#include "LedDeviceFadeCandy.h" #include #include // https://docs.microsoft.com/en-us/windows/win32/winprog/windows-data-types#ssize-t #if defined(_MSC_VER) #include typedef SSIZE_T ssize_t; #endif // Constants namespace { constexpr std::chrono::milliseconds CONNECT_TIMEOUT{1000}; const int MAX_NUM_LEDS = 10000; // OPC can handle 21845 LEDs - in theory, fadecandy device should handle 10000 LEDs const int OPC_SET_PIXELS = 0; // OPC command codes const int OPC_SYS_EX = 255; // OPC command codes const int OPC_HEADER_SIZE = 4; // OPC header size } //End of constants // TCP elements const int STREAM_DEFAULT_PORT = 7890; LedDeviceFadeCandy::LedDeviceFadeCandy(const QJsonObject& deviceConfig) : LedDevice(deviceConfig) , _client(nullptr) , _host() , _port(STREAM_DEFAULT_PORT) { } LedDeviceFadeCandy::~LedDeviceFadeCandy() { delete _client; } LedDevice* LedDeviceFadeCandy::construct(const QJsonObject& deviceConfig) { return new LedDeviceFadeCandy(deviceConfig); } bool LedDeviceFadeCandy::init(const QJsonObject& deviceConfig) { bool isInitOK = false; if (LedDevice::init(deviceConfig)) { if (getLedCount() > MAX_NUM_LEDS) { QString errortext = QString("More LED configured than allowed (%1)").arg(MAX_NUM_LEDS); this->setInError(errortext); isInitOK = false; } else { _host = deviceConfig["output"].toString("127.0.0.1"); _port = deviceConfig["port"].toInt(STREAM_DEFAULT_PORT); //If host not configured the init fails if (_host.isEmpty()) { this->setInError("No target hostname nor IP defined"); } else { _channel = deviceConfig["channel"].toInt(0); _gamma = deviceConfig["gamma"].toDouble(1.0); _noDither = !deviceConfig["dither"].toBool(false); _noInterp = !deviceConfig["interpolation"].toBool(false); _manualLED = deviceConfig["manualLed"].toBool(false); _ledOnOff = deviceConfig["ledOn"].toBool(false); _setFcConfig = deviceConfig["setFcConfig"].toBool(false); _whitePoint_r = 1.0; _whitePoint_g = 1.0; _whitePoint_b = 1.0; const QJsonArray whitePointConfig = deviceConfig["whitePoint"].toArray(); if (!whitePointConfig.isEmpty() && whitePointConfig.size() == 3) { _whitePoint_r = whitePointConfig[0].toDouble() / 255.0; _whitePoint_g = whitePointConfig[1].toDouble() / 255.0; _whitePoint_b = whitePointConfig[2].toDouble() / 255.0; } _opc_data.resize(static_cast(_ledRGBCount) + OPC_HEADER_SIZE); _opc_data[0] = static_cast(_channel); _opc_data[1] = OPC_SET_PIXELS; qToBigEndian(static_cast(_ledRGBCount), _opc_data.data() + 2); if (initNetwork()) { isInitOK = true; } } } } return isInitOK; } bool LedDeviceFadeCandy::initNetwork() { bool isInitOK = false; if (_client == nullptr) { _client = new QTcpSocket(this); isInitOK = true; } return isInitOK; } int LedDeviceFadeCandy::open() { int retval = -1; QString errortext; _isDeviceReady = false; // Try to open the LedDevice if (!tryConnect()) { errortext = QString("Failed to open device."); this->setInError(errortext); } else { // Everything is OK, device is ready _isDeviceReady = true; retval = 0; } return retval; } int LedDeviceFadeCandy::close() { int retval = 0; _isDeviceReady = false; // LedDevice specific closing activities if (_client != nullptr) { _client->close(); // Everything is OK -> device is closed } return retval; } bool LedDeviceFadeCandy::isConnected() const { bool connected = false; if (_client != nullptr) { connected = _client->state() == QAbstractSocket::ConnectedState; } return connected; } bool LedDeviceFadeCandy::tryConnect() { if (_client != nullptr) { if (_client->state() == QAbstractSocket::UnconnectedState) { _client->connectToHost(_host, static_cast(_port)); if (_client->waitForConnected(CONNECT_TIMEOUT.count())) { Info(_log, "fadecandy/opc: connected to %s:%d on channel %d", QSTRING_CSTR(_host), _port, _channel); if (_setFcConfig) { sendFadeCandyConfiguration(); } } } } return isConnected(); } int LedDeviceFadeCandy::write(const std::vector& ledValues) { uint idx = OPC_HEADER_SIZE; for (const ColorRgb& color : ledValues) { _opc_data[idx] = static_cast(color.red); _opc_data[idx + 1] = static_cast(color.green); _opc_data[idx + 2] = static_cast(color.blue); idx += 3; } int retval = transferData() < 0 ? -1 : 0; return retval; } qint64 LedDeviceFadeCandy::transferData() { if (isConnected() || tryConnect()) { return _client->write(_opc_data); } return -2; } qint64 LedDeviceFadeCandy::sendSysEx(uint8_t systemId, uint8_t commandId, const QByteArray& msg) { if (isConnected()) { QByteArray sysExData; int data_size = msg.size() + 4; sysExData.resize(4 + OPC_HEADER_SIZE); sysExData[0] = 0; sysExData[1] = static_cast(OPC_SYS_EX); qToBigEndian(static_cast(data_size), sysExData.data() + 2); qToBigEndian(static_cast(systemId), sysExData.data() + 4); qToBigEndian(static_cast(commandId), sysExData.data() + 6); sysExData += msg; return _client->write(sysExData, sysExData.size()); } return -1; } void LedDeviceFadeCandy::sendFadeCandyConfiguration() { Debug(_log, "send configuration to fadecandy"); QString data = "{\"gamma\": " + QString::number(_gamma, 'g', 4) + ", \"whitepoint\": [" + QString::number(_whitePoint_r, 'g', 4) + ", " + QString::number(_whitePoint_g, 'g', 4) + ", " + QString::number(_whitePoint_b, 'g', 4) + "]}"; sendSysEx(1, 1, data.toLocal8Bit()); char firmware_data = static_cast(static_cast(_noDither) | (static_cast(_noInterp) << 1) | (static_cast(_manualLED) << 2) | (static_cast(_ledOnOff) << 3)); sendSysEx(1, 2, QByteArray(1, firmware_data)); }