#include "LedDeviceWs2812SPI.h" LedDeviceWs2812SPI::LedDeviceWs2812SPI(const Json::Value &deviceConfig) : ProviderSpi() , bitpair_to_byte { 0b10001000, 0b10001100, 0b11001000, 0b11001100, } { _deviceReady = init(deviceConfig); } LedDevice* LedDeviceWs2812SPI::construct(const Json::Value &deviceConfig) { return new LedDeviceWs2812SPI(deviceConfig); } bool LedDeviceWs2812SPI::init(const Json::Value &deviceConfig) { _baudRate_Hz = 3000000; ProviderSpi::init(deviceConfig); WarningIf(( _baudRate_Hz < 2050000 || _baudRate_Hz > 4000000 ), _log, "SPI rate %d outside recommended range (2050000 -> 4000000)", _baudRate_Hz); return true; } int LedDeviceWs2812SPI::write(const std::vector &ledValues) { // 3 colours, 4 spi bytes per colour + 3 frame end latch bytes const int SPI_BYTES_PER_LED = 3 * 4; unsigned spi_size = _ledCount * SPI_BYTES_PER_LED + 3; if(_ledBuffer.size() != spi_size) { _ledBuffer.resize(spi_size, 0x00); } unsigned spi_ptr = 0; for (unsigned i=0; i<(unsigned)_ledCount; ++i) { uint32_t colorBits = ((unsigned int)ledValues[i].red << 16) | ((unsigned int)ledValues[i].green << 8) | ledValues[i].blue; for (int j=SPI_BYTES_PER_LED - 1; j>=0; j--) { _ledBuffer[spi_ptr+j] = bitpair_to_byte[ colorBits & 0x3 ]; colorBits >>= 2; } spi_ptr += SPI_BYTES_PER_LED; } _ledBuffer[spi_ptr++] = 0; _ledBuffer[spi_ptr++] = 0; _ledBuffer[spi_ptr++] = 0; return writeBytes(spi_size, _ledBuffer.data()); }