#include // Local-Hyperion includes #include "LedDevicePhilipsHue.h" // jsoncpp includes #include // qt includes #include #include #include #include LedDevicePhilipsHue::LedDevicePhilipsHue(const std::string &output) : host(output.c_str()), username("newdeveloper") { http = new QHttp(host); /* timer.setInterval(3000); timer.setSingleShot(true); connect(&timer, SIGNAL(timeout()), this, SLOT(restoreStates()));*/ } LedDevicePhilipsHue::~LedDevicePhilipsHue() { delete http; } int LedDevicePhilipsHue::write(const std::vector &ledValues) { // Save light states if not done before. if (!statesSaved()) saveStates(ledValues.size()); // Iterate through colors and set light states. unsigned int lightId = 0; for (const ColorRgb &color : ledValues) { lightId++; // Send only request to the brigde if color changed (prevents DDOS --> 503) if (!oldLedValues.empty()) if(!hasColorChanged(lightId, &color)) continue; float r = color.red / 255.0f; float g = color.green / 255.0f; float b = color.blue / 255.0f; //set color gamut triangle if(std::find(hueBulbs.begin(), hueBulbs.end(), modelIds[(lightId - 1)]) != hueBulbs.end()) { Red = {0.675f, 0.322f}; Green = {0.4091f, 0.518f}; Blue = {0.167f, 0.04f}; } else if (std::find(livingColors.begin(), livingColors.end(), modelIds[(lightId - 1)]) != livingColors.end()) { Red = {0.703f, 0.296f}; Green = {0.214f, 0.709f}; Blue = {0.139f, 0.081f}; } else { Red = {1.0f, 0.0f}; Green = {0.0f, 1.0f}; Blue = {0.0f, 0.0f}; } // if color equal black, switch off lamp ... if (r == 0.0f && g == 0.0f && b == 0.0f) { switchLampOff(lightId); continue; } // ... and if lamp off, switch on if (!checkOnStatus(states[(lightId - 1)])) switchLampOn(lightId); float bri; CGPoint p = CGPointMake(0, 0); // Scale colors from [0, 255] to [0, 1] and convert to xy space. rgbToXYBrightness(r, g, b, &p, bri); // Send adjust color and brightness command in JSON format. put(getStateRoute(lightId), QString("{\"xy\": [%1, %2], \"bri\": %3}").arg(p.x).arg(p.y).arg(qRound(b * 255.0f))); } oldLedValues = ledValues; //timer.start(); return 0; } bool LedDevicePhilipsHue::hasColorChanged(unsigned int lightId, const ColorRgb *color) { bool matchFound = true; const ColorRgb &tmpOldColor = oldLedValues[(lightId - 1)]; if ((*color).red == tmpOldColor.red) matchFound = false; if (!matchFound && (*color).green == tmpOldColor.green) matchFound = false; else matchFound = true; if (!matchFound && (*color).blue == tmpOldColor.blue) matchFound = false; else matchFound = true; return matchFound; } int LedDevicePhilipsHue::switchOff() { //timer.stop(); // If light states have been saved before, ... if (statesSaved()) { // ... restore them. restoreStates(); } return 0; } bool LedDevicePhilipsHue::checkOnStatus(QString status) { return status.contains("\"on\":true"); } void LedDevicePhilipsHue::put(QString route, QString content) { QString url = QString("/api/%1/%2").arg(username).arg(route); QHttpRequestHeader header("PUT", url); header.setValue("Host", host); header.setValue("Accept-Encoding", "identity"); header.setValue("Connection", "keep-alive"); header.setValue("Content-Length", QString("%1").arg(content.size())); QEventLoop loop; // Connect requestFinished signal to quit slot of the loop. loop.connect(http, SIGNAL(requestFinished(int, bool)), SLOT(quit())); // Perfrom request http->request(header, content.toAscii()); // Go into the loop until the request is finished. loop.exec(); //std::cout << http->readAll().data() << std::endl; } QByteArray LedDevicePhilipsHue::get(QString route) { QString url = QString("/api/%1/%2").arg(username).arg(route); // Event loop to block until request finished. QEventLoop loop; // Connect requestFinished signal to quit slot of the loop. loop.connect(http, SIGNAL(requestFinished(int, bool)), SLOT(quit())); // Perfrom request http->get(url); // Go into the loop until the request is finished. loop.exec(); // Read all data of the response. return http->readAll(); } QString LedDevicePhilipsHue::getStateRoute(unsigned int lightId) { return QString("lights/%1/state").arg(lightId); } QString LedDevicePhilipsHue::getRoute(unsigned int lightId) { return QString("lights/%1").arg(lightId); } void LedDevicePhilipsHue::saveStates(unsigned int nLights) { // Clear saved light states. states.clear(); modelIds.clear(); // Use json parser to parse reponse. Json::Reader reader; Json::FastWriter writer; // Iterate lights. for (unsigned int i = 0; i < nLights; i++) { // Read the