// Local-Hyperion includes #include "LedDevicePhilipsHue.h" // qt includes #include #include bool operator ==(CiColor p1, CiColor p2) { return (p1.x == p2.x) && (p1.y == p2.y) && (p1.bri == p2.bri); } bool operator !=(CiColor p1, CiColor p2) { return !(p1 == p2); } CiColor CiColor::rgbToCiColor(float red, float green, float blue, CiColorTriangle colorSpace) { // Apply gamma correction. float r = (red > 0.04045f) ? powf((red + 0.055f) / (1.0f + 0.055f), 2.4f) : (red / 12.92f); float g = (green > 0.04045f) ? powf((green + 0.055f) / (1.0f + 0.055f), 2.4f) : (green / 12.92f); float b = (blue > 0.04045f) ? powf((blue + 0.055f) / (1.0f + 0.055f), 2.4f) : (blue / 12.92f); // Convert to XYZ space. float X = r * 0.664511f + g * 0.154324f + b * 0.162028f; float Y = r * 0.283881f + g * 0.668433f + b * 0.047685f; float Z = r * 0.000088f + g * 0.072310f + b * 0.986039f; // Convert to x,y space. float cx = X / (X + Y + Z); float cy = Y / (X + Y + Z); if (std::isnan(cx)) { cx = 0.0f; } if (std::isnan(cy)) { cy = 0.0f; } // RGB to HSV/B Conversion after gamma correction use V for brightness, not Y from XYZ Space. float bri = fmax(fmax(r, g), b); CiColor xy = { cx, cy, bri }; // Check if the given XY value is within the color reach of our lamps. if (!isPointInLampsReach(xy, colorSpace)) { // It seems the color is out of reach let's find the closes color we can produce with our lamp and send this XY value out. CiColor pAB = getClosestPointToPoint(colorSpace.red, colorSpace.green, xy); CiColor pAC = getClosestPointToPoint(colorSpace.blue, colorSpace.red, xy); CiColor pBC = getClosestPointToPoint(colorSpace.green, colorSpace.blue, xy); // Get the distances per point and see which point is closer to our Point. float dAB = getDistanceBetweenTwoPoints(xy, pAB); float dAC = getDistanceBetweenTwoPoints(xy, pAC); float dBC = getDistanceBetweenTwoPoints(xy, pBC); float lowest = dAB; CiColor closestPoint = pAB; if (dAC < lowest) { lowest = dAC; closestPoint = pAC; } if (dBC < lowest) { lowest = dBC; closestPoint = pBC; } // Change the xy value to a value which is within the reach of the lamp. xy.x = closestPoint.x; xy.y = closestPoint.y; } return xy; } float CiColor::crossProduct(CiColor p1, CiColor p2) { return p1.x * p2.y - p1.y * p2.x; } bool CiColor::isPointInLampsReach(CiColor p, CiColorTriangle colorSpace) { CiColor v1 = { colorSpace.green.x - colorSpace.red.x, colorSpace.green.y - colorSpace.red.y }; CiColor v2 = { colorSpace.blue.x - colorSpace.red.x, colorSpace.blue.y - colorSpace.red.y }; CiColor q = { p.x - colorSpace.red.x, p.y - colorSpace.red.y }; float s = crossProduct(q, v2) / crossProduct(v1, v2); float t = crossProduct(v1, q) / crossProduct(v1, v2); if ((s >= 0.0f) && (t >= 0.0f) && (s + t <= 1.0f)) { return true; } return false; } CiColor CiColor::getClosestPointToPoint(CiColor a, CiColor b, CiColor p) { CiColor AP = { p.x - a.x, p.y - a.y }; CiColor AB = { b.x - a.x, b.y - a.y }; float ab2 = AB.x * AB.x + AB.y * AB.y; float ap_ab = AP.x * AB.x + AP.y * AB.y; float t = ap_ab / ab2; if (t < 0.0f) { t = 0.0f; } else if (t > 1.0f) { t = 1.0f; } return { a.x + AB.x * t, a.y + AB.y * t}; } float CiColor::getDistanceBetweenTwoPoints(CiColor p1, CiColor p2) { // Horizontal difference. float dx = p1.x - p2.x; // Vertical difference. float dy = p1.y - p2.y; // Absolute value. return sqrt(dx * dx + dy * dy); } PhilipsHueBridge::PhilipsHueBridge(Logger* log, QString host, QString username) : QObject() , log(log) , host(host) , username(username) { // setup reconnection timer bTimer.setInterval(5000); bTimer.setSingleShot(true); connect(&bTimer, &QTimer::timeout, this, &PhilipsHueBridge::bConnect); connect(&manager, &QNetworkAccessManager::finished, this, &PhilipsHueBridge::resolveReply); } void PhilipsHueBridge::bConnect(void) { if(username.isEmpty() || host.isEmpty()) { Error(log,"Username or IP Address is empty!"); } else { QString url = QString("http://%1/api/%2").arg(host).arg(username); Debug(log, "Connect to bridge %s", QSTRING_CSTR(url)); QNetworkRequest request(url); manager.get(request); } } void PhilipsHueBridge::resolveReply(QNetworkReply* reply) { // TODO use put request also for network error checking with decent threshold if(reply->operation() == QNetworkAccessManager::GetOperation) { if(reply->error() == QNetworkReply::NoError) { QByteArray response = reply->readAll(); QJsonParseError error; QJsonDocument doc = QJsonDocument::fromJson(response, &error); if (error.error != QJsonParseError::NoError) { Error(log, "Got invalid response from bridge"); return; } // check for authorization if(doc.isArray()) { Error(log, "Authorization failed, username invalid"); return; } QJsonObject obj = doc.object()["lights"].toObject(); if(obj.isEmpty()) { Error(log, "Bridge has no registered bulbs/stripes"); return; } // get all available light ids and their values QStringList keys = obj.keys(); QMap map; for (int i = 0; i < keys.size(); ++i) { map.insert(keys.at(i).toInt(), obj.take(keys.at(i)).toObject()); } emit newLights(map); } else { Error(log,"Network Error: %s", QSTRING_CSTR(reply->errorString())); bTimer.start(); } } reply->deleteLater(); } void PhilipsHueBridge::post(QString route, QString content) { //Debug(log, "Post %s: %s", QSTRING_CSTR(QString("http://IP/api/USR/%1").arg(route)), QSTRING_CSTR(content)); QNetworkRequest request(QString("http://%1/api/%2/%3").arg(host).arg(username).arg(route)); manager.put(request, content.toLatin1()); } const std::set PhilipsHueLight::GAMUT_A_MODEL_IDS = { "LLC001", "LLC005", "LLC006", "LLC007", "LLC010", "LLC011", "LLC012", "LLC013", "LLC014", "LST001" }; const std::set PhilipsHueLight::GAMUT_B_MODEL_IDS = { "LCT001", "LCT002", "LCT003", "LCT007", "LLM001" }; const std::set PhilipsHueLight::GAMUT_C_MODEL_IDS = { "LLC020", "LST002", "LCT011", "LCT012", "LCT010", "LCT014", "LCT015", "LCT016", "LCT024" }; PhilipsHueLight::PhilipsHueLight(Logger* log, PhilipsHueBridge* bridge, unsigned int id, QJsonObject values) : log(log) , bridge(bridge) , id(id) { // Get state object values which are subject to change. if (!values["state"].toObject().contains("on")) { Error(log, "Got invalid state object from light ID %d", id); } QJsonObject state; state["on"] = values["state"].toObject()["on"]; on = false; if (values["state"].toObject()["on"].toBool()) { state["xy"] = values["state"].toObject()["xy"]; state["bri"] = values["state"].toObject()["bri"]; on = true; color = { (float) state["xy"].toArray()[0].toDouble(), (float) state["xy"].toArray()[1].toDouble(), (float) state["bri"].toDouble() / 255.0f }; transitionTime = values["state"].toObject()["transitiontime"].toInt(); } // Determine the model id. modelId = values["modelid"].toString().trimmed().replace("\"", ""); // Determine the original state. originalState = QJsonDocument(state).toJson(QJsonDocument::JsonFormat::Compact).trimmed(); // Find id in the sets and set the appropriate color space. if (GAMUT_A_MODEL_IDS.find(modelId) != GAMUT_A_MODEL_IDS.end()) { Debug(log, "Recognized model id %s of light ID %d as gamut A", modelId.toStdString().c_str(), id); colorSpace.red = { 0.704f, 0.296f}; colorSpace.green = { 0.2151f, 0.7106f}; colorSpace.blue = { 0.138f, 0.08f}; } else if (GAMUT_B_MODEL_IDS.find(modelId) != GAMUT_B_MODEL_IDS.end()) { Debug(log, "Recognized model id %s of light ID %d as gamut B", modelId.toStdString().c_str(), id); colorSpace.red = { 0.675f, 0.322f}; colorSpace.green = { 0.409f, 0.518f}; colorSpace.blue = { 0.167f, 0.04f}; } else if (GAMUT_C_MODEL_IDS.find(modelId) != GAMUT_C_MODEL_IDS.end()) { Debug(log, "Recognized model id %s of light ID %d as gamut C", modelId.toStdString().c_str(), id); colorSpace.red = { 0.6915f, 0.3083f}; colorSpace.green = { 0.17f, 0.7f}; colorSpace.blue = { 0.1532f, 0.0475f}; } else { Warning(log, "Did not recognize model id %s of light ID %d", modelId.toStdString().c_str(), id); colorSpace.red = { 1.0f, 0.0f}; colorSpace.green = { 0.0f, 1.0f}; colorSpace.blue = { 0.0f, 0.0f}; } Info(log,"Light ID %d created", id); } PhilipsHueLight::~PhilipsHueLight() { // Restore the original state. set(originalState); } void PhilipsHueLight::set(QString state) { bridge->post(QString("lights/%1/state").arg(id), state); } void PhilipsHueLight::setOn(bool on) { if (this->on != on) { QString arg = on ? "true" : "false"; set(QString("{ \"on\": %1 }").arg(arg)); } this->on = on; } void PhilipsHueLight::setTransitionTime(unsigned int transitionTime) { if (this->transitionTime != transitionTime) { set(QString("{ \"transitiontime\": %1 }").arg(transitionTime)); } this->transitionTime = transitionTime; } void PhilipsHueLight::setColor(CiColor color, float brightnessFactor) { if (this->color != color) { const int bri = qRound(qMin(254.0f, brightnessFactor * qMax(1.0f, color.bri * 254.0f))); set(QString("{ \"xy\": [%1, %2], \"bri\": %3 }").arg(color.x, 0, 'f', 4).arg(color.y, 0, 'f', 4).arg(bri)); } this->color = color; } CiColor PhilipsHueLight::getColor() const { return color; } CiColorTriangle PhilipsHueLight::getColorSpace() const { return colorSpace; } LedDevice* LedDevicePhilipsHue::construct(const QJsonObject &deviceConfig) { return new LedDevicePhilipsHue(deviceConfig); } LedDevicePhilipsHue::LedDevicePhilipsHue(const QJsonObject& deviceConfig) : LedDevice(deviceConfig) , _bridge(nullptr) { } LedDevicePhilipsHue::~LedDevicePhilipsHue() { switchOff(); delete _bridge; } void LedDevicePhilipsHue::start() { _bridge = new PhilipsHueBridge(_log, _devConfig["output"].toString(), _devConfig["username"].toString()); _deviceReady = init(_devConfig); connect(_bridge, &PhilipsHueBridge::newLights, this, &LedDevicePhilipsHue::newLights); connect(this, &LedDevice::enableStateChanged, this, &LedDevicePhilipsHue::stateChanged); } bool LedDevicePhilipsHue::init(const QJsonObject &deviceConfig) { switchOffOnBlack = deviceConfig["switchOffOnBlack"].toBool(true); brightnessFactor = (float) deviceConfig["brightnessFactor"].toDouble(1.0); transitionTime = deviceConfig["transitiontime"].toInt(1); QJsonArray lArray = deviceConfig["lightIds"].toArray(); QJsonObject newDC = deviceConfig; if(!lArray.empty()) { for(const auto i : lArray) { lightIds.push_back(i.toInt()); } // get light info from bridge _bridge->bConnect(); // adapt latchTime to count of user lightIds (bridge 10Hz max overall) newDC.insert("latchTime",QJsonValue(100*(int)lightIds.size())); } else { Error(_log,"No light ID provided, abort"); } LedDevice::init(newDC); return true; } void LedDevicePhilipsHue::newLights(QMap map) { if(!lightIds.empty()) { // search user lightid inside map and create light if found lights.clear(); for(const auto id : lightIds) { if (map.contains(id)) { lights.push_back(PhilipsHueLight(_log, _bridge, id, map.value(id))); } else { Error(_log,"Light id %d isn't used on this bridge", id); } } } } int LedDevicePhilipsHue::write(const std::vector & ledValues) { // lights will be empty sometimes if(lights.empty()) return -1; // more lights then leds, stop always if(ledValues.size() < lights.size()) { Error(_log,"More LightIDs configured than leds, each LightID requires one led!"); return -1; } // Iterate through lights and set colors. unsigned int idx = 0; for (PhilipsHueLight& light : lights) { // Get color. ColorRgb color = ledValues.at(idx); // Scale colors from [0, 255] to [0, 1] and convert to xy space. CiColor xy = CiColor::rgbToCiColor(color.red / 255.0f, color.green / 255.0f, color.blue / 255.0f, light.getColorSpace()); if (switchOffOnBlack && xy.bri == 0) { light.setOn(false); } else { light.setOn(true); } // Write color if color has been changed. light.setTransitionTime(transitionTime); light.setColor(xy, brightnessFactor); idx++; } return 0; } void LedDevicePhilipsHue::stateChanged(bool newState) { if(newState) _bridge->bConnect(); else lights.clear(); }