#ifndef OKCOLOR_H #define OKCOLOR_H // Copyright(c) 2021 Björn Ottosson + Modifications by Hyperion Project // // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files(the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and /or sell copies // of the Software, and to permit persons to whom the Software is furnished to do // so, subject to the following conditions : // The above copyright noticeand this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #include #include namespace ok_color { struct Lab { double L; double a; double b; }; struct RGB { double r; double g; double b; }; struct HSV { double h; double s; double v; }; struct HSL { double h; double s; double l; }; struct LC { double L; double C; }; // Alternative representation of (L_cusp, C_cusp) // Encoded so S = C_cusp/L_cusp and T = C_cusp/(1-L_cusp) // The maximum value for C in the triangle is then found as fmin(S*L, T*(1-L)), for a given L struct ST { double S; double T; }; constexpr double pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164062; double clamp(double x, double min, double max) { if (x < min) { return min; } if (x > max) { return max; } return x; } double sgn(double x) { return static_cast(0.0 < x) - static_cast(x < 0.0); } double srgb_transfer_function(double a) { return .0031308 >= a ? 12.92 * a : 1.055 * pow(a, .4166666666666667) - .055; } double srgb_transfer_function_inv(double a) { return .04045< a ? pow((a + .055) / 1.055, 2.4) : a / 12.92; } Lab linear_srgb_to_oklab(RGB c) { double l = 0.4122214708 * c.r + 0.5363325363 * c.g + 0.0514459929 * c.b; double m = 0.2119034982 * c.r + 0.6806995451 * c.g + 0.1073969566 * c.b; double s = 0.0883024619 * c.r + 0.2817188376 * c.g + 0.6299787005 * c.b; double l_ = cbrt(l); double m_ = cbrt(m); double s_ = cbrt(s); return { 0.2104542553 * l_ + 0.7936177850 * m_ - 0.0040720468 * s_, 1.9779984951 * l_ - 2.4285922050 * m_ + 0.4505937099 * s_, 0.0259040371 * l_ + 0.7827717662 * m_ - 0.8086757660 * s_, }; } RGB oklab_to_linear_srgb(Lab c) { double l_ = c.L + 0.3963377774 * c.a + 0.2158037573 * c.b; double m_ = c.L - 0.1055613458 * c.a - 0.0638541728 * c.b; double s_ = c.L - 0.0894841775 * c.a - 1.2914855480 * c.b; double l = l_ * l_ * l_; double m = m_ * m_ * m_; double s = s_ * s_ * s_; return { +4.0767416621 * l - 3.3077115913 * m + 0.2309699292 * s, -1.2684380046 * l + 2.6097574011 * m - 0.3413193965 * s, -0.0041960863 * l - 0.7034186147 * m + 1.7076147010 * s, }; } // Finds the maximum saturation possible for a given hue that fits in sRGB // Saturation here is defined as S = C/L // a and b must be normalized so a^2 + b^2 == 1 double compute_max_saturation(double a, double b) { // Max saturation will be when one of r, g or b goes below zero. // Select different coefficients depending on which component goes below zero first double k0; double k1; double k2; double k3; double k4; double wl; double wm; double ws; if (-1.88170328 * a - 0.80936493 * b > 1) { // Red component k0 = +1.19086277; k1 = +1.76576728; k2 = +0.59662641; k3 = +0.75515197; k4 = +0.56771245; wl = +4.0767416621; wm = -3.3077115913; ws = +0.2309699292; } else if (1.81444104 * a - 1.19445276 * b > 1) { // Green component k0 = +0.73956515; k1 = -0.45954404; k2 = +0.08285427; k3 = +0.12541070; k4 = +0.14503204; wl = -1.2684380046; wm = +2.6097574011; ws = -0.3413193965; } else { // Blue component k0 = +1.35733652; k1 = -0.00915799; k2 = -1.15130210; k3 = -0.50559606; k4 = +0.00692167; wl = -0.0041960863; wm = -0.7034186147; ws = +1.7076147010; } // Approximate max saturation using a polynomial: double S = k0 + k1 * a + k2 * b + k3 * a * a + k4 * a * b; // Do one step Halley's method to get closer // this gives an error less than 10e6, except for some blue hues where the dS/dh is close to infinite // this should be sufficient for most applications, otherwise do two/three steps double k_l = +0.3963377774 * a + 0.2158037573 * b; double k_m = -0.1055613458 * a - 0.0638541728 * b; double k_s = -0.0894841775 * a - 1.2914855480 * b; { double l_ = 1.0 + S * k_l; double m_ = 1.0 + S * k_m; double s_ = 1.0 + S * k_s; double l = l_ * l_ * l_; double m = m_ * m_ * m_; double s = s_ * s_ * s_; double l_dS = 3.0 * k_l * l_ * l_; double m_dS = 3.0 * k_m * m_ * m_; double s_dS = 3.0 * k_s * s_ * s_; double l_dS2 = 6.0 * k_l * k_l * l_; double m_dS2 = 6.0 * k_m * k_m * m_; double s_dS2 = 6.0 * k_s * k_s * s_; double f = wl * l + wm * m + ws * s; double f1 = wl * l_dS + wm * m_dS + ws * s_dS; double f2 = wl * l_dS2 + wm * m_dS2 + ws * s_dS2; S = S - f * f1 / (f1 * f1 - 0.5 * f * f2); } return S; } // finds L_cusp and C_cusp for a given hue // a and b must be normalized so a^2 + b^2 == 1 LC find_cusp(double a, double b) { // First, find the maximum saturation (saturation S = C/L) double S_cusp = compute_max_saturation(a, b); // Convert to linear sRGB to find the first point where at least one of r,g or b >= 1: RGB rgb_at_max = oklab_to_linear_srgb({ 1, S_cusp * a, S_cusp * b }); double L_cusp = cbrt(1.0 / fmax(fmax(rgb_at_max.r, rgb_at_max.g), rgb_at_max.b)); double C_cusp = L_cusp * S_cusp; return { L_cusp , C_cusp }; } // Finds intersection of the line defined by // L = L0 * (1 - t) + t * L1; // C = t * C1; // a and b must be normalized so a^2 + b^2 == 1 double find_gamut_intersection(double a, double b, double L1, double C1, double L0, LC cusp) { // Find the intersection for upper and lower half seprately double t; if (((L1 - L0) * cusp.C - (cusp.L - L0) * C1) <= 0.0) { // Lower half t = cusp.C * L0 / (C1 * cusp.L + cusp.C * (L0 - L1)); } else { // Upper half // First intersect with triangle t = cusp.C * (L0 - 1.0) / (C1 * (cusp.L - 1.0) + cusp.C * (L0 - L1)); // Then one step Halley's method { double dL = L1 - L0; double dC = C1; double k_l = +0.3963377774 * a + 0.2158037573 * b; double k_m = -0.1055613458 * a - 0.0638541728 * b; double k_s = -0.0894841775 * a - 1.2914855480 * b; double l_dt = dL + dC * k_l; double m_dt = dL + dC * k_m; double s_dt = dL + dC * k_s; // If higher accuracy is required, 2 or 3 iterations of the following block can be used: { double L = L0 * (1.0 - t) + t * L1; double C = t * C1; double l_ = L + C * k_l; double m_ = L + C * k_m; double s_ = L + C * k_s; double l = l_ * l_ * l_; double m = m_ * m_ * m_; double s = s_ * s_ * s_; double ldt = 3 * l_dt * l_ * l_; double mdt = 3 * m_dt * m_ * m_; double sdt = 3 * s_dt * s_ * s_; double ldt2 = 6 * l_dt * l_dt * l_; double mdt2 = 6 * m_dt * m_dt * m_; double sdt2 = 6 * s_dt * s_dt * s_; double r0 = 4.0767416621 * l - 3.3077115913 * m + 0.2309699292 * s - 1; double r1 = 4.0767416621 * ldt - 3.3077115913 * mdt + 0.2309699292 * sdt; double r2 = 4.0767416621 * ldt2 - 3.3077115913 * mdt2 + 0.2309699292 * sdt2; double u_r = r1 / (r1 * r1 - 0.5 * r0 * r2); double t_r = -r0 * u_r; double g0 = -1.2684380046 * l + 2.6097574011 * m - 0.3413193965 * s - 1; double