hyperion.ng/include/utils/hyperion.h
2018-12-27 23:11:32 +01:00

321 lines
12 KiB
C++

#pragma once
#include <hyperion/ColorAdjustment.h>
#include <hyperion/MultiColorAdjustment.h>
#include <hyperion/LedString.h>
// fg effect
#include <hyperion/Hyperion.h>
///
/// @brief Provide utility methods for Hyperion class
///
namespace hyperion {
void handleInitialEffect(Hyperion* hyperion, const QJsonObject& FGEffectConfig)
{
#define FGCONFIG_ARRAY fgColorConfig.toArray()
const int FG_PRIORITY = 0;
const int DURATION_INFINITY = 0;
// initial foreground effect/color
if (FGEffectConfig["enable"].toBool(true))
{
const QString fgTypeConfig = FGEffectConfig["type"].toString("effect");
const QString fgEffectConfig = FGEffectConfig["effect"].toString("Rainbow swirl fast");
const QJsonValue fgColorConfig = FGEffectConfig["color"];
int default_fg_duration_ms = 3000;
int fg_duration_ms = FGEffectConfig["duration_ms"].toInt(default_fg_duration_ms);
if (fg_duration_ms == DURATION_INFINITY)
{
fg_duration_ms = default_fg_duration_ms;
Warning(Logger::getInstance("HYPERION"), "foreground effect duration 'infinity' is forbidden, set to default value %d ms",default_fg_duration_ms);
}
if ( fgTypeConfig.contains("color") )
{
ColorRgb fg_color = {
(uint8_t)FGCONFIG_ARRAY.at(0).toInt(0),
(uint8_t)FGCONFIG_ARRAY.at(1).toInt(0),
(uint8_t)FGCONFIG_ARRAY.at(2).toInt(0)
};
hyperion->setColor(FG_PRIORITY, fg_color, fg_duration_ms);
Info(Logger::getInstance("HYPERION"),"Inital foreground color set (%d %d %d)",fg_color.red,fg_color.green,fg_color.blue);
}
else
{
int result = hyperion->setEffect(fgEffectConfig, FG_PRIORITY, fg_duration_ms);
Info(Logger::getInstance("HYPERION"),"Inital foreground effect '%s' %s", QSTRING_CSTR(fgEffectConfig), ((result == 0) ? "started" : "failed"));
}
}
#undef FGCONFIG_ARRAY
}
ColorOrder createColorOrder(const QJsonObject &deviceConfig)
{
return stringToColorOrder(deviceConfig["colorOrder"].toString("rgb"));
}
RgbTransform* createRgbTransform(const QJsonObject& colorConfig)
{
const double backlightThreshold = colorConfig["backlightThreshold"].toDouble(0.0);
const bool backlightColored = colorConfig["backlightColored"].toBool(false);
const double brightness = colorConfig["brightness"].toInt(100);
const double brightnessComp= colorConfig["brightnessCompensation"].toInt(100);
const double gammaR = colorConfig["gammaRed"].toDouble(1.0);
const double gammaG = colorConfig["gammaGreen"].toDouble(1.0);
const double gammaB = colorConfig["gammaBlue"].toDouble(1.0);
RgbTransform* transform = new RgbTransform(gammaR, gammaG, gammaB, backlightThreshold, backlightColored, brightness, brightnessComp);
return transform;
}
RgbChannelAdjustment* createRgbChannelAdjustment(const QJsonObject& colorConfig, const QString channelName, const int defaultR, const int defaultG, const int defaultB)
{
const QJsonArray& channelConfig = colorConfig[channelName].toArray();
RgbChannelAdjustment* adjustment = new RgbChannelAdjustment(
channelConfig[0].toInt(defaultR),
channelConfig[1].toInt(defaultG),
channelConfig[2].toInt(defaultB),
"ChannelAdjust_"+channelName.toUpper()
);
return adjustment;
}
ColorAdjustment * createColorAdjustment(const QJsonObject & adjustmentConfig)
{
const QString id = adjustmentConfig["id"].toString("default");
RgbChannelAdjustment * blackAdjustment = createRgbChannelAdjustment(adjustmentConfig, "black" , 0, 0, 0);
RgbChannelAdjustment * whiteAdjustment = createRgbChannelAdjustment(adjustmentConfig, "white" , 255,255,255);
RgbChannelAdjustment * redAdjustment = createRgbChannelAdjustment(adjustmentConfig, "red" , 255, 0, 0);
RgbChannelAdjustment * greenAdjustment = createRgbChannelAdjustment(adjustmentConfig, "green" , 0,255, 0);
RgbChannelAdjustment * blueAdjustment = createRgbChannelAdjustment(adjustmentConfig, "blue" , 0, 0,255);
