mirror of
				https://github.com/hyperion-project/hyperion.ng.git
				synced 2025-03-01 10:33:28 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			663 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			663 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #ifndef IMAGETOLEDSMAP_H
 | |
| #define IMAGETOLEDSMAP_H
 | |
| 
 | |
| // STL includes
 | |
| #include <cassert>
 | |
| #include <memory>
 | |
| #include <sstream>
 | |
| #include <cmath>
 | |
| 
 | |
| // hyperion-utils includes
 | |
| #include <utils/Image.h>
 | |
| #include <utils/Logger.h>
 | |
| #include <utils/ColorRgbScalar.h>
 | |
| #include <utils/ColorSys.h>
 | |
| 
 | |
| // hyperion includes
 | |
| #include <hyperion/LedString.h>
 | |
| 
 | |
| namespace hyperion
 | |
| {
 | |
| 	///
 | |
| 	/// The ImageToLedsMap holds a mapping of indices into an image to LEDs. It can be used to
 | |
| 	/// calculate the average (aka mean) or dominant color per LED for a given region.
 | |
| 	///
 | |
| 	class ImageToLedsMap : public QObject
 | |
| 	{
 | |
| 		Q_OBJECT
 | |
| 
 | |
| 	public:
 | |
| 
 | |
| 		///
 | |
| 		/// Constructs an mapping from the absolute indices in an image to each LED based on the border
 | |
| 		/// definition given in the list of LEDs. The map holds absolute indices to any given image,
 | |
| 		/// provided that it is row-oriented.
 | |
| 		/// The mapping is created purely on size (width and height). The given borders are excluded
 | |
| 		/// from indexing.
 | |
| 		///
 | |
| 		/// @param[in] log              Logger
 | |
| 		/// @param[in] width            The width of the indexed image
 | |
| 		/// @param[in] height           The width of the indexed image
 | |
| 		/// @param[in] horizontalBorder The size of the horizontal border (0=no border)
 | |
| 		/// @param[in] verticalBorder   The size of the vertical border (0=no border)
 | |
| 		/// @param[in] leds             The list with led specifications
 | |
| 		/// @param[in] reducedProcessingFactor Factor to reduce the number of pixels evaluated during processing
 | |
| 		/// @param[in] accuraryLevel    The accuracy used during processing (only for selected types)
 | |
| 		///
 | |
| 		ImageToLedsMap(
 | |
| 				Logger* log,
 | |
| 				int width,
 | |
| 				int height,
 | |
| 				int horizontalBorder,
 | |
| 				int verticalBorder,
 | |
| 				const std::vector<Led> & leds,
 | |
| 				int reducedProcessingFactor = 0,
 | |
| 				int accuraryLevel = 0);
 | |
| 
 | |
| 		///
 | |
| 		/// Returns the width of the indexed image
 | |
| 		///
 | |
| 		/// @return The width of the indexed image [pixels]
 | |
| 		///
 | |
| 		int width() const;
 | |
| 
 | |
| 		///
 | |
| 		/// Returns the height of the indexed image
 | |
| 		///
 | |
| 		/// @return The height of the indexed image [pixels]
 | |
| 		///
 | |
| 		int height() const;
 | |
| 
 | |
| 		int horizontalBorder() const { return _horizontalBorder; }
 | |
| 		int verticalBorder() const { return _verticalBorder; }
 | |
| 
 | |
| 		///
 | |
| 		/// Set the accuracy used during processing
 | |
| 		/// (only for selected types)
 | |
| 		///
 | |
| 		/// @param[in] level  The accuracy level (0-4)
 | |
| 		void setAccuracyLevel (int level);
 | |
| 
 | |
| 		///
 | |
| 		/// Determines the mean color for each LED using the LED area mapping given
 | |
| 		/// at construction.
 | |
| 		///
 | |
| 		/// @param[in] image  The image from which to extract the led colors
 | |
| 		///
 | |
| 		/// @return The vector containing the output
 | |
| 		///
 | |
| 		template <typename Pixel_T>
 | |
| 		std::vector<ColorRgb> getMeanLedColor(const Image<Pixel_T> & image) const
 | |
| 		{
 | |
| 			std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
 | |
| 			getMeanLedColor(image, colors);
 | |
| 			return colors;
 | |
| 		}
 | |
| 
 | |
| 		///
 | |
| 		/// Determines the mean color for each LED using the LED area mapping given
 | |
| 		/// at construction.
