hyperion.ng/libsrc/leddevice/dev_spi/LedDeviceSk6822SPI.cpp
LordGrey 6fa7bab6f7
Add CodeQL for GitHub code scanning (#1548)
* Create codeql.yml

* Addressing codeql findings
2022-12-27 08:36:10 +01:00

119 lines
2.8 KiB
C++

#include "LedDeviceSk6822SPI.h"
/*
From the data sheet:
(TH+TL=1.7μs±600ns)
T0H, 0 code, high level time, 0.35µs ±0.150ns
T0L, 0 code, low level time, 1.36µs ±0.150ns
T1H, 1 code, high level time, 1.36µs ±0.150ns
T1L, 1 code, low level time, 0.35µs ±0.150ns
WT, Wait for the processing time, 12µs ±0.150ns
Trst, Reset code,low level time, 50µs
To normalise the pulse times so they fit in 4 SPI bits:
Use timings at upper end of tolerance:
1.36 -> 1.50 uS
0.35 -> 0.50 uS
A SPI bit time of 0.50uS = 2Mbit/sec
T0 is sent as 1000
T1 is sent as 1110
With a bit of excel testing, we can work out the maximum and minimum speeds:
2000000 MIN
2230000 AVG
2460000 MAX
Wait time:
using the min of 2000000, the bit time is 0.500
Wait time is 12uS = 24 bits = 3 bytes
Reset time:
using the min of 2000000, the bit time is 0.500
Reset time is 50uS = 100 bits = 13 bytes
*/
LedDeviceSk6822SPI::LedDeviceSk6822SPI(const QJsonObject &deviceConfig)
: ProviderSpi(deviceConfig)
, SPI_BYTES_PER_COLOUR(4)
, SPI_BYTES_WAIT_TIME(3)
, SPI_FRAME_END_LATCH_BYTES(13)
, bitpair_to_byte {
0b10001000,
0b10001110,
0b11101000,
0b11101110,
}
{
}
LedDevice* LedDeviceSk6822SPI::construct(const QJsonObject &deviceConfig)
{
return new LedDeviceSk6822SPI(deviceConfig);
}
bool LedDeviceSk6822SPI::init(const QJsonObject &deviceConfig)
{
_baudRate_Hz = 2230000;
bool isInitOK = false;
// Initialise sub-class
if ( ProviderSpi::init(deviceConfig) )
{
WarningIf(( _baudRate_Hz < 2000000 || _baudRate_Hz > 2460000 ), _log, "SPI rate %d outside recommended range (2000000 -> 2460000)", _baudRate_Hz);
_ledBuffer.resize( (_ledRGBCount * SPI_BYTES_PER_COLOUR) + (_ledCount * SPI_BYTES_WAIT_TIME ) + SPI_FRAME_END_LATCH_BYTES, 0x00);
isInitOK = true;
}
return isInitOK;
}
int LedDeviceSk6822SPI::write(const std::vector<ColorRgb> &ledValues)
{
unsigned spi_ptr = 0;
const int SPI_BYTES_PER_LED = sizeof(ColorRgb) * SPI_BYTES_PER_COLOUR;
for (const ColorRgb& color : ledValues)
{
uint32_t colorBits = ((unsigned int)color.red << 16)
| ((unsigned int)color.green << 8)
| color.blue;
for (int j=SPI_BYTES_PER_LED - 1; j>=0; j--)
{
_ledBuffer[spi_ptr+j] = bitpair_to_byte[ colorBits & 0x3 ];
colorBits >>= 2;
}
spi_ptr += SPI_BYTES_PER_LED;
spi_ptr += SPI_BYTES_WAIT_TIME; // the wait between led time is all zeros
}
#if 0
// debug the whole SPI packet
char debug_line[2048];
int ptr=0;
for (unsigned int i=0; i < _ledBuffer.size(); i++)
{
if (i%16 == 0)
{
ptr += snprintf (ptr+debug_line, sizeof(debug_line)-ptr, "%03x: ", i);
}
ptr += snprintf (ptr+debug_line, sizeof(debug_line)-ptr, "%02x ", _ledBuffer.data()[i]);
if ( (i%16 == 15) || ( i == _ledBuffer.size()-1 ) )
{
Debug(_log, debug_line);
ptr = 0;
}
}
#endif
return writeBytes(_ledBuffer.size(), _ledBuffer.data());
}