#pragma once #include #include #include #include // fg effect #include /// /// @brief Provide utility methods for Hyperion class /// namespace hyperion { void handleInitialEffect(Hyperion* hyperion, const QJsonObject& FGEffectConfig) { #define FGCONFIG_ARRAY fgColorConfig.toArray() const int FG_PRIORITY = 0; const int DURATION_INFINITY = 0; // initial foreground effect/color if (FGEffectConfig["enable"].toBool(true)) { const QString fgTypeConfig = FGEffectConfig["type"].toString("effect"); const QString fgEffectConfig = FGEffectConfig["effect"].toString("Rainbow swirl fast"); const QJsonValue fgColorConfig = FGEffectConfig["color"]; int default_fg_duration_ms = 3000; int fg_duration_ms = FGEffectConfig["duration_ms"].toInt(default_fg_duration_ms); if (fg_duration_ms == DURATION_INFINITY) { fg_duration_ms = default_fg_duration_ms; Warning(Logger::getInstance("HYPERION"), "foreground effect duration 'infinity' is forbidden, set to default value %d ms",default_fg_duration_ms); } if ( fgTypeConfig.contains("color") ) { std::vector fg_color = { ColorRgb { (uint8_t)FGCONFIG_ARRAY.at(0).toInt(0), (uint8_t)FGCONFIG_ARRAY.at(1).toInt(0), (uint8_t)FGCONFIG_ARRAY.at(2).toInt(0) } }; hyperion->setColor(FG_PRIORITY, fg_color, fg_duration_ms); Info(Logger::getInstance("HYPERION"),"Initial foreground color set (%d %d %d)",fg_color.at(0).red,fg_color.at(0).green,fg_color.at(0).blue); } else { int result = hyperion->setEffect(fgEffectConfig, FG_PRIORITY, fg_duration_ms); Info(Logger::getInstance("HYPERION"),"Initial foreground effect '%s' %s", QSTRING_CSTR(fgEffectConfig), ((result == 0) ? "started" : "failed")); } } #undef FGCONFIG_ARRAY } ColorOrder createColorOrder(const QJsonObject &deviceConfig) { return stringToColorOrder(deviceConfig["colorOrder"].toString("rgb")); } RgbTransform* createRgbTransform(const QJsonObject& colorConfig) { const double backlightThreshold = colorConfig["backlightThreshold"].toDouble(0.0); const bool backlightColored = colorConfig["backlightColored"].toBool(false); const double brightness = colorConfig["brightness"].toInt(100); const double brightnessComp= colorConfig["brightnessCompensation"].toInt(100); const double gammaR = colorConfig["gammaRed"].toDouble(1.0); const double gammaG = colorConfig["gammaGreen"].toDouble(1.0); const double gammaB = colorConfig["gammaBlue"].toDouble(1.0); RgbTransform* transform = new RgbTransform(gammaR, gammaG, gammaB, backlightThreshold, backlightColored, brightness, brightnessComp); return transform; } RgbChannelAdjustment* createRgbChannelAdjustment(const QJsonObject& colorConfig, const QString channelName, const int defaultR, const int defaultG, const int defaultB) { const QJsonArray& channelConfig = colorConfig[channelName].toArray(); RgbChannelAdjustment* adjustment = new RgbChannelAdjustment( channelConfig[0].toInt(defaultR), channelConfig[1].toInt(defaultG), channelConfig[2].toInt(defaultB), "ChannelAdjust_"+channelName.toUpper() ); return adjustment; } ColorAdjustment * createColorAdjustment(const QJsonObject & adjustmentConfig) { const QString id = adjustmentConfig["id"].toString("default"); RgbChannelAdjustment * blackAdjustment = createRgbChannelAdjustment(adjustmentConfig, "black" , 0, 0, 0); RgbChannelAdjustment * whiteAdjustment = createRgbChannelAdjustment(adjustmentConfig, "white" , 255,255,255); RgbChannelAdjustment * redAdjustment = createRgbChannelAdjustment(adjustmentConfig, "red" , 255, 0, 0); RgbChannelAdjustment * greenAdjustment = createRgbChannelAdjustment(adjustmentConfig, "green" , 0,255, 0); RgbChannelAdjustment * blueAdjustment = createRgbChannelAdjustment(adjustmentConfig, "blue" , 0, 0,255); RgbChannelAdjustment * cyanAdjustment = createRgbChannelAdjustment(adjustmentConfig, "cyan" , 0,255,255); RgbChannelAdjustment * magentaAdjustment = createRgbChannelAdjustment(adjustmentConfig, "magenta", 255, 0,255); RgbChannelAdjustment * yellowAdjustment = createRgbChannelAdjustment(adjustmentConfig, "yellow" , 255,255, 0); RgbTransform * rgbTransform = createRgbTransform(adjustmentConfig); ColorAdjustment * adjustment = new ColorAdjustment(); adjustment->_id = id; adjustment->_rgbBlackAdjustment = *blackAdjustment; adjustment->_rgbWhiteAdjustment = *whiteAdjustment; adjustment->_rgbRedAdjustment = *redAdjustment; adjustment->_rgbGreenAdjustment = *greenAdjustment; adjustment->_rgbBlueAdjustment = *blueAdjustment; adjustment->_rgbCyanAdjustment = *cyanAdjustment; adjustment->_rgbMagentaAdjustment = *magentaAdjustment; adjustment->_rgbYellowAdjustment = *yellowAdjustment; adjustment->_rgbTransform = *rgbTransform; // Cleanup the allocated individual adjustments delete blackAdjustment; delete whiteAdjustment; delete redAdjustment; delete greenAdjustment; delete blueAdjustment; delete cyanAdjustment; delete magentaAdjustment; delete yellowAdjustment; delete rgbTransform; return adjustment; } MultiColorAdjustment * createLedColorsAdjustment(const unsigned ledCnt, const QJsonObject & colorConfig) { // Create the result, the transforms are added to this MultiColorAdjustment * adjustment = new MultiColorAdjustment(ledCnt); const QJsonValue adjustmentConfig = colorConfig["channelAdjustment"]; const QRegExp overallExp("([0-9]+(\\-[0-9]+)?)