#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "V4L2Grabber.h" #define CLEAR(x) memset(&(x), 0, sizeof(x)) static inline uint8_t clamp(int x) { return (x<0) ? 0 : ((x>255) ? 255 : uint8_t(x)); } static void yuv2rgb(uint8_t y, uint8_t u, uint8_t v, uint8_t & r, uint8_t & g, uint8_t & b) { // see: http://en.wikipedia.org/wiki/YUV#Y.27UV444_to_RGB888_conversion int c = y - 16; int d = u - 128; int e = v - 128; r = clamp((298 * c + 409 * e + 128) >> 8); g = clamp((298 * c - 100 * d - 208 * e + 128) >> 8); b = clamp((298 * c + 516 * d + 128) >> 8); } V4L2Grabber::V4L2Grabber(const std::string &device, int input, VideoStandard videoStandard, int cropHorizontal, int cropVertical, int frameDecimation, int pixelDecimation) : _deviceName(device), _ioMethod(IO_METHOD_MMAP), _fileDescriptor(-1), _buffers(), _width(0), _height(0), _cropWidth(cropHorizontal), _cropHeight(cropVertical), _frameDecimation(std::max(1, frameDecimation)), _pixelDecimation(std::max(1, pixelDecimation)), _currentFrame(0) { open_device(); init_device(videoStandard, input); } V4L2Grabber::~V4L2Grabber() { uninit_device(); close_device(); } void V4L2Grabber::start() { start_capturing(); } void V4L2Grabber::capture(int frameCount) { for (int count = 0; count < frameCount || frameCount < 0; ++count) { for (;;) { // the set of file descriptors for select fd_set fds; FD_ZERO(&fds); FD_SET(_fileDescriptor, &fds); // timeout struct timeval tv; tv.tv_sec = 2; tv.tv_usec = 0; // block until data is available int r = select(_fileDescriptor + 1, &fds, NULL, NULL, &tv); if (-1 == r) { if (EINTR == errno) continue; errno_exit("select"); } if (0 == r) { fprintf(stderr, "select timeout\n"); exit(EXIT_FAILURE); } if (read_frame()) { break; } /* EAGAIN - continue select loop. */ } } } void V4L2Grabber::stop() { stop_capturing(); } void V4L2Grabber::open_device() { struct stat st; if (-1 == stat(_deviceName.c_str(), &st)) { fprintf(stderr, "Cannot identify '%s': %d, %s\n", _deviceName.c_str(), errno, strerror(errno)); exit(EXIT_FAILURE); } if (!S_ISCHR(st.st_mode)) { fprintf(stderr, "%s is no device\n", _deviceName.c_str()); exit(EXIT_FAILURE); } _fileDescriptor = open(_deviceName.c_str(), O_RDWR /* required */ | O_NONBLOCK, 0); if (-1 == _fileDescriptor) { fprintf(stderr, "Cannot open '%s': %d, %s\n", _deviceName.c_str(), errno, strerror(errno)); exit(EXIT_FAILURE); } } void V4L2Grabber::close_device() { if (-1 == close(_fileDescriptor)) errno_exit("close"); _fileDescriptor = -1; } void V4L2Grabber::init_read(unsigned int buffer_size) { _buffers.resize(1); _buffers[0].length = buffer_size; _buffers[0].start = malloc(buffer_size); if (!_buffers[0].start) { fprintf(stderr, "Out of memory\n"); exit(EXIT_FAILURE); } } void V4L2Grabber::init_mmap() { struct v4l2_requestbuffers req; CLEAR(req); req.count = 4; req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; req.memory = V4L2_MEMORY_MMAP; if (-1 == xioctl(VIDIOC_REQBUFS, &req)) { if (EINVAL == errno) { fprintf(stderr, "%s does not support memory mapping\n", _deviceName.c_str()); exit(EXIT_FAILURE); } else { errno_exit("VIDIOC_REQBUFS"); } } if (req.count < 2) { fprintf(stderr, "Insufficient buffer memory on %s\n", _deviceName.c_str()); exit(EXIT_FAILURE); } _buffers.resize(req.count); for (size_t n_buffers = 0; n_buffers < req.count; ++n_buffers) { struct v4l2_buffer buf; CLEAR(buf); buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; buf.memory = V4L2_MEMORY_MMAP; buf.index = n_buffers; if (-1 == xioctl(VIDIOC_QUERYBUF, &buf)) errno_exit("VIDIOC_QUERYBUF"); _buffers[n_buffers].length = buf.length; _buffers[n_buffers].start = mmap(NULL /* start anywhere */, buf.length, PROT_READ | PROT_WRITE /* required */, MAP_SHARED /* recommended */, _fileDescriptor, buf.m.offset); if (MAP_FAILED == _buffers[n_buffers].start) errno_exit("mmap"); } } void V4L2Grabber::init_userp(unsigned int buffer_size) { struct v4l2_requestbuffers req; CLEAR(req); req.count = 4; req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; req.memory = V4L2_MEMORY_USERPTR; if (-1 == xioctl(VIDIOC_REQBUFS, &req)) { if (EINVAL == errno) { fprintf(stderr, "%s does not support user pointer i/o\n", _deviceName.c_str()); exit(EXIT_FAILURE); } else { errno_exit("VIDIOC_REQBUFS"); } } _buffers.resize(4); for (size_t n_buffers = 0; n_buffers < 4; ++n_buffers) { _buffers[n_buffers].length = buffer_size; _buffers[n_buffers].start = malloc(buffer_size); if (!