConfigID::SYSTEM))); // if current id is 0, we need to apply the settings (forced) if (_currentConfigId == SmoothingConfigID::SYSTEM) { selectConfig(SmoothingConfigID::SYSTEM, true); } } } int LinearColorSmoothing::write(const std::vector &ledValues) { _targetTime = micros() + (MS_PER_MICRO * _settlingTime); _targetValues = ledValues; rememberFrame(ledValues); // received a new target color if (_previousValues.empty()) { // not initialized yet _previousWriteTime = micros(); _previousValues = ledValues; _previousInterpolationTime = micros(); if (!_pause) { _timer->start(_updateInterval); } } return 0; } int LinearColorSmoothing::updateLedValues(const std::vector &ledValues) { int retval = 0; if (!_enabled) { retval = -1; } else { retval = write(ledValues); } return retval; } void LinearColorSmoothing::intitializeComponentVectors(const size_t ledCount) { // (Re-)Initialize the color-vectors that store the Mean-Value if (_ledCount != ledCount) { _ledCount = ledCount; const size_t len = 3 * ledCount; meanValues = std::vector(len, 0.0F); residualErrors = std::vector(len, 0.0F); tempValues = std::vector(len, 0L); } // Zero the temp vector std::fill(tempValues.begin(), tempValues.end(), 0L); } void LinearColorSmoothing::writeDirect() { const int64_t now = micros(); _previousValues = _targetValues; _previousWriteTime = now; queueColors(_previousValues); } void LinearColorSmoothing::writeFrame() { const int64_t now = micros(); _previousWriteTime = now; queueColors(_previousValues); } ALWAYS_INLINE int64_t LinearColorSmoothing::micros() { const auto now = std::chrono::high_resolution_clock::now(); return (std::chrono::duration_cast(now.time_since_epoch())).count(); } void LinearColorSmoothing::assembleAndDitherFrame() { if (meanValues.empty()) { return; } // The number of LEDs present in each frame const size_t N = _targetValues.size(); for (size_t i = 0; i < N; ++i) { // Add residuals for error diffusion (temporal dithering) const floatT fr = meanValues[3 * i + 0] + residualErrors[3 * i + 0]; const floatT fg = meanValues[3 * i + 1] + residualErrors[3 * i + 1]; const floatT fb = meanValues[3 * i + 2] + residualErrors[3 * i + 2]; // Convert to to 8-bit value const long ir = clampRounded(fr); const long ig = clampRounded(fg); const long ib = clampRounded(fb); // Update the colors ColorRgb &prev = _previousValues[i]; prev.red = static_cast(ir); prev.green = static_cast(ig); prev.blue = static_cast(ib); // Determine the component errors residualErrors[3 * i + 0] = fr - ir; residualErrors[3 * i + 1] = fg - ig; residualErrors[3 * i + 2] = fb - ib; } } void LinearColorSmoothing::assembleFrame() { if (meanValues.empty()) { return; } // The number of LEDs present in each frame const size_t N = _targetValues.size(); for (size_t i = 0; i < N; ++i) { // Convert to to 8-bit value const long ir = clampRounded(meanValues[3 * i + 0]); const long ig = clampRounded(meanValues[3 * i + 1]); const long ib = clampRounded(meanValues[3 * i + 2]); // Update the colors ColorRgb &prev = _previousValues[i]; prev.red = static_cast(ir); prev.green = static_cast(ig); prev.blue = static_cast(ib); } } ALWAYS_INLINE void LinearColorSmoothing::aggregateComponents(const std::vector& colors, std::vector& weighted, const floatT weight) { // Determine the integer-scale by converting the weight to fixed point const uint64_t scale = (static_cast(1L)<(weight); const size_t N = colors.size(); for (size_t i = 0; i < N; ++i) { const ColorRgb &color = colors[i]; // Scale the colors const uint64_t red = scale * color.red; const uint64_t green = scale * color.green; const uint64_t blue = scale * color.blue; // Accumulate in the vector weighted[3 * i + 0] += red; weighted[3 * i + 1] += green; weighted[3 * i + 2] += blue; } } void LinearColorSmoothing::interpolateFrame() { const int64_t now = micros(); // The number of leds present in each frame const size_t N = _targetValues.size(); intitializeComponentVectors(N); /// Time where the frame has been shown int64_t frameStart; /// Time where the frame display