// Local-Hyperion includes #include "LedDevicePhilipsHue.h" // qt includes #include #include #include const CiColor CiColor::BLACK = { 0, 0, 0 }; bool operator ==(CiColor p1, CiColor p2) { return (p1.x == p2.x) && (p1.y == p2.y) && (p1.bri == p2.bri); } bool operator !=(CiColor p1, CiColor p2) { return !(p1 == p2); } CiColor CiColor::rgbToCiColor(float red, float green, float blue, CiColorTriangle colorSpace) { // Apply gamma correction. float r = (red > 0.04045f) ? powf((red + 0.055f) / (1.0f + 0.055f), 2.4f) : (red / 12.92f); float g = (green > 0.04045f) ? powf((green + 0.055f) / (1.0f + 0.055f), 2.4f) : (green / 12.92f); float b = (blue > 0.04045f) ? powf((blue + 0.055f) / (1.0f + 0.055f), 2.4f) : (blue / 12.92f); // Convert to XYZ space. float X = r * 0.664511f + g * 0.154324f + b * 0.162028f; float Y = r * 0.283881f + g * 0.668433f + b * 0.047685f; float Z = r * 0.000088f + g * 0.072310f + b * 0.986039f; // Convert to x,y space. float cx = X / (X + Y + Z); float cy = Y / (X + Y + Z); if (std::isnan(cx)) { cx = 0.0f; } if (std::isnan(cy)) { cy = 0.0f; } // Brightness is simply Y in the XYZ space. CiColor xy = { cx, cy, Y }; // Check if the given XY value is within the color reach of our lamps. if (!isPointInLampsReach(xy, colorSpace)) { // It seems the color is out of reach let's find the closes color we can produce with our lamp and send this XY value out. CiColor pAB = getClosestPointToPoint(colorSpace.red, colorSpace.green, xy); CiColor pAC = getClosestPointToPoint(colorSpace.blue, colorSpace.red, xy); CiColor pBC = getClosestPointToPoint(colorSpace.green, colorSpace.blue, xy); // Get the distances per point and see which point is closer to our Point. float dAB = getDistanceBetweenTwoPoints(xy, pAB); float dAC = getDistanceBetweenTwoPoints(xy, pAC); float dBC = getDistanceBetweenTwoPoints(xy, pBC); float lowest = dAB; CiColor closestPoint = pAB; if (dAC < lowest) { lowest = dAC; closestPoint = pAC; } if (dBC < lowest) { lowest = dBC; closestPoint = pBC; } // Change the xy value to a value which is within the reach of the lamp. xy.x = closestPoint.x; xy.y = closestPoint.y; } return xy; } float CiColor::crossProduct(CiColor p1, CiColor p2) { return p1.x * p2.y - p1.y * p2.x; } bool CiColor::isPointInLampsReach(CiColor p, CiColorTriangle colorSpace) { CiColor v1 = { colorSpace.green.x - colorSpace.red.x, colorSpace.green.y - colorSpace.red.y }; CiColor v2 = { colorSpace.blue.x - colorSpace.red.x, colorSpace.blue.y - colorSpace.red.y }; CiColor q = { p.x - colorSpace.red.x, p.y - colorSpace.red.y }; float s = crossProduct(q, v2) / crossProduct(v1, v2); float t = crossProduct(v1, q) / crossProduct(v1, v2); if ((s >= 0.0f) && (t >= 0.0f) && (s + t <= 1.0f)) { return true; } return false; } CiColor CiColor::getClosestPointToPoint(CiColor a, CiColor b, CiColor p) { CiColor AP = { p.x - a.x, p.y - a.y }; CiColor AB = { b.x - a.x, b.y - a.y }; float ab2 = AB.x * AB.x + AB.y * AB.y; float ap_ab = AP.x * AB.x + AP.y * AB.y; float t = ap_ab / ab2; if (t < 0.0f) { t = 0.0f; } else if (t > 1.0f) { t = 1.0f; } return { a.x + AB.x * t, a.y + AB.y * t}; } float CiColor::getDistanceBetweenTwoPoints(CiColor p1, CiColor p2) { // Horizontal difference. float dx = p1.x - p2.x; // Vertical difference. float dy = p1.y - p2.y; // Absolute value. return sqrt(dx * dx + dy * dy); } QByteArray PhilipsHueBridge::get(QString route) { QString url = QString("http://%1/api/%2/%3").arg(host).arg(username).arg(route); Debug(log, "Get %s", url.toStdString().c_str()); // Perfrom request QNetworkRequest request(url); QNetworkReply* reply = manager->get(request); // Connect requestFinished signal to quit slot of the loop. QEventLoop loop; loop.connect(reply, SIGNAL(finished()), SLOT(quit())); // Go into the loop until the request is finished. loop.exec(); // Read all data of the response. QByteArray response = reply->readAll(); // Free space. reply->deleteLater(); // Return response; return response; } void PhilipsHueBridge::post(QString route, QString