// Local-Hyperion includes #include "LedDevicePhilipsHue.h" // jsoncpp includes #include // qt includes #include #include #include #include #include LedDevicePhilipsHue::LedDevicePhilipsHue(const std::string& output) : host(output.c_str()), username("newdeveloper") { http = new QHttp(host); timer.setInterval(3000); timer.setSingleShot(true); connect(&timer, SIGNAL(timeout()), this, SLOT(restoreStates())); } LedDevicePhilipsHue::~LedDevicePhilipsHue() { delete http; } int LedDevicePhilipsHue::write(const std::vector & ledValues) { // Save light states if not done before. if (!areStatesSaved()) { saveStates((unsigned int) ledValues.size()); switchOn((unsigned int) ledValues.size()); } // Iterate through colors and set light states. unsigned int idx = 0; for (const ColorRgb& color : ledValues) { // Get lamp. HueLamp& lamp = lamps.at(idx); // Scale colors from [0, 255] to [0, 1] and convert to xy space. ColorPoint xy = rgbToXYBrightness(color.red / 255.0f, color.green / 255.0f, color.blue / 255.0f, lamp); // Write color if color has been changed. if (xy != lamp.color) { // Send adjust color command in JSON format. put(getStateRoute(lamp.id), QString("{\"xy\": [%1, %2]}").arg(xy.x).arg(xy.y)); // Send brightness color command in JSON format. put(getStateRoute(lamp.id), QString("{\"bri\": %1}").arg(qRound(xy.bri * 255.0f))); // Remember written color. lamp.color = xy; } // Next light id. idx++; } timer.start(); return 0; } int LedDevicePhilipsHue::switchOff() { timer.stop(); // If light states have been saved before, ... if (areStatesSaved()) { // ... restore them. restoreStates(); } return 0; } void LedDevicePhilipsHue::put(QString route, QString content) { QString url = QString("/api/%1/%2").arg(username).arg(route); QHttpRequestHeader header("PUT", url); header.setValue("Host", host); header.setValue("Accept-Encoding", "identity"); header.setValue("Connection", "keep-alive"); header.setValue("Content-Length", QString("%1").arg(content.size())); QEventLoop loop; // Connect requestFinished signal to quit slot of the loop. loop.connect(http, SIGNAL(requestFinished(int, bool)), SLOT(quit())); // Perfrom request http->request(header, content.toAscii()); // Go into the loop until the request is finished. loop.exec(); } QByteArray LedDevicePhilipsHue::get(QString route) { QString url = QString("/api/%1/%2").arg(username).arg(route); // Event loop to block until request finished. QEventLoop loop; // Connect requestFinished signal to quit slot of the loop. loop.connect(http, SIGNAL(requestFinished(int, bool)), SLOT(quit())); // Perfrom request http->get(url); // Go into the loop until the request is finished. loop.exec(); // Read all data of the response. return http->readAll(); } QString LedDevicePhilipsHue::getStateRoute(unsigned int lightId) { return QString("lights/%1/state").arg(lightId); } QString LedDevicePhilipsHue::getRoute(unsigned int lightId) { return QString("lights/%1").arg(lightId); } void LedDevicePhilipsHue::saveStates(unsigned int nLights) { // Clear saved lamps. lamps.clear(); // Use json parser to parse reponse. Json::Reader reader; Json::FastWriter writer; // Iterate lights. for (unsigned int i = 0; i < nLights; i++) { // Read the response. QByteArray response = get(getRoute(i + 1)); // Parse JSON. Json::Value json; if (!reader.parse(QString(response).toStdString(), json)) { // Error occured, break loop. break; } // Get state object values which are subject to change. Json::Value state(Json::objectValue); state["on"] = json["state"]["on"]; if (json["state"]["on"] == true) { state["xy"] = json["state"]["xy"]; state["bri"] = json["state"]["bri"]; } // Determine the model id. QString modelId = QString(writer.write(json["modelid"]).c_str()).trimmed().replace("\"", ""); QString originalState = QString(writer.write(state).c_str()).trimmed(); // Save state object. lamps.push_back(HueLamp(i + 1, originalState, modelId)); } } void LedDevicePhilipsHue::switchOn(unsigned int nLights) { for (HueLamp lamp : lamps) { put(getStateRoute(lamp.id), "{\"on\": true}"); } } void LedDevicePhilipsHue::restoreStates() { for (HueLamp lamp : lamps) { put(getStateRoute(lamp.id), lamp.originalState); } // Clear saved light states. lamps.clear(); } bool LedDevicePhilipsHue::areStatesSaved() { return !lamps.empty(); } float LedDevicePhilipsHue::crossProduct(ColorPoint p1, ColorPoint p2) { return p1.x * p2.y - p1.y * p2.x; } bool LedDevicePhilipsHue::isPointInLampsReach(HueLamp lamp, ColorPoint p) { ColorTriangle& triangle = lamp.colorSpace; ColorPoint v1 = { triangle.green.x - triangle.red.x, triangle.green.y - triangle.red.y }; ColorPoint v2 = { triangle.blue.x - triangle.red.x, triangle.blue.y - triangle.red.y }; ColorPoint q = { p.x - triangle.red.x, p.y - triangle.red.y }; float s = crossProduct(q, v2) / crossProduct(v1, v2); float t = crossProduct(v1, q) / crossProduct(v1, v2); if ((s >= 0.0f) && (t >= 0.0f) && (s + t <= 1.0f)) { return true; } else { return false; } } ColorPoint LedDevicePhilipsHue::getClosestPointToPoint(ColorPoint a, ColorPoint b, ColorPoint p) { ColorPoint AP = { p.x - a.x, p.y - a.y }; ColorPoint AB = { b.x - a.x, b.y - a.y }; float ab2 = AB.x * AB.x + AB.y * AB.y; float ap_ab = AP.x * AB.x + AP.y * AB.y; float t = ap_ab / ab2; if (t < 0.0f) { t = 0.0f; } else if (t > 1.0f) { t = 1.0f; } return {a.x + AB.x * t, a.y + AB.y * t}; } float LedDevicePhilipsHue::getDistanceBetweenTwoPoints(ColorPoint p1, ColorPoint p2) { // Horizontal difference. float dx = p1.x - p2.x; // Vertical difference. float dy = p1.y - p2.y; // Absolute value. return sqrt(dx * dx + dy * dy); } ColorPoint LedDevicePhilipsHue::rgbToXYBrightness(float red, float green, float blue, HueLamp lamp) { // Apply gamma correction. float r = (red > 0.04045f) ? powf((red + 0.055f) / (1.0f + 0.055f), 2.4f) : (red / 12.92f); float g = (green > 0.04045f) ? powf((green + 0.055f) / (1.0f + 0.055f), 2.4f) : (green / 12.92f); float b = (blue > 0.04045f) ? powf((blue + 0.055f) / (1.0f + 0.055f), 2.4f) : (blue / 12.92f); // Convert to XYZ space. float X = r * 0.649926f + g * 0.103455f + b * 0.197109f; float Y = r * 0.234327f + g * 0.743075f + b * 0.022598f; float Z = r * 0.0000000f + g * 0.053077f + b * 1.035763f; // Convert to x,y space. float cx = X / (X + Y + Z); float cy = Y / (X + Y + Z); if (isnan(cx)) { cx = 0.0f; } if (isnan(cy)) { cy = 0.0f; } ColorPoint xy = {cx, cy}; // Check if the given XY value is within the color reach of our lamps. if (!isPointInLampsReach(lamp, xy)) { // It seems the color is out of reach let's find the closes colour we can produce with our lamp and send this XY value out. ColorPoint pAB = getClosestPointToPoint(lamp.colorSpace.red, lamp.colorSpace.green, xy); ColorPoint pAC = getClosestPointToPoint(lamp.colorSpace.blue, lamp.colorSpace.red, xy); ColorPoint pBC = getClosestPointToPoint(lamp.colorSpace.green, lamp.colorSpace.blue, xy); // Get the distances per point and see which point is closer to our Point. float dAB = getDistanceBetweenTwoPoints(xy, pAB); float dAC = getDistanceBetweenTwoPoints(xy, pAC); float dBC = getDistanceBetweenTwoPoints(xy, pBC); float lowest = dAB; ColorPoint closestPoint = pAB; if (dAC < lowest) { lowest = dAC; closestPoint = pAC; } if (dBC < lowest) { lowest = dBC; closestPoint = pBC; } // Change the xy value to a value which is within the reach of the lamp. xy.x = closestPoint.x; xy.y = closestPoint.y; } // Brightness is simply Y in the XYZ space. xy.bri = Y; } HueLamp::HueLamp(unsigned int id, QString originalState, QString modelId) : id(id), originalState(originalState) { // Hue system model ids. const std::set HUE_BULBS_MODEL_IDS = { "LCT001", "LCT002", "LCT003" }; const std::set LIVING_COLORS_MODEL_IDS = { "LLC001", "LLC005", "LLC006", "LLC007", "LLC011", "LLC012", "LLC013", "LST001" }; // Find id in the sets and set the appropiate color space. if (HUE_BULBS_MODEL_IDS.find(modelId) != HUE_BULBS_MODEL_IDS.end()) { colorSpace.red = {0.675f, 0.322f}; colorSpace.green = {0.4091f, 0.518f}; colorSpace.blue = {0.167f, 0.04f}; } else if (LIVING_COLORS_MODEL_IDS.find(modelId) != LIVING_COLORS_MODEL_IDS.end()) { colorSpace.red = {0.703f, 0.296f}; colorSpace.green = {0.214f, 0.709f}; colorSpace.blue = {0.139f, 0.081f}; } else { colorSpace.red = {1.0f, 0.0f}; colorSpace.green = {0.0f, 1.0f}; colorSpace.blue = {0.0f, 0.0f}; } // Initialize color with black color = {0.0f, 0.0f, 0.0f}; } bool operator ==(ColorPoint p1, ColorPoint p2) { return (p1.x == p2.x) && (p1.y == p2.y) && (p1.bri == p2.bri); } bool operator !=(ColorPoint p1, ColorPoint p2) { return !(p1 == p2); }