response. QByteArray response = get(getRoute(i + 1)); // Parse JSON. Json::Value json; if (!reader.parse(QString(response).toStdString(), json)) { // Error occured, break loop. break; } // Save state object values which are subject to change. Json::Value state(Json::objectValue); state["on"] = json["state"]["on"]; if (json["state"]["on"] == true) { state["xy"] = json["state"]["xy"]; state["bri"] = json["state"]["bri"]; } // Save state object. modelIds.push_back(QString(writer.write(json["modelid"]).c_str()).trimmed().replace("\"", "")); states.push_back(QString(writer.write(state).c_str()).trimmed()); } } void LedDevicePhilipsHue::switchLampOn(unsigned int lightId) { put(getStateRoute(lightId), "{\"on\": true}"); states[(lightId - 1)].replace("\"on\":false", "\"on\":true"); } void LedDevicePhilipsHue::switchLampOff(unsigned int lightId) { put(getStateRoute(lightId), "{\"on\": false}"); states[(lightId - 1)].replace("\"on\":true", "\"on\":false"); } void LedDevicePhilipsHue::restoreStates() { unsigned int lightId = 1; for (QString state : states) { put(getStateRoute(lightId), state); lightId++; } // Clear saved light states. states.clear(); modelIds.clear(); oldLedValues.clear(); } bool LedDevicePhilipsHue::statesSaved() { return !states.empty(); } CGPoint LedDevicePhilipsHue::CGPointMake(float x, float y) { CGPoint p; p.x = x; p.y = y; return p; } float LedDevicePhilipsHue::CrossProduct(CGPoint p1, CGPoint p2) { return (p1.x * p2.y - p1.y * p2.x); } bool LedDevicePhilipsHue::CheckPointInLampsReach(CGPoint p) { CGPoint v1 = CGPointMake(Green.x - Red.x, Green.y - Red.y); CGPoint v2 = CGPointMake(Blue.x - Red.x, Blue.y - Red.y); CGPoint q = CGPointMake(p.x - Red.x, p.y - Red.y); float s = CrossProduct(q, v2) / CrossProduct(v1, v2); float t = CrossProduct(v1, q) / CrossProduct(v1, v2); if ((s >= 0.0f) && (t >= 0.0f) && (s + t <= 1.0f)) return true; else return false; } CGPoint LedDevicePhilipsHue::GetClosestPointToPoint(CGPoint A, CGPoint B, CGPoint P) { CGPoint AP = CGPointMake(P.x - A.x, P.y - A.y); CGPoint AB = CGPointMake(B.x - A.x, B.y - A.y); float ab2 = AB.x * AB.x + AB.y * AB.y; float ap_ab = AP.x * AB.x + AP.y * AB.y; float t = ap_ab / ab2; if (t < 0.0f) t = 0.0f; else if (t > 1.0f) t = 1.0f; return CGPointMake(A.x + AB.x * t, A.y + AB.y * t); } float LedDevicePhilipsHue::GetDistanceBetweenTwoPoints(CGPoint one, CGPoint two) { float dx = one.x - two.x; // horizontal difference float dy = one.y - two.y; // vertical difference float dist = sqrt(dx * dx + dy * dy); return dist; } void LedDevicePhilipsHue::rgbToXYBrightness(float red, float green, float blue, CGPoint *xyPoint, float &brightness) { //Apply gamma correction. float r = (red > 0.04045f) ? powf((red + 0.055f) / (1.0f + 0.055f), 2.4f) : (red / 12.92f); float g = (green > 0.04045f) ? powf((green + 0.055f) / (1.0f + 0.055f), 2.4f) : (green / 12.92f); float b = (blue > 0.04045f) ? powf((blue + 0.055f) / (1.0f + 0.055f), 2.4f) : (blue / 12.92f); //Convert to XYZ space. float X = r * 0.649926f + g * 0.103455f + b * 0.197109f; float Y = r * 0.234327f + g * 0.743075f + b * 0.022598f; float Z = r * 0.0000000f + g * 0.053077f + b * 1.035763f; //Convert to x,y space. float cx = X / (X + Y + Z + 0.0000001f); float cy = Y / (X + Y + Z + 0.0000001f); if (isnan(cx)) cx = 0.0f; if (isnan(cy)) cy = 0.0f; (*xyPoint).x = cx; (*xyPoint).y = cy; //Check if the given XY value is within the colourreach of our lamps. bool inReachOfLamps = CheckPointInLampsReach(*xyPoint); if (!inReachOfLamps) { //It seems the colour is out of reach //let's find the closes colour we can produce with our lamp and send this XY value out. //Find the closest point on each line in the triangle. CGPoint pAB = GetClosestPointToPoint(Red, Green, *xyPoint); CGPoint pAC = GetClosestPointToPoint(Blue, Red, *xyPoint); CGPoint pBC = GetClosestPointToPoint(Green, Blue, *xyPoint); //Get the distances per point and see which point is closer to our Point. float dAB = GetDistanceBetweenTwoPoints(*xyPoint, pAB); float dAC = GetDistanceBetweenTwoPoints(*xyPoint, pAC); float dBC = GetDistanceBetweenTwoPoints(*xyPoint, pBC); float lowest = dAB; CGPoint closestPoint = pAB; if (dAC < lowest) { lowest = dAC; closestPoint = pAC; } if (dBC < lowest) { lowest = dBC; closestPoint = pBC; } //Change the xy value to a value which is within the reach of the lamp. (*xyPoint).x = closestPoint.x; (*xyPoint).y = closestPoint.y; } // Brightness is simply Y in the XYZ space. brightness = Y; }