 | |
| 		///
 | |
| 		/// @param[in] image  The image from which to extract the LED colors
 | |
| 		/// @param[out] ledColors  The vector containing the output
 | |
| 		///
 | |
| 		template <typename Pixel_T>
 | |
| 		void getMeanLedColor(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
 | |
| 		{
 | |
| 			if(_colorsMap.size() != ledColors.size())
 | |
| 			{
 | |
| 				Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			// Iterate each led and compute the mean
 | |
| 			auto led = ledColors.begin();
 | |
| 			for (auto colors = _colorsMap.begin(); colors != _colorsMap.end(); ++colors, ++led)
 | |
| 			{
 | |
| 				const ColorRgb color = calcMeanColor(image, *colors);
 | |
| 				*led = color;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		///
 | |
| 		/// Determines the mean color squared for each LED using the LED area mapping given
 | |
| 		/// at construction.
 | |
| 		///
 | |
| 		/// @param[in] image  The image from which to extract the led colors
 | |
| 		///
 | |
| 		/// @return The vector containing the output
 | |
| 		///
 | |
| 		template <typename Pixel_T>
 | |
| 		std::vector<ColorRgb> getMeanLedColorSqrt(const Image<Pixel_T> & image) const
 | |
| 		{
 | |
| 			std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
 | |
| 			getMeanLedColorSqrt(image, colors);
 | |
| 			return colors;
 | |
| 		}
 | |
| 
 | |
| 		///
 | |
| 		/// Determines the mean color squared for each LED using the LED area mapping given
 | |
| 		/// at construction.
 | |
| 		///
 | |
| 		/// @param[in] image  The image from which to extract the LED colors
 | |
| 		/// @param[out] ledColors  The vector containing the output
 | |
| 		///
 | |
| 		template <typename Pixel_T>
 | |
| 		void getMeanLedColorSqrt(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
 | |
| 		{
 | |
| 			if(_colorsMap.size() != ledColors.size())
 | |
| 			{
 | |
| 				Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			// Iterate each led and compute the mean
 | |
| 			auto led = ledColors.begin();
 | |
| 			for (auto colors = _colorsMap.begin(); colors != _colorsMap.end(); ++colors, ++led)
 | |
| 			{
 | |
| 				const ColorRgb color = calcMeanColorSqrt(image, *colors);
 | |
| 				*led = color;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		///
 | |
| 		/// Determines the mean color of the image and assigns it to all LEDs
 | |
| 		///
 | |
| 		/// @param[in] image  The image from which to extract the led color
 | |
| 		///
 | |
| 		/// @return The vector containing the output
 | |
| 		///
 | |
| 		template <typename Pixel_T>
 | |
| 		std::vector<ColorRgb> getUniLedColor(const Image<Pixel_T> & image) const
 | |
| 		{
 | |
| 			std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
 | |
| 			getUniLedColor(image, colors);
 | |
| 			return colors;
 | |
| 		}
 | |
| 
 | |
| 		///
 | |
| 		/// Determines the mean color of the image and assigns it to all LEDs
 | |
| 		///
 | |
| 		/// @param[in] image  The image from which to extract the LED colors
 | |
| 		/// @param[out] ledColors  The vector containing the output
 | |
| 		///
 | |
| 		template <typename Pixel_T>
 | |
| 		void getUniLedColor(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
 | |
| 		{
 | |
| 			if(_colorsMap.size() != ledColors.size())
 | |
| 			{
 | |
| 				Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			// calculate uni color
 | |
| 			const ColorRgb color = calcMeanColor(image);
 | |
| 			//Update all LEDs with same color
 | |
| 			std::fill(ledColors.begin(),ledColors.end(), color);
 | |
| 		}
 | |
| 
 | |
| 		///
 | |
| 		/// Determines the dominant color for each LED using the LED area mapping given
 | |
| 		/// at construction.
 | |
| 		///
 | |
| 		/// @param[in] image  The image from which to extract the LED color
 | |
| 		///
 | |
| 		/// @return The vector containing the output
 | |
| 		///
 | |
| 		template <typename Pixel_T>
 | |
| 		std::vector<ColorRgb> getDominantLedColor(const Image<Pixel_T> & image) const
 | |
| 		{
 | |
| 			std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
 | |
| 			getDominantLedColor(image, colors);
 | |
| 			return colors;
 | |
| 		}
 | |
| 
 | |
| 		///
 | |
| 		/// Determines the dominant color for each LED using the LED area mapping given
 | |
| 		/// at construction.