would have ended int64_t frameEnd = now; /// Time where the current window has started const int64_t windowStart = now - (MS_PER_MICRO * _settlingTime); /// The total weight of the frames that were included in our window; sum of the individual weights floatT fs = 0.0F; // To calculate the mean component we iterate over all relevant frames; // from the most recent to the oldest frame that still clips our moving-average window given by time (now) for (auto it = _frameQueue.rbegin(); it != _frameQueue.rend() && frameEnd > windowStart; ++it) { // Starting time of a frame in the window is clipped to the window start frameStart = std::max(windowStart, it->time); // Weight the current frame relative to the overall window based on start and end times const floatT weight = _weightFrame(frameStart, frameEnd, windowStart); fs += weight; // Aggregate the RGB components of this frame's LED colors using the individual weighting aggregateComponents(it->colors, tempValues, weight); // The previous (earlier) frame display has ended when the current frame stared to show, // so we can use this as the frame-end time for next iteration frameEnd = frameStart; } /// The inverse scaling factor for the color components, clamped to (0, 1.0]; 1.0 for fs < 1, 1 : fs otherwise const floatT inv_fs = ((fs < 1.0F) ? 1.0F : 1.0F / fs) / (1 << SmallShiftBis); // Normalize the mean component values for the window (fs) for (size_t i = 0; i < 3 * N; ++i) { meanValues[i] = (tempValues[i] >> FPShiftSmall) * inv_fs; } _previousInterpolationTime = now; } void LinearColorSmoothing::performDecay(const int64_t now) { /// The target time when next frame interpolation should be performed const int64_t interpolationTarget = _previousInterpolationTime + _interpolationIntervalMicros; /// The target time when next write operation should be performed const int64_t writeTarget = _previousWriteTime + _outputIntervalMicros; /// Whether a frame interpolation is pending const bool interpolatePending = now > interpolationTarget; /// Whether a write is pending const bool writePending = now > writeTarget; // Check whether a new interpolation frame is due if (interpolatePending) { interpolateFrame(); ++_interpolationCounter; // Assemble the frame now when no dithering is applied if(!_dithering) { assembleFrame(); } } // Check whether to frame output is due if (writePending) { // Dither the frame to diffuse rounding errors if(_dithering) { assembleAndDitherFrame(); } writeFrame(); ++_renderedCounter; } // Check for sleep when no operation is pending. // As our QTimer is not capable of sub 1ms timing but instead performs spinning - // we have to do µsec-sleep to free CPU time; otherwise the thread would consume 100% CPU time. if(_updateInterval <= 0 && !(interpolatePending || writePending)) { const int64_t nextActionExpected = std::min(interpolationTarget, writeTarget); const int64_t microsTillNextAction = nextActionExpected - now; const int64_t SLEEP_MAX_MICROS = 1000L; // We want to use usleep for up to 1ms const int64_t SLEEP_RES_MICROS = 100L; // Expected resolution is >= 100µs on stock linux if(microsTillNextAction > SLEEP_RES_MICROS) { const int64_t wait = std::min(microsTillNextAction - SLEEP_RES_MICROS, SLEEP_MAX_MICROS); std::this_thread::sleep_for(std::chrono::microseconds(wait)); } } // Write stats every 30 sec if ((now > (_renderedStatTime + 30 * 1000000)) && (_renderedCounter > _renderedStatCounter)) { Debug(_log, "decay - rendered frames [%d] (%f/s), interpolated frames [%d] (%f/s) in [%f ms]" , _renderedCounter - _renderedStatCounter , (1.0F * (_renderedCounter - _renderedStatCounter) / ((now - _renderedStatTime) / 1000000.0F)) , _interpolationCounter - _interpolationStatCounter , (1.0F * (_interpolationCounter - _interpolationStatCounter) / ((now - _renderedStatTime) / 1000000.0F)) , (now - _renderedStatTime) / 1000.0F ); _renderedStatTime = now; _renderedStatCounter = _renderedCounter; _interpolationStatCounter = _interpolationCounter; } } void LinearColorSmoothing::performLinear(const int64_t