LordGrey fa7a5b6b56
Various Fixes/Updates (#1549)
* Update FindWindowsSDK.cmake

* cmake support libcec without version

* Ensure Light-Ids are strings

* Fix type - do not have dbus as requried

* Fixing #1544

* Cleanup

* CleanupFix #1551

* Consistently return instance number with JSON replies (#1504)

* hyperion-remote- Fix extracting reply for configGet request

* Qt 6.6 - Fix iterator finds

* Fix test_image2ledsmap

* Ensure window.currentHyperionInstanceName is set, cleanup system/log clipboard report

* Address protobuf cmake warning

* Update License

* Update ChangeLog

* Address CodeQL and clang findings
2023-01-16 12:01:28 +01:00

272 lines
10 KiB
C++

#pragma once
#include <sstream>
#include <hyperion/ColorAdjustment.h>
#include <hyperion/MultiColorAdjustment.h>
#include <hyperion/LedString.h>
#include <QRegularExpression>
// fg effect
#include <hyperion/Hyperion.h>
#include <hyperion/PriorityMuxer.h>
#if defined(ENABLE_EFFECTENGINE)
#include <effectengine/Effect.h>
#endif
///
/// @brief Provide utility methods for Hyperion class
///
namespace hyperion {
static void handleInitialEffect(Hyperion* hyperion, const QJsonObject& FGEffectConfig)
{
#define FGCONFIG_ARRAY fgColorConfig.toArray()
// initial foreground effect/color
if (FGEffectConfig["enable"].toBool(true))
{
#if defined(ENABLE_EFFECTENGINE)
const QString fgTypeConfig = FGEffectConfig["type"].toString("effect");
const QString fgEffectConfig = FGEffectConfig["effect"].toString("Rainbow swirl fast");
#else
const QString fgTypeConfig = "color";
#endif
const QJsonValue fgColorConfig = FGEffectConfig["color"];
int default_fg_duration_ms = 3000;
int fg_duration_ms = FGEffectConfig["duration_ms"].toInt(default_fg_duration_ms);
if (fg_duration_ms <= PriorityMuxer::ENDLESS )
{
fg_duration_ms = default_fg_duration_ms;
Warning(Logger::getInstance("HYPERION"), "foreground effect duration 'infinity' is forbidden, set to default value %d ms",default_fg_duration_ms);
}
if ( fgTypeConfig.contains("color") )
{
std::vector<ColorRgb> fg_color = {
ColorRgb {
static_cast<uint8_t>(FGCONFIG_ARRAY.at(0).toInt(0)),
static_cast<uint8_t>(FGCONFIG_ARRAY.at(1).toInt(0)),
static_cast<uint8_t>(FGCONFIG_ARRAY.at(2).toInt(0))
}
};
hyperion->setColor(PriorityMuxer::FG_PRIORITY, fg_color, fg_duration_ms);
Info(Logger::getInstance("HYPERION","I"+QString::number(hyperion->getInstanceIndex())),"Initial foreground color set (%d %d %d)",fg_color.at(0).red,fg_color.at(0).green,fg_color.at(0).blue);
}
#if defined(ENABLE_EFFECTENGINE)
else
{
int result = hyperion->setEffect(fgEffectConfig, PriorityMuxer::FG_PRIORITY, fg_duration_ms);
Info(Logger::getInstance("HYPERION","I"+QString::number(hyperion->getInstanceIndex())),"Initial foreground effect '%s' %s", QSTRING_CSTR(fgEffectConfig), ((result == 0) ? "started" : "failed"));
}
#endif
}
#undef FGCONFIG_ARRAY
}
static ColorOrder createColorOrder(const QJsonObject &deviceConfig)
{
return stringToColorOrder(deviceConfig["colorOrder"].toString("rgb"));
}
static RgbTransform createRgbTransform(const QJsonObject& colorConfig)
{
const double backlightThreshold = colorConfig["backlightThreshold"].toDouble(0.0);
const bool backlightColored = colorConfig["backlightColored"].toBool(false);
const int brightness = colorConfig["brightness"].toInt(100);
const int brightnessComp = colorConfig["brightnessCompensation"].toInt(100);
const double gammaR = colorConfig["gammaRed"].toDouble(1.0);