content) { QString url = QString("http://%1/api/%2/%3").arg(host).arg(username).arg(route); Debug(log, "Post %s: %s", url.toStdString().c_str(), content.toStdString().c_str()); // Perfrom request QNetworkRequest request(url); QNetworkReply* reply = manager->put(request, content.toLatin1()); // Connect finished signal to quit slot of the loop. QEventLoop loop; loop.connect(reply, SIGNAL(finished()), SLOT(quit())); // Go into the loop until the request is finished. loop.exec(); // Free space. reply->deleteLater(); } const std::set PhilipsHueLight::GAMUT_A_MODEL_IDS = { "LLC001", "LLC005", "LLC006", "LLC007", "LLC010", "LLC011", "LLC012", "LLC013", "LLC014", "LST001" }; const std::set PhilipsHueLight::GAMUT_B_MODEL_IDS = { "LCT001", "LCT002", "LCT003", "LCT007", "LLM001" }; const std::set PhilipsHueLight::GAMUT_C_MODEL_IDS = { "LLC020", "LST002" }; PhilipsHueLight::PhilipsHueLight(Logger* log, PhilipsHueBridge& bridge, unsigned int id) : log(log), bridge(bridge), id(id) { // Get model id and original state. QByteArray response = bridge.get(QString("lights/%1").arg(id)); // Use JSON parser to parse response. QJsonParseError error; QJsonDocument reader = QJsonDocument::fromJson(response, &error); ; // Parse response. if (error.error != QJsonParseError::NoError) { Error(log, "Got invalid response from light %d", id); } // Get state object values which are subject to change. QJsonObject json = reader.object(); if (!json["state"].toObject().contains("on")) { Error(log, "Got no state object from light %d", id); } if (!json["state"].toObject().contains("on")) { Error(log, "Got invalid state object from light %d", id); } QJsonObject state; state["on"] = json["state"].toObject()["on"]; on = false; if (json["state"].toObject()["on"].toBool() == true) { state["xy"] = json["state"].toObject()["xy"]; state["bri"] = json["state"].toObject()["bri"]; on = true; color = { (float) state["xy"].toArray()[0].toDouble(),(float) state["xy"].toArray()[1].toDouble(), (float) state["bri"].toDouble() / 255.0f}; transitionTime = json["state"].toObject()["transitiontime"].toInt(); } // Determine the model id. modelId = json["modelid"].toString().trimmed().replace("\"", ""); // Determine the original state. originalState = QJsonDocument(state).toJson(QJsonDocument::JsonFormat::Compact).trimmed(); // Find id in the sets and set the appropriate color space. if (GAMUT_A_MODEL_IDS.find(modelId) != GAMUT_A_MODEL_IDS.end()) { Debug(log, "Recognized model id %s as gamut A", modelId.toStdString().c_str()); colorSpace.red = { 0.703f, 0.296f}; colorSpace.green = { 0.2151f, 0.7106f}; colorSpace.blue = { 0.138f, 0.08f}; } else if (GAMUT_B_MODEL_IDS.find(modelId) != GAMUT_B_MODEL_IDS.end()) { Debug(log, "Recognized model id %s as gamut B", modelId.toStdString().c_str()); colorSpace.red = { 0.675f, 0.322f}; colorSpace.green = { 0.4091f, 0.518f}; colorSpace.blue = { 0.167f, 0.04f}; } else if (GAMUT_C_MODEL_IDS.find(modelId) != GAMUT_C_MODEL_IDS.end()) { Debug(log, "Recognized model id %s as gamut C", modelId.toStdString().c_str()); colorSpace.red = { 0.675f, 0.322f}; colorSpace.green = { 0.2151f, 0.7106f}; colorSpace.blue = { 0.167f, 0.04f}; } else { Warning(log, "Did not recognize model id %s", modelId.toStdString().c_str()); colorSpace.red = { 1.0f, 0.0f}; colorSpace.green = { 0.0f, 1.0f}; colorSpace.blue = { 0.0f, 0.0f}; } } PhilipsHueLight::~PhilipsHueLight() { // Restore the original state. set(originalState); } void PhilipsHueLight::set(QString state) { bridge.post(QString("lights/%1/state").arg(id), state); } void PhilipsHueLight::setOn(bool on) { if (this->on != on) { QString arg = on ? "true" : "false"; set(QString("{ \"on\": %1 }").arg(arg)); } this->on = on; } void PhilipsHueLight::setTransitionTime(unsigned int transitionTime) { if (this->transitionTime != transitionTime) { set(QString("{ \"transitiontime\": %1 }").arg(transitionTime)); } this->transitionTime = transitionTime; } void PhilipsHueLight::setColor(CiColor color, float brightnessFactor) { if (this->color != color) { const int bri = qRound(qMin(254.0f, brightnessFactor * qMax(1.0f, color.bri * 254.0f))); set(QString("{ \"xy\": [%1, %2], \"bri\": %3 }").arg(color.x, 0, 'f', 4).arg(color.y, 0, 'f', 4).arg(bri)); } this->color = color; } CiColor PhilipsHueLight::getColor() const { return color; } CiColorTriangle PhilipsHueLight::getColorSpace() const { return colorSpace; } LedDevicePhilipsHue::LedDevicePhilipsHue(const QJsonObject &deviceConfig) : LedDevice() { manager = new QNetworkAccessManager(); _deviceReady = init(deviceConfig); timer.setInterval(3000); timer.setSingleShot(true); connect(&timer, SIGNAL(timeout()), this, SLOT(restoreStates())); } LedDevicePhilipsHue::~LedDevicePhilipsHue() { // Switch off. switchOff(); } bool LedDevicePhilipsHue::init(const QJsonObject &deviceConfig) { LedDevice::init(deviceConfig); bridge = { _log, manager, deviceConfig["output"].toString(), deviceConfig["username"].toString("newdeveloper")}; switchOffOnBlack = deviceConfig["switchOffOnBlack"].toBool(true); brightnessFactor = (float) deviceConfig["brightnessFactor"].toDouble(1.0); transitionTime = deviceConfig["transitiontime"].toInt(1); lightIds.clear(); QJsonArray lArray = deviceConfig["lightIds"].toArray(); for (int i = 0; i < lArray.size(); i++) { lightIds.push_back(lArray[i].toInt()); } return true; } LedDevice* LedDevicePhilipsHue::construct(const QJsonObject &deviceConfig) { return new LedDevicePhilipsHue(deviceConfig); } int LedDevicePhilipsHue::write(const std::vector & ledValues) { // Save light states if not done before. if (!areStatesSaved()) { saveStates((unsigned int) ledValues.size()); } // If there are less states saved than colors given, then maybe something went wrong before. if (lights.size() != ledValues.size()) { restoreStates(); return 0; } // Iterate through colors and set light states. unsigned int idx = 0; for (const ColorRgb& color : ledValues) { // Get lamp. PhilipsHueLight& light = lights.at(idx); // Scale colors from [0, 255] to [0, 1] and convert to xy space. CiColor xy = CiColor::rgbToCiColor(color.red / 255.0f, color.green / 255.0f, color.blue / 255.0f, light.getColorSpace()); // Write color if color has been changed. if (switchOffOnBlack && light.getColor() != CiColor::BLACK && xy == CiColor::BLACK) { light.setOn(false); } else if (switchOffOnBlack && light.getColor() == CiColor::BLACK && xy != CiColor::BLACK) { light.setOn(true); } else { light.setOn(true); } light.setTransitionTime(transitionTime); light.setColor(xy, brightnessFactor); // Next light id. idx++; } // Reset timer. timer.start(); return 0; } int LedDevicePhilipsHue::switchOff() { timer.stop(); // If light states have been saved before, ... if (areStatesSaved()) { // ... restore them. restoreStates(); } return 0; } void LedDevicePhilipsHue::saveStates(unsigned int nLights) { // Clear saved lamps. lights.clear(); // if (nLights == 0) { return; } // Read light ids if none have been supplied by the user. if (lightIds.size() != nLights) { lightIds.clear(); // Retrieve lights from bridge. QByteArray response = bridge.get("lights"); // Use QJsonDocument to parse reponse. QJsonParseError error; QJsonDocument reader = QJsonDocument::fromJson(response, &error); if (error.error != QJsonParseError::NoError) { Error(_log, "No lights found."); } // Loop over all children. QJsonObject json = reader.object(); for (QJsonObject::iterator it = json.begin(); it != json.end() && lightIds.size() < nLights; it++) { int lightId = atoi(it.key().toStdString().c_str()); lightIds.push_back(lightId); Debug(_log, "nLights=%d: found light with id %d.", nLights, lightId); } // Check if we found enough lights. if (lightIds.size() != nLights) { Error(_log, "Not enough lights found"); } } // Iterate lights. for (unsigned int i = 0; i < nLights; i++) { lights.push_back(PhilipsHueLight(_log, bridge, lightIds.at(i))); } } void LedDevicePhilipsHue::restoreStates() { lights.clear(); } bool LedDevicePhilipsHue::areStatesSaved() { return !lights.empty(); }