now) { const int64_t deltaTime = _targetTime - now; const float k = 1.0F - 1.0F * deltaTime / (_targetTime - _previousWriteTime); const size_t N = _previousValues.size(); for (size_t i = 0; i < N; ++i) { const ColorRgb &target = _targetValues[i]; ColorRgb &prev = _previousValues[i]; const int reddif = target.red - prev.red; const int greendif = target.green - prev.green; const int bluedif = target.blue - prev.blue; prev.red += (reddif < 0 ? -1:1) * std::ceil(k * std::abs(reddif)); prev.green += (greendif < 0 ? -1:1) * std::ceil(k * std::abs(greendif)); prev.blue += (bluedif < 0 ? -1:1) * std::ceil(k * std::abs(bluedif)); } writeFrame(); } void LinearColorSmoothing::updateLeds() { const int64_t now = micros(); const int64_t deltaTime = _targetTime - now; if (deltaTime < 0) { writeDirect(); return; } switch (_smoothingType) { case SmoothingType::Decay: performDecay(now); break; case SmoothingType::Linear: default: performLinear(now); break; } } void LinearColorSmoothing::rememberFrame(const std::vector &ledColors) { const int64_t now = micros(); // Maintain the queue by removing outdated frames const int64_t windowStart = now - (MS_PER_MICRO * _settlingTime); int p = -1; // Start with -1 instead of 0, so we keep the last frame at least partially clipping the window // As the frames are ordered chronologically we scan from the front (oldest) till we find the first fresh frame for (auto it = _frameQueue.begin(); it != _frameQueue.end() && it->time < windowStart; ++it) { ++p; } if (p > 0) { _frameQueue.erase(_frameQueue.begin(), _frameQueue.begin() + p); } // Append the latest frame at back of the queue const REMEMBERED_FRAME frame = REMEMBERED_FRAME(now, ledColors); _frameQueue.push_back(frame); } void LinearColorSmoothing::clearRememberedFrames() { _frameQueue.clear(); _ledCount = 0; meanValues.clear(); residualErrors.clear(); tempValues.clear(); } void LinearColorSmoothing::queueColors(const std::vector &ledColors) { assert (ledColors.size() > 0); if (_outputDelay == 0) { // No output delay => immediate write if (!_pause) { emit _hyperion->ledDeviceData(ledColors); } } else { // Push new colors in the delay-buffer _outputQueue.push_back(ledColors); // If the delay-buffer is filled pop the front and write to device if (!_outputQueue.empty()) { if (_outputQueue.size() > _outputDelay) { if (!_pause) { emit _hyperion->ledDeviceData(_outputQueue.front()); } _outputQueue.pop_front(); } } } } void LinearColorSmoothing::clearQueuedColors() { _timer->stop(); _previousValues.clear(); _targetValues.clear(); clearRememberedFrames(); } void LinearColorSmoothing::componentStateChange(hyperion::Components component, bool state) { if (component == hyperion::COMP_SMOOTHING) { setEnable(state); } } void LinearColorSmoothing::setEnable(bool enable) { if ( _enabled != enable) { _enabled = enable; if (!_enabled) { clearQueuedColors(); } // update comp register _hyperion->setNewComponentState(hyperion::COMP_SMOOTHING, enable); } } void LinearColorSmoothing::setPause(bool pause) { _pause = pause; } unsigned LinearColorSmoothing::addConfig(int settlingTime_ms, double ledUpdateFrequency_hz, unsigned updateDelay) { SmoothingCfg cfg { false, settlingTime_ms, static_cast(MS_PER_MICRO / ledUpdateFrequency_hz), SmoothingType::Linear, ledUpdateFrequency_hz, updateDelay }; _cfgList.append(cfg); DebugIf(verbose && _enabled, _log,"%s", QSTRING_CSTR(getConfig(_cfgList.count()-1))); return _cfgList.count() - 1; } unsigned LinearColorSmoothing::updateConfig(int cfgID, int settlingTime_ms, double ledUpdateFrequency_hz, unsigned updateDelay) { int updatedCfgID = cfgID; if (cfgID < _cfgList.count()) { SmoothingCfg cfg { false, settlingTime_ms, static_cast(MS_PER_MICRO / ledUpdateFrequency_hz), SmoothingType::Linear, ledUpdateFrequency_hz, updateDelay }; _cfgList[updatedCfgID] = cfg; Debug(_log,"%s", QSTRING_CSTR(getConfig(updatedCfgID))); } else { updatedCfgID = addConfig(settlingTime_ms, ledUpdateFrequency_hz, updateDelay); } return updatedCfgID; } bool LinearColorSmoothing::selectConfig(int