const double gammaG = colorConfig["gammaGreen"].toDouble(1.0);
const double gammaB = colorConfig["gammaBlue"].toDouble(1.0);
return RgbTransform(gammaR, gammaG, gammaB, backlightThreshold, backlightColored, static_cast<uint8_t>(brightness), static_cast<uint8_t>(brightnessComp));
}
static OkhsvTransform createOkhsvTransform(const QJsonObject& colorConfig)
{
const double saturationGain = colorConfig["saturationGain"].toDouble(1.0);
const double brightnessGain = colorConfig["brightnessGain"].toDouble(1.0);
return OkhsvTransform(saturationGain, brightnessGain);
}
static RgbChannelAdjustment createRgbChannelAdjustment(const QJsonObject& colorConfig, const QString& channelName, int defaultR, int defaultG, int defaultB)
{
const QJsonArray& channelConfig = colorConfig[channelName].toArray();
return RgbChannelAdjustment(
static_cast<uint8_t>(channelConfig[0].toInt(defaultR)),
static_cast<uint8_t>(channelConfig[1].toInt(defaultG)),
static_cast<uint8_t>(channelConfig[2].toInt(defaultB)),
"ChannelAdjust_" + channelName.toUpper()
);
}
static ColorAdjustment* createColorAdjustment(const QJsonObject & adjustmentConfig)
{
const QString id = adjustmentConfig["id"].toString("default");
ColorAdjustment * adjustment = new ColorAdjustment();
adjustment->_id = id;
adjustment->_rgbBlackAdjustment = createRgbChannelAdjustment(adjustmentConfig, "black" , 0, 0, 0);
adjustment->_rgbWhiteAdjustment = createRgbChannelAdjustment(adjustmentConfig, "white" , 255,255,255);
adjustment->_rgbRedAdjustment = createRgbChannelAdjustment(adjustmentConfig, "red" , 255, 0, 0);
adjustment->_rgbGreenAdjustment = createRgbChannelAdjustment(adjustmentConfig, "green" , 0,255, 0);
adjustment->_rgbBlueAdjustment = createRgbChannelAdjustment(adjustmentConfig, "blue" , 0, 0,255);
adjustment->_rgbCyanAdjustment = createRgbChannelAdjustment(adjustmentConfig, "cyan" , 0,255,255);
adjustment->_rgbMagentaAdjustment = createRgbChannelAdjustment(adjustmentConfig, "magenta", 255, 0,255);
adjustment->_rgbYellowAdjustment = createRgbChannelAdjustment(adjustmentConfig, "yellow" , 255,255, 0);
adjustment->_rgbTransform = createRgbTransform(adjustmentConfig);
adjustment->_okhsvTransform = createOkhsvTransform(adjustmentConfig);
return adjustment;
}
static MultiColorAdjustment * createLedColorsAdjustment(int ledCnt, const QJsonObject & colorConfig)
{
// Create the result, the transforms are added to this
MultiColorAdjustment * adjustment = new MultiColorAdjustment(ledCnt);
const QJsonValue adjustmentConfig = colorConfig["channelAdjustment"];
const QRegularExpression overallExp("([0-9]+(\\-[0-9]+)?)(,[ ]*([0-9]+(\\-[0-9]+)?))*");
const QJsonArray & adjustmentConfigArray = adjustmentConfig.toArray();
for (signed i = 0; i < adjustmentConfigArray.size(); ++i)
{
const QJsonObject & config = adjustmentConfigArray.at(i).toObject();
ColorAdjustment * colorAdjustment = createColorAdjustment(config);
adjustment->addAdjustment(colorAdjustment);
const QString ledIndicesStr = config["leds"].toString("").trimmed();
if (ledIndicesStr.compare("*") == 0)
{
// Special case for indices '*' => all leds
adjustment->setAdjustmentForLed(colorAdjustment->_id, 0, ledCnt-1);
continue;
}
if (!overallExp.match(ledIndicesStr).hasMatch())
{
// Given LED indices are not correctly formatted
continue;
}
std::stringstream ss;
const QStringList ledIndexList = ledIndicesStr.split(",");
for (int i=0; i<ledIndexList.size(); ++i) {
if (i > 0)
{
ss << ", ";
}
if (ledIndexList[i].contains("-"))