 | |
| 		///
 | |
| 		/// @param[in] image  The image from which to extract the LED colors
 | |
| 		/// @param[out] ledColors  The vector containing the output
 | |
| 		///
 | |
| 		template <typename Pixel_T>
 | |
| 		void getDominantLedColor(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
 | |
| 		{
 | |
| 			// Sanity check for the number of LEDs
 | |
| 			if(_colorsMap.size() != ledColors.size())
 | |
| 			{
 | |
| 				Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			// Iterate each led and compute the dominant color
 | |
| 			auto led = ledColors.begin();
 | |
| 			for (auto colors = _colorsMap.begin(); colors != _colorsMap.end(); ++colors, ++led)
 | |
| 			{
 | |
| 				const ColorRgb color = calculateDominantColor(image, *colors);
 | |
| 				*led = color;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		///
 | |
| 		/// Determines the dominant color  using a k-means algorithm for each LED using the LED area mapping given
 | |
| 		/// at construction.
 | |
| 		///
 | |
| 		/// @param[in] image  The image from which to extract the LED color
 | |
| 		///
 | |
| 		/// @return The vector containing the output
 | |
| 		///
 | |
| 		template <typename Pixel_T>
 | |
| 		std::vector<ColorRgb> getDominantLedColorAdv(const Image<Pixel_T> & image) const
 | |
| 		{
 | |
| 			std::vector<ColorRgb> colors(_colorsMap.size(), ColorRgb{0,0,0});
 | |
| 			getDominantLedColorAdv(image, colors);
 | |
| 			return colors;
 | |
| 		}
 | |
| 
 | |
| 		///
 | |
| 		/// Determines the dominant color using a k-means algorithm for each LED using the LED area mapping given
 | |
| 		/// at construction.
 | |
| 		///
 | |
| 		/// @param[in] image  The image from which to extract the LED colors
 | |
| 		/// @param[out] ledColors  The vector containing the output
 | |
| 		///
 | |
| 		template <typename Pixel_T>
 | |
| 		void getDominantLedColorAdv(const Image<Pixel_T> & image, std::vector<ColorRgb> & ledColors) const
 | |
| 		{
 | |
| 			// Sanity check for the number of LEDs
 | |
| 			if(_colorsMap.size() != ledColors.size())
 | |
| 			{
 | |
| 				Debug(_log, "ImageToLedsMap: colorsMap.size != ledColors.size -> %d != %d", _colorsMap.size(), ledColors.size());
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			// Iterate each led and compute the dominant color
 | |
| 			auto led = ledColors.begin();
 | |
| 			for (auto colors = _colorsMap.begin(); colors != _colorsMap.end(); ++colors, ++led)
 | |
| 			{
 | |
| 				const ColorRgb color = calculateDominantColorAdv(image, *colors);
 | |
| 				*led = color;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	private:
 | |
| 
 | |
| 		Logger* _log;
 | |
| 
 | |
| 		/// The width of the indexed image
 | |
| 		const int _width;
 | |
| 		/// The height of the indexed image
 | |
| 		const int _height;
 | |
| 
 | |
| 		const int _horizontalBorder;
 | |
| 		const int _verticalBorder;
 | |
| 
 | |
| 		/// Evaluate every "count" pixel
 | |
| 		int _nextPixelCount;
 | |
| 
 | |
| 		/// Number of clusters used during dominant color advanced processing (k-means)
 | |
| 		int _clusterCount;
 | |
| 
 | |
| 		/// The absolute indices into the image for each led
 | |
| 		std::vector<std::vector<int>> _colorsMap;
 | |
| 
 | |
| 		///
 | |
| 		/// Calculates the 'mean color' over the given image. This is the mean over each color-channel
 | |
| 		/// (red, green, blue)
 | |
| 		///
 | |
