hyperion.ng/libsrc/hyperion/ImageToLedsMap.cpp

139 lines
3.8 KiB
C++

#include <hyperion/ImageToLedsMap.h>
using namespace hyperion;
ImageToLedsMap::ImageToLedsMap(
Logger* log,
int width,
int height,
int horizontalBorder,
int verticalBorder,
const std::vector<Led>& leds,
int reducedPixelSetFactor,
int accuracyLevel)
: _log(log)
, _width(width)
, _height(height)
, _horizontalBorder(horizontalBorder)
, _verticalBorder(verticalBorder)
, _nextPixelCount(reducedPixelSetFactor)
, _clusterCount()
, _colorsMap()
{
_nextPixelCount = reducedPixelSetFactor + 1;
setAccuracyLevel(accuracyLevel);
// Sanity check of the size of the borders (and width and height)
Q_ASSERT(_width > 2*_verticalBorder);
Q_ASSERT(_height > 2*_horizontalBorder);
Q_ASSERT(_width < 10000);
Q_ASSERT(_height < 10000);
// Reserve enough space in the map for the leds
_colorsMap.reserve(leds.size());
const int xOffset = _verticalBorder;
const int actualWidth = _width - 2 * _verticalBorder;
const int yOffset = _horizontalBorder;
const int actualHeight = _height - 2 * _horizontalBorder;
size_t totalCount = 0;
size_t totalCapacity = 0;
int ledCounter = 0;
for (const Led& led : leds)
{
// skip leds without area
if ((led.maxX_frac-led.minX_frac) < 1e-6 || (led.maxY_frac-led.minY_frac) < 1e-6)
{
_colorsMap.emplace_back();
continue;
}
// Compute the index boundaries for this led
int minX_idx = xOffset + int32_t(qRound(actualWidth * led.minX_frac));
int maxX_idx = xOffset + int32_t(qRound(actualWidth * led.maxX_frac));
int minY_idx = yOffset + int32_t(qRound(actualHeight * led.minY_frac));
int maxY_idx = yOffset + int32_t(qRound(actualHeight * led.maxY_frac));
// make sure that the area is at least a single led large
minX_idx = qMin(minX_idx, xOffset + actualWidth - 1);
if (minX_idx == maxX_idx)
{
maxX_idx++;
}
minY_idx = qMin(minY_idx, yOffset + actualHeight - 1);
if (minY_idx == maxY_idx)
{
maxY_idx++;
}
// Add all the indices in the above defined rectangle to the indices for this led
const int maxYLedCount = qMin(maxY_idx, yOffset+actualHeight);
const int maxXLedCount = qMin(maxX_idx, xOffset+actualWidth);
const int realYLedCount = qAbs(maxYLedCount - minY_idx);
const int realXLedCount = qAbs(maxXLedCount - minX_idx);
bool skipPixelProcessing {false};
if (_nextPixelCount > 1)
{
skipPixelProcessing = true;
}
size_t totalSize = static_cast<size_t>(realYLedCount * realXLedCount);
if (!skipPixelProcessing && totalSize > 1600)
{
skipPixelProcessing = true;
_nextPixelCount = 2;
Warning(_log, "Mapping LED/light [%d]. The current mapping area contains %d pixels which is huge. Therefore every %d pixels will be skipped. You can enable reduced processing to hide that warning.", ledCounter, totalSize, _nextPixelCount);
}
std::vector<int> ledColors;
ledColors.reserve(totalSize);
for (int y = minY_idx; y < maxYLedCount; y += _nextPixelCount)
{
for (int x = minX_idx; x < maxXLedCount; x += _nextPixelCount)
{
ledColors.push_back( y * width + x);
}
}
// Add the constructed vector to the map
_colorsMap.push_back(ledColors);
totalCount += ledColors.size();
totalCapacity += ledColors.capacity();
ledCounter++;
}
Debug(_log, "Total index number is: %d (memory: %d). Reduced pixel set factor: %d, Accuracy level: %d, Image size: %d x %d, LED areas: %d",
totalCount, totalCapacity, reducedPixelSetFactor, accuracyLevel, width, height, leds.size());
}
int ImageToLedsMap::width() const
{
return _width;
}
int ImageToLedsMap::height() const
{
return _height;
}
void ImageToLedsMap::setAccuracyLevel (int accuracyLevel)
{
if (accuracyLevel > 4 )
{
Warning(_log, "Accuracy level %d is too high, it will be set to 4", accuracyLevel);
accuracyLevel = 4;
}
//Set cluster number for dominant color advanced
_clusterCount = accuracyLevel + 1;
}