{
QStringList ledIndices = ledIndexList[i].split("-");
int startInd = ledIndices[0].toInt();
int endInd = ledIndices[1].toInt();
adjustment->setAdjustmentForLed(colorAdjustment->_id, startInd, endInd);
ss << startInd << "-" << endInd;
}
else
{
int index = ledIndexList[i].toInt();
adjustment->setAdjustmentForLed(colorAdjustment->_id, index, index);
ss << index;
}
}
}
return adjustment;
}
/**
* Construct the 'led-string' with the integration area definition per led and the color
* ordering of the RGB channels
* @param ledsConfig The configuration of the led areas
* @param deviceOrder The default RGB channel ordering
* @return The constructed ledstring
*/
static LedString createLedString(const QJsonArray& ledConfigArray, const ColorOrder deviceOrder)
{
LedString ledString;
const QString deviceOrderStr = colorOrderToString(deviceOrder);
for (signed i = 0; i < ledConfigArray.size(); ++i)
{
const QJsonObject& ledConfig = ledConfigArray[i].toObject();
Led led;
led.minX_frac = qMax(0.0, qMin(1.0, ledConfig["hmin"].toDouble()));
led.maxX_frac = qMax(0.0, qMin(1.0, ledConfig["hmax"].toDouble()));
led.minY_frac = qMax(0.0, qMin(1.0, ledConfig["vmin"].toDouble()));
led.maxY_frac = qMax(0.0, qMin(1.0, ledConfig["vmax"].toDouble()));
// Fix if the user swapped min and max
if (led.minX_frac > led.maxX_frac)
{
std::swap(led.minX_frac, led.maxX_frac);
}
if (led.minY_frac > led.maxY_frac)
{
std::swap(led.minY_frac, led.maxY_frac);
}
// Get the order of the rgb channels for this led (default is device order)
led.colorOrder = stringToColorOrder(ledConfig["colorOrder"].toString(deviceOrderStr));
ledString.leds().push_back(led);
}
return ledString;
}
static QSize getLedLayoutGridSize(const QJsonArray& ledConfigArray)
{
std::vector<int> midPointsX;
std::vector<int> midPointsY;
for (signed i = 0; i < ledConfigArray.size(); ++i)
{
const QJsonObject& ledConfig = ledConfigArray[i].toObject();
double minX_frac = qMax(0.0, qMin(1.0, ledConfig["hmin"].toDouble()));
double maxX_frac = qMax(0.0, qMin(1.0, ledConfig["hmax"].toDouble()));
double minY_frac = qMax(0.0, qMin(1.0, ledConfig["vmin"].toDouble()));
double maxY_frac = qMax(0.0, qMin(1.0, ledConfig["vmax"].toDouble()));
// Fix if the user swapped min and max
if (minX_frac > maxX_frac)
{
std::swap(minX_frac, maxX_frac);
}
if (minY_frac > maxY_frac)
{
std::swap(minY_frac, maxY_frac);
}
// calculate mid point and make grid calculation
midPointsX.push_back( int(1000.0*(minX_frac + maxX_frac) / 2.0) );
midPointsY.push_back( int(1000.0*(minY_frac + maxY_frac) / 2.0) );
}
// remove duplicates
std::sort(midPointsX.begin(), midPointsX.end());
midPointsX.erase(std::unique(midPointsX.begin(), midPointsX.end()), midPointsX.end());
std::sort(midPointsY.begin(), midPointsY.end());
midPointsY.erase(std::unique(midPointsY.begin(), midPointsY.end()), midPointsY.end());
QSize gridSize( static_cast<int>(midPointsX.size()), static_cast<int>(midPointsY.size()) );
// Correct the grid in case it is malformed in width vs height
// Expected is at least 50% of width <-> height
if((gridSize.width() / gridSize.height()) > 2)
gridSize.setHeight(qMax(1,gridSize.width()/2));
else if((gridSize.width() / gridSize.height()) < 0.5)
gridSize.setWidth(qMax(1,gridSize.height()/2));
// Limit to 80px for performance reasons
const int pl = 80;
if(gridSize.width() > pl || gridSize.height() > pl)
{
gridSize.scale(pl, pl, Qt::KeepAspectRatio);
}
return gridSize;
}
};