| 		/// @param[in] image The image a section from which an average color must be computed
 | |
| 		/// @param[in] pixels The list of pixel indices for the given image to be evaluated///
 | |
| 		///
 | |
| 		/// @return The mean of the given list of colors (or black when empty)
 | |
| 		///
 | |
| 		template <typename Pixel_T>
 | |
| 		ColorRgb calcMeanColor(const Image<Pixel_T> & image, const std::vector<int32_t> & pixels) const
 | |
| 		{
 | |
| 			const auto pixelNum = pixels.size();
 | |
| 			if (pixelNum == 0)
 | |
| 			{
 | |
| 				return ColorRgb::BLACK;
 | |
| 			}
 | |
| 
 | |
| 			// Accumulate the sum of each separate color channel
 | |
| 			uint_fast32_t cummRed   = 0;
 | |
| 			uint_fast32_t cummGreen = 0;
 | |
| 			uint_fast32_t cummBlue  = 0;
 | |
| 
 | |
| 			const auto& imgData = image.memptr();
 | |
| 			for (const int pixelOffset : pixels)
 | |
| 			{
 | |
| 				const auto& pixel = imgData[pixelOffset];
 | |
| 				cummRed   += pixel.red;
 | |
| 				cummGreen += pixel.green;
 | |
| 				cummBlue  += pixel.blue;
 | |
| 			}
 | |
| 
 | |
| 			// Compute the average of each color channel
 | |
| 			const uint8_t avgRed   = uint8_t(cummRed/pixelNum);
 | |
| 			const uint8_t avgGreen = uint8_t(cummGreen/pixelNum);
 | |
| 			const uint8_t avgBlue  = uint8_t(cummBlue/pixelNum);
 | |
| 
 | |
| 			// Return the computed color
 | |
| 			return {avgRed, avgGreen, avgBlue};
 | |
| 		}
 | |
| 
 | |
| 		///
 | |
| 		/// Calculates the 'mean color' over the given image. This is the mean over each color-channel
 | |
| 		/// (red, green, blue)
 | |
| 		///
 | |
| 		/// @param[in] image The image a section from which an average color must be computed
 | |
| 		///
 | |
| 		/// @return The mean of the given list of colors (or black when empty)
 | |
| 		///
 | |
| 		template <typename Pixel_T>
 | |
| 		ColorRgb calcMeanColor(const Image<Pixel_T> & image) const
 | |
| 		{
 | |
| 			// Accumulate the sum of each separate color channel
 | |
| 			uint_fast32_t cummRed   = 0;
 | |
| 			uint_fast32_t cummGreen = 0;
 | |
| 			uint_fast32_t cummBlue  = 0;
 | |
| 
 | |
| 			const unsigned pixelNum = image.width() * image.height();
 | |
| 			const auto& imgData = image.memptr();
 | |
| 
 | |
| 			for (unsigned idx=0; idx<pixelNum; idx++)
 | |
| 			{
 | |
| 				const auto& pixel = imgData[idx];
 | |
| 				cummRed   += pixel.red;
 | |
| 				cummGreen += pixel.green;
 | |
| 				cummBlue  += pixel.blue;
 | |
| 			}
 | |
| 
 | |
| 			// Compute the average of each color channel
 | |
| 			const uint8_t avgRed   = uint8_t(cummRed/pixelNum);
 | |
| 			const uint8_t avgGreen = uint8_t(cummGreen/pixelNum);
 | |
| 			const uint8_t avgBlue  = uint8_t(cummBlue/pixelNum);
 | |
| 
 | |
| 			// Return the computed color
 | |
| 			return {avgRed, avgGreen, avgBlue};
 | |
| 		}
 | |
| 
 | |
| 		///
 | |
| 		/// Calculates the 'mean color' squared over the given image. This is the mean over each color-channel
 | |
| 		/// (red, green, blue)
 | |
| 		///
 | |
| 		/// @param[in] image The image a section from which an average color must be computed
 | |
| 		/// @param[in] pixels The list of pixel indices for the given image to be evaluated
 | |
| 		///
 | |
| 		/// @return The mean of the given list of colors (or black when empty)
 | |
| 		///
 | |
| 		template <typename Pixel_T>
 | |
| 		ColorRgb calcMeanColorSqrt(const Image<Pixel_T> & image, const std::vector<int32_t> & pixels) const