_buffers[n_buffers].start) { fprintf(stderr, "Out of memory\n"); exit(EXIT_FAILURE); } } } void V4L2Grabber::init_device(VideoStandard videoStandard, int input) { struct v4l2_capability cap; if (-1 == xioctl(VIDIOC_QUERYCAP, &cap)) { if (EINVAL == errno) { fprintf(stderr, "%s is no V4L2 device\n", _deviceName.c_str()); exit(EXIT_FAILURE); } else { errno_exit("VIDIOC_QUERYCAP"); } } if (!(cap.capabilities & V4L2_CAP_VIDEO_CAPTURE)) { fprintf(stderr, "%s is no video capture device\n", _deviceName.c_str()); exit(EXIT_FAILURE); } switch (_ioMethod) { case IO_METHOD_READ: if (!(cap.capabilities & V4L2_CAP_READWRITE)) { fprintf(stderr, "%s does not support read i/o\n", _deviceName.c_str()); exit(EXIT_FAILURE); } break; case IO_METHOD_MMAP: case IO_METHOD_USERPTR: if (!(cap.capabilities & V4L2_CAP_STREAMING)) { fprintf(stderr, "%s does not support streaming i/o\n", _deviceName.c_str()); exit(EXIT_FAILURE); } break; } /* Select video input, video standard and tune here. */ struct v4l2_cropcap cropcap; CLEAR(cropcap); cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; if (0 == xioctl(VIDIOC_CROPCAP, &cropcap)) { struct v4l2_crop crop; crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; crop.c = cropcap.defrect; /* reset to default */ if (-1 == xioctl(VIDIOC_S_CROP, &crop)) { switch (errno) { case EINVAL: /* Cropping not supported. */ break; default: /* Errors ignored. */ break; } } } else { /* Errors ignored. */ } // set input if needed if (input >= 0) { if (-1 == xioctl(VIDIOC_S_INPUT, &input)) { errno_exit("VIDIOC_S_INPUT"); } } // set the video standard if needed switch (videoStandard) { case PAL: { v4l2_std_id std_id = V4L2_STD_PAL; if (-1 == xioctl(VIDIOC_S_STD, &std_id)) { errno_exit("VIDIOC_S_STD"); } } break; case NTSC: { v4l2_std_id std_id = V4L2_STD_NTSC; if (-1 == xioctl(VIDIOC_S_STD, &std_id)) { errno_exit("VIDIOC_S_STD"); } } break; case NO_CHANGE: default: // No change to device settings break; } // get the current settings struct v4l2_format fmt; CLEAR(fmt); fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; if (-1 == xioctl(VIDIOC_G_FMT, &fmt)) { errno_exit("VIDIOC_G_FMT"); } // check pixel format if (fmt.fmt.pix.pixelformat != V4L2_PIX_FMT_UYVY) { exit(EXIT_FAILURE); } // store width & height _width = fmt.fmt.pix.width; _height = fmt.fmt.pix.height; std::cout << "V4L2 width=" << _width << " height=" << _height << std::endl; switch (_ioMethod) { case IO_METHOD_READ: init_read(fmt.fmt.pix.sizeimage); break; case IO_METHOD_MMAP: init_mmap(); break; case IO_METHOD_USERPTR: init_userp(fmt.fmt.pix.sizeimage); break; } } void V4L2Grabber::uninit_device() { switch (_ioMethod) { case IO_METHOD_READ: free(_buffers[0].start); break; case IO_METHOD_MMAP: for (size_t i = 0; i < _buffers.size(); ++i) if (-1 == munmap(_buffers[i].start, _buffers[i].length)) errno_exit("munmap"); break; case IO_METHOD_USERPTR: for (size_t i = 0; i < _buffers.size(); ++i) free(_buffers[i].start); break; } _buffers.resize(0); } void V4L2Grabber::start_capturing() { switch (_ioMethod) { case IO_METHOD_READ: /* Nothing to do. */ break; case IO_METHOD_MMAP: { for (size_t i = 0; i < _buffers.size(); ++i) { struct v4l2_buffer buf; CLEAR(buf); buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; buf.memory = V4L2_MEMORY_MMAP; buf.index = i; if (-1 == xioctl(VIDIOC_QBUF, &buf)) errno_exit("VIDIOC_QBUF"); } v4l2_buf_type type = V4L2_BUF_TYPE_VIDEO_CAPTURE; if (-1 == xioctl(VIDIOC_STREAMON, &type)) errno_exit("VIDIOC_STREAMON"); break; } case IO_METHOD_USERPTR: { for (size_t i = 0; i < _buffers.size(); ++i) { struct v4l2_buffer buf; CLEAR(buf); buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; buf.memory = V4L2_MEMORY_USERPTR; buf.index = i; buf.m.userptr = (unsigned long)_buffers[i].start; buf.length = _buffers[i].length; if (-1 == xioctl(VIDIOC_QBUF, &buf)) errno_exit("VIDIOC_QBUF"); } v4l2_buf_type type = V4L2_BUF_TYPE_VIDEO_CAPTURE; if (-1 == xioctl(VIDIOC_STREAMON, &type)) errno_exit("VIDIOC_STREAMON"); break; } } } void V4L2Grabber::stop_capturing() { enum v4l2_buf_type type; switch (_ioMethod) { case IO_METHOD_READ: /* Nothing to do. */ break; case IO_METHOD_MMAP: case IO_METHOD_USERPTR: type = V4L2_BUF_TYPE_VIDEO_CAPTURE; if (-1 == xioctl(VIDIOC_STREAMOFF, &type)) errno_exit("VIDIOC_STREAMOFF"); break; } } int V4L2Grabber::read_frame() { struct v4l2_buffer buf; switch (_ioMethod) { case IO_METHOD_READ: int size; if ((size = read(_fileDescriptor, _buffers[0].start, _buffers[0].length)) == -1) { switch (errno) { case EAGAIN: return 0; case EIO: /* Could ignore EIO, see spec. */ /* fall through */ default: errno_exit("read"); } } process_image(_buffers[0].start, size); break; case IO_METHOD_MMAP: CLEAR(buf); buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; buf.memory = V4L2_MEMORY_MMAP; if (-1 == xioctl(VIDIOC_DQBUF, &buf)) { switch (errno) { case EAGAIN: return 0; case EIO: /* Could ignore EIO, see spec. */ /* fall through */ default: errno_exit("VIDIOC_DQBUF"); } } assert(buf.index < _buffers.size()); process_image(_buffers[buf.index].start, buf.bytesused); if (-1 == xioctl(VIDIOC_QBUF, &buf)) { errno_exit("VIDIOC_QBUF"); } break; case IO_METHOD_USERPTR: CLEAR(buf); buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; buf.memory = V4L2_MEMORY_USERPTR; if (-1 == xioctl(VIDIOC_DQBUF, &buf)) { switch (errno) { case EAGAIN: return 0; case EIO: /* Could ignore EIO, see spec. */ /* fall through */ default: errno_exit("VIDIOC_DQBUF"); } } for (size_t i = 0; i < _buffers.size(); ++i) { if (buf.m.userptr == (unsigned long)_buffers[i].start && buf.length == _buffers[i].length) { break; } } process_image((void *)buf.m.userptr, buf.bytesused); if (-1 == xioctl(VIDIOC_QBUF, &buf)) { errno_exit("VIDIOC_QBUF"); } break; } return 1; } void V4L2Grabber::process_image(const void *p, int size) { if (++_currentFrame >= _frameDecimation) { // We do want a new frame... if (size != 2*_width*_height) { std::cout << "Frame too small: " << size << " != " << (2*_width*_height) << std::endl; } else { process_image(reinterpret_cast(p)); _currentFrame = 0; // restart counting } } } void V4L2Grabber::process_image(const uint8_t * data) { std::cout << "process image" << std::endl; int width = (_width - 2 * _cropWidth + _pixelDecimation/2) / _pixelDecimation; int height = (_height - 2 * _cropHeight + _pixelDecimation/2) / _pixelDecimation; Image image(width, height); for (int ySource = _cropHeight + _pixelDecimation/2, yDest = 0; ySource < _height - _cropHeight; ySource += _pixelDecimation, ++yDest) { for (int xSource = _cropWidth + _pixelDecimation/2, xDest = 0; xSource < _width - _cropWidth; xSource += _pixelDecimation, ++xDest) { int index = (_width * ySource + xSource) * 2; uint8_t y = data[index+1]; uint8_t u = (xSource%2 == 0) ? data[index] : data[index-2]; uint8_t v = (xSource%2 == 0) ? data[index+2] : data[index]; ColorRgb & rgb = image(xDest, yDest); yuv2rgb(y, u, v, rgb.red, rgb.green, rgb.blue); } } // store as PNG QImage pngImage((const uint8_t *) image.memptr(), width, height, 3*width, QImage::Format_RGB888); pngImage.save("screenshot.png"); } int V4L2Grabber::xioctl(int request, void *arg) { int r; do { r = ioctl(_fileDescriptor, request, arg); } while (-1 == r && EINTR == errno); return r; } void V4L2Grabber::errno_exit(const char *s) { fprintf(stderr, "%s error %d, %s\n", s, errno, strerror(errno)); exit(EXIT_FAILURE); }