(,[ ]*([0-9]+(\\-[0-9]+)?))*"); const QJsonArray & adjustmentConfigArray = adjustmentConfig.toArray(); for (signed i = 0; i < adjustmentConfigArray.size(); ++i) { const QJsonObject & config = adjustmentConfigArray.at(i).toObject(); ColorAdjustment * colorAdjustment = createColorAdjustment(config); adjustment->addAdjustment(colorAdjustment); const QString ledIndicesStr = config["leds"].toString("").trimmed(); if (ledIndicesStr.compare("*") == 0) { // Special case for indices '*' => all leds adjustment->setAdjustmentForLed(colorAdjustment->_id, 0, ledCnt-1); //Info(Logger::getInstance("HYPERION"), "ColorAdjustment '%s' => [0-%d]", QSTRING_CSTR(colorAdjustment->_id), ledCnt-1); continue; } if (!overallExp.exactMatch(ledIndicesStr)) { //Error(Logger::getInstance("HYPERION"), "Given led indices %d not correct format: %s", i, QSTRING_CSTR(ledIndicesStr)); continue; } std::stringstream ss; const QStringList ledIndexList = ledIndicesStr.split(","); for (int i=0; i 0) { ss << ", "; } if (ledIndexList[i].contains("-")) { QStringList ledIndices = ledIndexList[i].split("-"); int startInd = ledIndices[0].toInt(); int endInd = ledIndices[1].toInt(); adjustment->setAdjustmentForLed(colorAdjustment->_id, startInd, endInd); ss << startInd << "-" << endInd; } else { int index = ledIndexList[i].toInt(); adjustment->setAdjustmentForLed(colorAdjustment->_id, index, index); ss << index; } } //Info(Logger::getInstance("HYPERION"), "ColorAdjustment '%s' => [%s]", QSTRING_CSTR(colorAdjustment->_id), ss.str().c_str()); } return adjustment; } /** * Construct the 'led-string' with the integration area definition per led and the color * ordering of the RGB channels * @param ledsConfig The configuration of the led areas * @param deviceOrder The default RGB channel ordering * @return The constructed ledstring */ LedString createLedString(const QJsonArray& ledConfigArray, const ColorOrder deviceOrder) { LedString ledString; const QString deviceOrderStr = colorOrderToString(deviceOrder); for (signed i = 0; i < ledConfigArray.size(); ++i) { const QJsonObject& ledConfig = ledConfigArray[i].toObject(); Led led; led.minX_frac = qMax(0.0, qMin(1.0, ledConfig["hmin"].toDouble())); led.maxX_frac = qMax(0.0, qMin(1.0, ledConfig["hmax"].toDouble())); led.minY_frac = qMax(0.0, qMin(1.0, ledConfig["vmin"].toDouble())); led.maxY_frac = qMax(0.0, qMin(1.0, ledConfig["vmax"].toDouble())); // Fix if the user swapped min and max if (led.minX_frac > led.maxX_frac) { std::swap(led.minX_frac, led.maxX_frac); } if (led.minY_frac > led.maxY_frac) { std::swap(led.minY_frac, led.maxY_frac); } // Get the order of the rgb channels for this led (default is device order) led.colorOrder = stringToColorOrder(ledConfig["colorOrder"].toString(deviceOrderStr)); ledString.leds().push_back(led); } return ledString; } QSize getLedLayoutGridSize(const QJsonArray& ledConfigArray) { std::vector midPointsX; std::vector midPointsY; for (signed i = 0; i < ledConfigArray.size(); ++i) { const QJsonObject& ledConfig = ledConfigArray[i].toObject(); double minX_frac = qMax(0.0, qMin(1.0, ledConfig["hmin"].toDouble())); double maxX_frac = qMax(0.0, qMin(1.0, ledConfig["hmax"].toDouble())); double minY_frac = qMax(0.0, qMin(1.0, ledConfig["vmin"].toDouble())); double maxY_frac = qMax(0.0, qMin(1.0, ledConfig["vmax"].toDouble())); // Fix if the user swapped min and max if (minX_frac > maxX_frac) { std::swap(minX_frac, maxX_frac); } if (minY_frac > maxY_frac) { std::swap(minY_frac, maxY_frac); } // calculate mid point and make grid calculation midPointsX.push_back( int(1000.0*(minX_frac + maxX_frac) / 2.0) ); midPointsY.push_back( int(1000.0*(minY_frac + maxY_frac) / 2.0) ); } // remove duplicates std::sort(midPointsX.begin(), midPointsX.end()); midPointsX.erase(std::unique(midPointsX.begin(), midPointsX.end()), midPointsX.end()); std::sort(midPointsY.begin(), midPointsY.end()); midPointsY.erase(std::unique(midPointsY.begin(), midPointsY.end()), midPointsY.end()); QSize gridSize( midPointsX.size(), midPointsY.size() ); //Debug(_log, "LED layout grid size: %dx%d", gridSize.width(), gridSize.height()); return gridSize; } };