cfgID, bool force) { if (_currentConfigId == cfgID && !force) { return true; } if (cfgID < _cfgList.count() ) { _smoothingType = _cfgList[cfgID]._type; _settlingTime = _cfgList[cfgID]._settlingTime; _outputDelay = _cfgList[cfgID]._outputDelay; _pause = _cfgList[cfgID]._pause; _outputIntervalMicros = int64_t(1000000.0 / _updateInterval); // 1s = 1e6 µs _interpolationRate = _cfgList[cfgID]._interpolationRate; _interpolationIntervalMicros = int64_t(1000000.0 / _interpolationRate); _dithering = _cfgList[cfgID]._dithering; _decay = _cfgList[cfgID]._decay; _invWindow = 1.0F / (MS_PER_MICRO * _settlingTime); // Set _weightFrame based on the given decay const float decay = _decay; const floatT inv_window = _invWindow; // For decay != 1 use power-based approach for calculating the moving average values if(std::abs(decay - 1.0F) > std::numeric_limits::epsilon()) { // Exponential Decay _weightFrame = [inv_window,decay](const int64_t fs, const int64_t fe, const int64_t ws) { const floatT s = (fs - ws) * inv_window; const floatT t = (fe - ws) * inv_window; return (decay + 1) * (std::pow(t, decay) - std::pow(s, decay)); }; } else { // For decay == 1 use linear interpolation of the moving average values // Linear Decay _weightFrame = [inv_window](const int64_t fs, const int64_t fe, const int64_t /*ws*/) { // Linear weighting = (end - start) * scale return static_cast((fe - fs) * inv_window); }; } _renderedStatTime = micros(); _renderedCounter = 0; _renderedStatCounter = 0; _interpolationCounter = 0; _interpolationStatCounter = 0; //Enable smoothing for effects with smoothing if (cfgID >= SmoothingConfigID::EFFECT_DYNAMIC) { Debug(_log,"Run Effect with Smoothing enabled"); _enabledSystemCfg = _enabled; setEnable(true); } else { // Restore enabled state after running an effect with smoothing setEnable(_enabledSystemCfg); } if (_cfgList[cfgID]._updateInterval != _updateInterval) { _timer->stop(); _updateInterval = _cfgList[cfgID]._updateInterval; if (this->enabled()) { if (!_pause && !_targetValues.empty()) { _timer->start(_updateInterval); } } } _currentConfigId = cfgID; DebugIf(_enabled, _log,"%s", QSTRING_CSTR(getConfig(_currentConfigId))); return true; } // reset to default _currentConfigId = SmoothingConfigID::SYSTEM; return false; } QString LinearColorSmoothing::getConfig(int cfgID) { QString configText; if (cfgID < _cfgList.count()) { SmoothingCfg cfg = _cfgList[cfgID]; configText = QString ("[%1] - Type: %2, Pause: %3") .arg(cfgID) .arg(SmoothingCfg::EnumToString(cfg._type),(cfg._pause) ? "true" : "false") ; switch (cfg._type) { case SmoothingType::Decay: { const double thalf = (1.0-std::pow(1.0/2, 1.0/_decay))*_settlingTime; configText += QString (", Interpolation rate: %1Hz, Dithering: %2, decay: %3 -> Halftime: %4ms") .arg(cfg._interpolationRate,0,'f',2) .arg((cfg._dithering) ? "true" : "false") .arg(cfg._decay,0,'f',2) .arg(thalf,0,'f',2); [[fallthrough]]; } case SmoothingType::Linear: { configText += QString (", Settling time: %1ms, Interval: %2ms (%3Hz)") .arg(cfg._settlingTime) .arg(cfg._updateInterval) .arg(int(MS_PER_MICRO/cfg._updateInterval)); break; } } configText += QString (", delay: %1 frames") .arg(cfg._outputDelay); } return configText; } LinearColorSmoothing::SmoothingCfg::SmoothingCfg() : _pause(false), _settlingTime(DEFAULT_SETTLINGTIME), _updateInterval(DEFAULT_UPDATEFREQUENCY), _type(SmoothingType::Linear) { } LinearColorSmoothing::SmoothingCfg::SmoothingCfg(bool pause, int64_t settlingTime, int updateInterval, SmoothingType type, double interpolationRate, unsigned outputDelay, bool dithering, double decay) : _pause(pause), _settlingTime(settlingTime), _updateInterval(updateInterval), _type(type), _interpolationRate(interpolationRate), _outputDelay(outputDelay), _dithering(dithering), _decay(decay) { } QString LinearColorSmoothing::SmoothingCfg::EnumToString(SmoothingType type) { if (type == SmoothingType::Linear) { return QString("Linear"); } if (type == SmoothingType::Decay) { return QString("Decay"); } return QString("Unknown"); }