 | |
| 		{
 | |
| 			const auto pixelNum = pixels.size();
 | |
| 			if (pixelNum == 0)
 | |
| 			{
 | |
| 				return ColorRgb::BLACK;
 | |
| 			}
 | |
| 
 | |
| 			// Accumulate the squared sum of each separate color channel
 | |
| 			uint_fast32_t cummRed   = 0;
 | |
| 			uint_fast32_t cummGreen = 0;
 | |
| 			uint_fast32_t cummBlue  = 0;
 | |
| 
 | |
| 			const auto& imgData = image.memptr();
 | |
| 
 | |
| 			for (const int colorOffset : pixels)
 | |
| 			{
 | |
| 				const auto& pixel = imgData[colorOffset];
 | |
| 
 | |
| 				cummRed   += pixel.red * pixel.red;
 | |
| 				cummGreen += pixel.green * pixel.green;
 | |
| 				cummBlue  += pixel.blue * pixel.blue;
 | |
| 			}
 | |
| 
 | |
| 			// Compute the average of each color channel
 | |
| 
 | |
| 			#ifdef WIN32
 | |
| 				#undef min
 | |
| 			#endif
 | |
| 			const uint8_t avgRed = static_cast<uint8_t>(std::min(std::lround(std::sqrt(static_cast<double>(cummRed / pixelNum))), 255L));
 | |
| 			const uint8_t avgGreen = static_cast<uint8_t>(std::min(std::lround(sqrt(static_cast<double>(cummGreen / pixelNum))), 255L));
 | |
| 			const uint8_t avgBlue = static_cast<uint8_t>(std::min(std::lround(sqrt(static_cast<double>(cummBlue / pixelNum))), 255L));
 | |
| 
 | |
| 			// Return the computed color
 | |
| 			return {avgRed, avgGreen, avgBlue};
 | |
| 		}
 | |
| 
 | |
| 		///
 | |
| 		/// Calculates the 'mean color' squared over the given image. This is the mean over each color-channel
 | |
| 		/// (red, green, blue)
 | |
| 		///
 | |
| 		/// @param[in] image The image a section from which an average color must be computed
 | |
| 		///
 | |
| 		/// @return The mean of the given list of colors (or black when empty)
 | |
| 		///
 | |
| 		template <typename Pixel_T>
 | |
| 		ColorRgb calcMeanColorSqrt(const Image<Pixel_T> & image) const
 | |
| 		{
 | |
| 			// Accumulate the squared sum of each separate color channel
 | |
| 			uint_fast32_t cummRed   = 0;
 | |
| 			uint_fast32_t cummGreen = 0;
 | |
| 			uint_fast32_t cummBlue  = 0;
 | |
| 
 | |
| 			const unsigned pixelNum = image.width() * image.height();
 | |
| 			const auto& imgData = image.memptr();
 | |
| 
 | |
| 			for (int idx=0; idx<pixelNum; ++idx)
 | |
| 			{
 | |
| 				const auto& pixel = imgData[idx];
 | |
| 				cummRed   += pixel.red * pixel.red;
 | |
| 				cummGreen += pixel.green * pixel.green;
 | |
| 				cummBlue  += pixel.blue * pixel.blue;
 | |
| 			}
 | |
| 
 | |
| 			// Compute the average of each color channel
 | |
| 			const uint8_t avgRed   = uint8_t(std::lround(sqrt(static_cast<double>(cummRed/pixelNum))));
 | |
| 			const uint8_t avgGreen = uint8_t(std::lround(sqrt(static_cast<double>(cummGreen/pixelNum))));
 | |
| 			const uint8_t avgBlue  = uint8_t(std::lround(sqrt(static_cast<double>(cummBlue/pixelNum))));
 | |
| 
 | |
| 			// Return the computed color
 | |
| 			return {avgRed, avgGreen, avgBlue};
 | |
| 		}
 | |
| 
 | |
| 		///
 | |
| 		/// Calculates the 'dominant color' of an image area defined by a list of pixel indices
 | |
| 		///
 | |
| 		/// @param[in] image The image for which a dominant color is to be computed
 | |
| 		/// @param[in] pixels The list of pixel indices for the given image to be evaluated
 | |
| 		///
 | |
| 		/// @return The image area's dominant color or black, if no pixel indices provided
 | |
| 		///
 | |
| 		template <typename Pixel_T>
 | |