g1 = -1.2684380046 * ldt + 2.6097574011 * mdt - 0.3413193965 * sdt; double g2 = -1.2684380046 * ldt2 + 2.6097574011 * mdt2 - 0.3413193965 * sdt2; double u_g = g1 / (g1 * g1 - 0.5 * g0 * g2); double t_g = -g0 * u_g; double b0 = -0.0041960863 * l - 0.7034186147 * m + 1.7076147010 * s - 1; double b1 = -0.0041960863 * ldt - 0.7034186147 * mdt + 1.7076147010 * sdt; double b2 = -0.0041960863 * ldt2 - 0.7034186147 * mdt2 + 1.7076147010 * sdt2; double u_b = b1 / (b1 * b1 - 0.5 * b0 * b2); double t_b = -b0 * u_b; t_r = u_r >= 0.0 ? t_r : DBL_MAX; t_g = u_g >= 0.0 ? t_g : DBL_MAX; t_b = u_b >= 0.0 ? t_b : DBL_MAX; t += fmin(t_r, fmin(t_g, t_b)); } } } return t; } double find_gamut_intersection(double a, double b, double L1, double C1, double L0) { // Find the cusp of the gamut triangle LC cusp = find_cusp(a, b); return find_gamut_intersection(a, b, L1, C1, L0, cusp); } RGB gamut_clip_preserve_chroma(RGB rgb) { if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0) { return rgb; } Lab lab = linear_srgb_to_oklab(rgb); double L = lab.L; double eps = 0.00001; double C = fmax(eps, sqrt(lab.a * lab.a + lab.b * lab.b)); double a_ = lab.a / C; double b_ = lab.b / C; double L0 = clamp(L, 0, 1); double t = find_gamut_intersection(a_, b_, L, C, L0); double L_clipped = L0 * (1 - t) + t * L; double C_clipped = t * C; return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ }); } RGB gamut_clip_project_to_0_5(RGB rgb) { if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0) { return rgb; } Lab lab = linear_srgb_to_oklab(rgb); double L = lab.L; double eps = 0.00001; double C = fmax(eps, sqrt(lab.a * lab.a + lab.b * lab.b)); double a_ = lab.a / C; double b_ = lab.b / C; double L0 = 0.5; double t = find_gamut_intersection(a_, b_, L, C, L0); double L_clipped = L0 * (1 - t) + t * L; double C_clipped = t * C; return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ }); } RGB gamut_clip_project_to_L_cusp(RGB rgb) { if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0) { return rgb; } Lab lab = linear_srgb_to_oklab(rgb); double L = lab.L; double eps = 0.00001; double C = fmax(eps, sqrt(lab.a * lab.a + lab.b * lab.b)); double a_ = lab.a / C; double b_ = lab.b / C; // The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once. LC cusp = find_cusp(a_, b_); double L0 = cusp.L; double t = find_gamut_intersection(a_, b_, L, C, L0); double L_clipped = L0 * (1 - t) + t * L; double C_clipped = t * C; return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ }); } RGB gamut_clip_adaptive_L0_0_5(RGB rgb, double alpha = 0.05) { if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0) { return rgb; } Lab lab = linear_srgb_to_oklab(rgb); double L = lab.L; double eps = 0.00001; double C = fmax(eps, sqrt(lab.a * lab.a + lab.b * lab.b)); double a_ = lab.a / C; double b_ = lab.b / C; double Ld = L - 0.5; double e1 = 0.5 + fabs(Ld) + alpha * C; double L0 = 0.5 * (1.0 + sgn(Ld) * (e1 - sqrt(e1 * e1 - 2.0 * fabs(Ld)))); double t = find_gamut_intersection(a_, b_, L, C, L0); double L_clipped = L0 * (1.0 - t) + t * L; double C_clipped = t * C; return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ }); } RGB gamut_clip_adaptive_L0_L_cusp(RGB rgb, double alpha = 0.05) { if (rgb.r < 1 && rgb.g < 1 && rgb.b < 1 && rgb.r > 0 && rgb.g > 0 && rgb.b > 0) { return rgb; } Lab lab = linear_srgb_to_oklab(rgb); double L = lab.L; double eps = 0.00001; double C = fmax(eps, sqrt(lab.a * lab.a + lab.b * lab.b)); double a_ = lab.a / C; double b_ = lab.b / C; // The cusp is computed here and in find_gamut_intersection, an optimized solution would only compute it once. LC cusp = find_cusp(a_, b_); double Ld = L - cusp.L; double k = 2.0 * (Ld > 0 ? 1.0 - cusp.L : cusp.L); double e1 = 0.5 * k + fabs(Ld) + alpha * C / k; double L0 = cusp.L + 0.5 * (sgn(Ld) * (e1 - sqrt(e1 * e1 - 2.0 * k * fabs(Ld)))); double t = find_gamut_intersection(a_, b_, L, C, L0); double L_clipped = L0 * (1.0 - t) + t * L; double C_clipped = t * C; return oklab_to_linear_srgb({ L_clipped, C_clipped * a_, C_clipped * b_ }); } double toe(double x) { constexpr double k_1 = 0.206; constexpr double k_2 = 0.03; constexpr double k_3 = (1.0 + k_1) / (1.0 + k_2); return 0.5 * (k_3 * x - k_1 + sqrt((k_3 * x - k_1) * (k_3 * x - k_1) + 4 * k_2 * k_3 * x)); } double toe_inv(double x) { constexpr double k_1 = 0.206; constexpr double k_2 = 0.03; constexpr double k_3 = (1.0 + k_1) / (1.0 + k_2); return (x * x + k_1 * x) / (k_3 * (x + k_2)); } ST to_ST(LC cusp) { double L = cusp.L; double C = cusp.C; return { C / L, C / (1 - L) }; } // Returns a smooth approximation of the location of the cusp // This polynomial was created by an optimization process // It has been designed so that S_mid < S_max and T_mid < T_max ST get_ST_mid(double a_, double b_) { double S = 0.11516993 + 1.0 / ( + 7.44778970 + 4.15901240 * b_ + a_ * (-2.19557347 + 1.75198401 * b_ + a_ * (-2.13704948 - 10.02301043 * b_ + a_ * (-4.24894561 + 5.38770819 * b_ + 4.69891013 * a_ ))) ); double T = 0.11239642 + 1.0 / ( + 1.61320320 - 0.68124379 * b_ + a_ * (+0.40370612 + 0.90148123 * b_ + a_ * (-0.27087943 + 0.61223990 * b_ + a_ * (+0.00299215 - 0.45399568 * b_ - 0.14661872 * a_ ))) ); return { S, T }; } struct Cs { double C_0; double C_mid; double C_max; }; Cs get_Cs(double L, double a_, double b_) { LC cusp = find_cusp(a_, b_); double C_max = find_gamut_intersection(a_, b_, L, 1, L, cusp); ST ST_max = to_ST(cusp); // Scale factor to compensate for the curved part of gamut shape: double k = C_max / fmin((L * ST_max.S), (1 - L) * ST_max.T); double C_mid; { ST ST_mid = get_ST_mid(a_, b_); // Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma. double C_a = L * ST_mid.S; double C_b = (1.0 - L) * ST_mid.T; C_mid = 0.9 * k * sqrt(sqrt(1.0 / (1.0 / (C_a * C_a * C_a * C_a) + 1.0 / (C_b * C_b * C_b * C_b)))); } double C_0; { // for C_0, the shape is independent of hue, so ST are constant. Values picked to roughly be the average values of ST. double C_a = L * 0.4; double C_b = (1.0 - L) * 0.8; // Use a soft minimum function, instead of a sharp triangle shape to get a smooth value for chroma. C_0 = sqrt(1.0 / (1.0 / (C_a * C_a) + 1.0 / (C_b * C_b))); } return { C_0, C_mid, C_max }; } RGB okhsl_to_srgb(HSL hsl) { double h = hsl.h; double s = hsl.s; double l = hsl.l; if (l == 1.0) { return { 1, 1, 1 }; } if (l == 0.0) { return { 0, 0, 0 }; } double a_ = cos(2 * pi * h); double b_ = sin(2 * pi * h); double L = toe_inv(l); Cs cs = get_Cs(L, a_, b_); double C_0 = cs.C_0; double C_mid = cs.C_mid; double C_max = cs.C_max; double mid = 0.8; double mid_inv = 1.25; double C; double t; double k_0; double k_1; double k_2; if (s < mid) { t = mid_inv * s; k_1 = mid * C_0; k_2 = (1.0 - k_1 / C_mid); C = t * k_1 / (1.0 - k_2 * t); } else { t = (s - mid)/ (1 - mid); k_0 = C_mid; k_1 = (1.0 - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0; k_2 = (1.0 - (k_1) / (C_max - C_mid)); C = k_0 + t * k_1 / (1.0 - k_2 * t); } RGB rgb = oklab_to_linear_srgb({ L, C * a_, C * b_ }); return { srgb_transfer_function(rgb.r), srgb_transfer_function(rgb.g), srgb_transfer_function(rgb.b), }; } HSL srgb_to_okhsl(RGB rgb) { Lab lab = linear_srgb_to_oklab({ srgb_transfer_function_inv(rgb.r), srgb_transfer_function_inv(rgb.g), srgb_transfer_function_inv(rgb.b) }); double C = sqrt(lab.a * lab.a + lab.b * lab.b); double a_ = lab.a / C; double b_ = lab.b / C; double L = lab.L; double h = 0.5 + 0.5 * atan2(-lab.b, -lab.a) / pi; Cs cs = get_Cs(L, a_, b_); double C_0 = cs.C_0; double C_mid = cs.C_mid; double C_max = cs.C_max; // Inverse of the interpolation in okhsl_to_srgb: double mid = 0.8; double mid_inv = 1.25; double s; if (C < C_mid) { double k_1 = mid * C_0; double k_2 = (1.0 - k_1 / C_mid); double t = C / (k_1 + k_2 * C); s = t * mid; } else { double k_0 = C_mid; double k_1 = (1.0 - mid) * C_mid * C_mid * mid_inv * mid_inv / C_0; double k_2 = (1.0 - (k_1) / (C_max - C_mid)); double t = (C - k_0) / (k_1 + k_2 * (C - k_0)); s = mid + (1.0 - mid) * t; } double l = toe(L); return { h, s, l }; } RGB okhsv_to_srgb(HSV hsv) { double h = hsv.h; double s = hsv.s; double v = hsv.v; double a_ = cos(2.0 * pi * h); double b_ = sin(2.0 * pi * h); LC cusp = find_cusp(a_, b_); ST ST_max = to_ST(cusp); double S_max = ST_max.S; double T_max = ST_max.T; double S_0 = 0.5; double k = 1 - S_0 / S_max; // first we compute L and V as if the gamut is a perfect triangle: // L, C when v==1: double L_v = 1 - s * S_0 / (S_0 + T_max - T_max * k * s); double C_v = s * T_max * S_0 / (S_0 + T_max - T_max * k * s); double L = v * L_v; double C = v * C_v; // then we compensate for both toe and the curved top part of the triangle: double L_vt = toe_inv(L_v); double C_vt = C_v * L_vt / L_v; double L_new = toe_inv(L); C = C * L_new / L; L = L_new; RGB rgb_scale = oklab_to_linear_srgb({ L_vt, a_ * C_vt, b_ * C_vt }); double scale_L = cbrt(1.0 / fmax(fmax(rgb_scale.r, rgb_scale.g), fmax(rgb_scale.b, 0.0))); L = L * scale_L; C = C * scale_L; RGB rgb = oklab_to_linear_srgb({ L, C * a_, C * b_ }); return { srgb_transfer_function(rgb.r), srgb_transfer_function(rgb.g), srgb_transfer_function(rgb.b), }; } HSV srgb_to_okhsv(RGB rgb) { Lab lab = linear_srgb_to_oklab({ srgb_transfer_function_inv(rgb.r), srgb_transfer_function_inv(rgb.g), srgb_transfer_function_inv(rgb.b) }); double C = sqrt(lab.a * lab.a + lab.b * lab.b); double a_ = lab.a / C; double b_ = lab.b / C; double L = lab.L; double h = 0.5 + 0.5 * atan2(-lab.b, -lab.a) / pi; LC cusp = find_cusp(a_, b_); ST ST_max = to_ST(cusp); double S_max = ST_max.S; double T_max = ST_max.T; double S_0 = 0.5; double k = 1 - S_0 / S_max; // first we find L_v, C_v, L_vt and C_vt double t = T_max / (C + L * T_max); double L_v = t * L; double C_v = t * C; double L_vt = toe_inv(L_v); double C_vt = C_v * L_vt / L_v; // we can then use these to invert the step that compensates for the toe and the curved top part of the triangle: RGB rgb_scale = oklab_to_linear_srgb({ L_vt, a_ * C_vt, b_ * C_vt }); double scale_L = cbrt(1.0 / fmax(fmax(rgb_scale.r, rgb_scale.g), fmax(rgb_scale.b, 0.0))); L = L / scale_L; //C = C / scale_L; //C = C * toe(L) / L; L = toe(L); // we can now compute v and s: double v = L / L_v; double s = (S_0 + T_max) * C_v / ((T_max * S_0) + T_max * k * C_v); return { h, s, v }; } } // namespace ok_color #endif // OKCOLOR_H