| 		ColorRgb calculateDominantColor(const Image<Pixel_T> & image, const std::vector<int> & pixels) const
 | |
| 		{
 | |
| 			ColorRgb dominantColor {ColorRgb::BLACK};
 | |
| 
 | |
| 			const auto pixelNum = pixels.size();
 | |
| 			if (pixelNum > 0)
 | |
| 			{
 | |
| 				const auto& imgData = image.memptr();
 | |
| 
 | |
| 				QMap<QRgb,int> colorDistributionMap;
 | |
| 				int count = 0;
 | |
| 				for (const int pixelOffset : pixels)
 | |
| 				{
 | |
| 					QRgb color = imgData[pixelOffset].rgb();
 | |
| 					if (colorDistributionMap.contains(color)) {
 | |
| 						colorDistributionMap[color] = colorDistributionMap[color] + 1;
 | |
| 					}
 | |
| 					else  {
 | |
| 						colorDistributionMap[color] = 1;
 | |
| 					}
 | |
| 
 | |
| 					int colorsFound  =  colorDistributionMap[color];
 | |
| 					if (colorsFound > count)  {
 | |
| 						dominantColor.setRgb(color);
 | |
| 						count = colorsFound;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			return dominantColor;
 | |
| 		}
 | |
| 
 | |
| 		///
 | |
| 		/// Calculates the 'dominant color' of an image
 | |
| 		///
 | |
| 		/// @param[in] image The image for which a dominant color is to be computed
 | |
| 		///
 | |
| 		/// @return The image's dominant color
 | |
| 		///
 | |
| 		template <typename Pixel_T>
 | |
| 		ColorRgb calculateDominantColor(const Image<Pixel_T> & image) const
 | |
| 		{
 | |
| 			const unsigned pixelNum = image.width() * image.height();
 | |
| 
 | |
| 			std::vector<int> pixels(pixelNum);
 | |
| 			std::iota(pixels.begin(), pixels.end(), 0);
 | |
| 
 | |
| 			return calculateDominantColor(image, pixels);
 | |
| 		}
 | |
| 
 | |
| 		template <typename Pixel_T>
 | |
| 		struct ColorCluster {
 | |
| 
 | |
| 			ColorCluster():count(0) {}
 | |
| 			ColorCluster(Pixel_T color):count(0),color(color) {}
 | |
| 
 | |
| 			Pixel_T color;
 | |
| 			Pixel_T newColor;
 | |
| 			int count;
 | |
| 		};
 | |
| 
 | |
| 		const ColorRgb DEFAULT_CLUSTER_COLORS[5] {
 | |
| 			{ColorRgb::BLACK},
 | |
| 			{ColorRgb::GREEN},
 | |
| 			{ColorRgb::WHITE},
 | |
| 			{ColorRgb::RED},
 | |
| 			{ColorRgb::YELLOW}
 | |
| 		};
 | |
| 
 | |
| 		///
 | |
| 		/// Calculates the 'dominant color' of an image area defined by a list of pixel indices
 | |
| 		/// using a k-means algorithm (https://robocraft.ru/computervision/1063)
 | |
| 		///
 | |
| 		/// @param[in] image The image for which a dominant color is to be computed
 | |
| 		/// @param[in] pixels The list of pixel indices for the given image to be evaluated
 | |
| 		///
 | |
| 		/// @return The image area's dominant color or black, if no pixel indices provided
 | |
| 		///
 | |
| 		template <typename Pixel_T>
 | |
| 		ColorRgb calculateDominantColorAdv(const Image<Pixel_T> & image, const std::vector<int> & pixels) const
 | |
| 		{
 | |
| 			ColorRgb dominantColor {ColorRgb::BLACK};
 | |
| 			const auto pixelNum = pixels.size();
 | |
| 			if (pixelNum > 0)
 | |
| 			{
 | |
| 				// initial cluster with different colors
 | |
| 				std::unique_ptr<ColorCluster<ColorRgbScalar>[]> clusters(new ColorCluster<ColorRgbScalar>[_clusterCount]);
 | |
| 				for(int k = 0; k < _clusterCount; ++k)
 | |
| 				{
 | |
| 					clusters.get()[k].newColor = DEFAULT_CLUSTER_COLORS[k];
 | |
| 				}
 | |
| 
 | |
| 				// k-means
 | |
| 				double min_rgb_euclidean {0};
 | |
| 				double old_rgb_euclidean {0};
 | |
| 
 | |
| 				while(1)
 | |
| 				{
 | |
| 					for(int k = 0; k < _clusterCount; ++k)
 | |
| 					{
 | |
| 						clusters.get()[k].count = 0;
 | |
| 						clusters.get()[k].color = clusters.get()[k].newColor;
 | |
| 						clusters.get()[k].newColor.setRgb(ColorRgb::BLACK);
 | |
| 					}
 | |
| 
 | |
| 					const auto& imgData = image.memptr();
 | |
| 					for (const int pixelOffset : pixels)
 | |
| 					{
 | |
| 						const auto& pixel = imgData[pixelOffset];
 | |
| 
 | |
| 						min_rgb_euclidean = 255 * 255 * 255;
 | |
| 						int clusterIndex = -1;
 | |
| 						for(int k = 0; k < _clusterCount; ++k)
 | |
| 						{
 | |
| 							double euclid = ColorSys::rgb_euclidean(ColorRgbScalar(pixel), clusters.get()[k].color);
 | |
| 
 | |
| 							if(  euclid < min_rgb_euclidean ) {
 | |
| 								min_rgb_euclidean = euclid;
 | |
| 								clusterIndex = k;
 | |
| 							}
 | |
| 						}
 | |
| 
 | |
| 						clusters.get()[clusterIndex].count++;
 | |
| 						clusters.get()[clusterIndex].newColor += ColorRgbScalar(pixel);
 | |
| 					}
 | |
| 
 | |
| 					min_rgb_euclidean = 0;
 | |
| 					for(int k = 0; k < _clusterCount; ++k)
 | |
| 					{
 | |
| 						if (clusters.get()[k].count > 0)
 | |
| 						{
 | |
| 							// new color
 | |
| 							clusters.get()[k].newColor /= clusters.get()[k].count;
 | |
| 							double ecli = ColorSys::rgb_euclidean(clusters.get()[k].newColor, clusters.get()[k].color);
 | |
| 							if(ecli > min_rgb_euclidean)
 | |
| 							{
 | |
| 								min_rgb_euclidean = ecli;
 | |
| 							}
 | |
| 						}
 | |
| 					}
 | |
| 
 | |
| 					if( fabs(min_rgb_euclidean - old_rgb_euclidean) < 1)
 | |
| 					{
 | |
| 						break;
 | |
| 					}
 | |
| 
 | |
| 					old_rgb_euclidean = min_rgb_euclidean;
 | |
| 				}
 | |
| 
 | |
| 				int colorsFoundMax = 0;
 | |
| 				int dominantClusterIdx {0};
 | |
| 
 | |
| 				for(int clusterIdx=0; clusterIdx < _clusterCount; ++clusterIdx){
 | |
| 					int colorsFoundinCluster = clusters.get()[clusterIdx].count;
 | |
| 					if (colorsFoundinCluster > colorsFoundMax)  {
 | |
| 						colorsFoundMax = colorsFoundinCluster;
 | |
| 						dominantClusterIdx = clusterIdx;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				dominantColor.red = static_cast<uint8_t>(clusters.get()[dominantClusterIdx].newColor.red);
 | |
| 				dominantColor.green = static_cast<uint8_t>(clusters.get()[dominantClusterIdx].newColor.green);
 | |
| 				dominantColor.blue = static_cast<uint8_t>(clusters.get()[dominantClusterIdx].newColor.blue);
 | |
| 			}
 | |
| 
 | |
| 			return dominantColor;
 | |
| 		}
 | |
| 
 | |
| 		///
 | |
| 		/// Calculates the 'dominant color' of an image area defined by a list of pixel indices
 | |
| 		/// using a k-means algorithm (https://robocraft.ru/computervision/1063)
 | |
| 		///
 | |
| 		/// @param[in] image The image for which a dominant color is to be computed
 | |
| 		///
 | |
| 		/// @return The image's dominant color
 | |
| 		///
 | |
| 		template <typename Pixel_T>
 | |
| 		ColorRgb calculateDominantColorAdv(const Image<Pixel_T> & image) const
 | |
| 		{
 | |
| 			const unsigned pixelNum = image.width() * image.height();
 | |
| 
 | |
| 			std::vector<int> pixels(pixelNum);
 | |
| 			std::iota(pixels.begin(), pixels.end(), 0);
 | |
| 
 | |
| 			return calculateDominantColorAdv(image, pixels);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| } // end namespace hyperion
 | |
| 
 | |
| #endif // IMAGETOLEDSMAP_H
 |