RgbChannelAdjustment * cyanAdjustment = createRgbChannelAdjustment(adjustmentConfig, "cyan" , 0,255,255);
RgbChannelAdjustment * magentaAdjustment = createRgbChannelAdjustment(adjustmentConfig, "magenta", 255, 0,255);
RgbChannelAdjustment * yellowAdjustment = createRgbChannelAdjustment(adjustmentConfig, "yellow" , 255,255, 0);
RgbTransform * rgbTransform = createRgbTransform(adjustmentConfig);
ColorAdjustment * adjustment = new ColorAdjustment();
adjustment->_id = id;
adjustment->_rgbBlackAdjustment = *blackAdjustment;
adjustment->_rgbWhiteAdjustment = *whiteAdjustment;
adjustment->_rgbRedAdjustment = *redAdjustment;
adjustment->_rgbGreenAdjustment = *greenAdjustment;
adjustment->_rgbBlueAdjustment = *blueAdjustment;
adjustment->_rgbCyanAdjustment = *cyanAdjustment;
adjustment->_rgbMagentaAdjustment = *magentaAdjustment;
adjustment->_rgbYellowAdjustment = *yellowAdjustment;
adjustment->_rgbTransform = *rgbTransform;
// Cleanup the allocated individual adjustments
delete blackAdjustment;
delete whiteAdjustment;
delete redAdjustment;
delete greenAdjustment;
delete blueAdjustment;
delete cyanAdjustment;
delete magentaAdjustment;
delete yellowAdjustment;
delete rgbTransform;
return adjustment;
}
MultiColorAdjustment * createLedColorsAdjustment(const unsigned ledCnt, const QJsonObject & colorConfig)
{
// Create the result, the transforms are added to this
MultiColorAdjustment * adjustment = new MultiColorAdjustment(ledCnt);
const QJsonValue adjustmentConfig = colorConfig["channelAdjustment"];
const QRegExp overallExp("([0-9]+(\\-[0-9]+)?)(,[ ]*([0-9]+(\\-[0-9]+)?))*");
const QJsonArray & adjustmentConfigArray = adjustmentConfig.toArray();
for (signed i = 0; i < adjustmentConfigArray.size(); ++i)
{
const QJsonObject & config = adjustmentConfigArray.at(i).toObject();
ColorAdjustment * colorAdjustment = createColorAdjustment(config);
adjustment->addAdjustment(colorAdjustment);
const QString ledIndicesStr = config["leds"].toString("").trimmed();
if (ledIndicesStr.compare("*") == 0)
{
// Special case for indices '*' => all leds
adjustment->setAdjustmentForLed(colorAdjustment->_id, 0, ledCnt-1);
//Info(_log, "ColorAdjustment '%s' => [0; %d]", QSTRING_CSTR(colorAdjustment->_id), ledCnt-1);
continue;
}
if (!overallExp.exactMatch(ledIndicesStr))
{
//Error(_log, "Given led indices %d not correct format: %s", i, QSTRING_CSTR(ledIndicesStr));
continue;
}
std::stringstream ss;
const QStringList ledIndexList = ledIndicesStr.split(",");
for (int i=0; i<ledIndexList.size(); ++i) {
if (i > 0)
{
ss << ", ";
}
if (ledIndexList[i].contains("-"))
{
QStringList ledIndices = ledIndexList[i].split("-");
int startInd = ledIndices[0].toInt();
int endInd = ledIndices[1].toInt();
adjustment->setAdjustmentForLed(colorAdjustment->_id, startInd, endInd);
ss << startInd << "-" << endInd;
}
else
{
int index = ledIndexList[i].toInt();
adjustment->setAdjustmentForLed(colorAdjustment->_id, index, index);
ss << index;
}
}
//Info(_log, "ColorAdjustment '%s' => [%s]", QSTRING_CSTR(colorAdjustment->_id), ss.str().c_str());
}
return adjustment;
}
/**
* Construct the 'led-string' with the integration area definition per led and the color
* ordering of the RGB channels
* @param ledsConfig The configuration of the led areas
* @param deviceOrder The default RGB channel ordering
* @return The constructed ledstring
*/
LedString createLedString(const QJsonArray& ledConfigArray, const ColorOrder deviceOrder)
{
LedString ledString;
const QString deviceOrderStr = colorOrderToString(deviceOrder);
int maxLedId = ledConfigArray.size();
for (signed i = 0; i < ledConfigArray.size(); ++i)
{
const QJsonObject& index = ledConfigArray[i].toObject();
Led led;
led.index = index["index"].toInt();
led.clone = index["clone"].toInt(-1);
if ( led.clone < -1 || led.clone >= maxLedId )
{
//Warning(_log, "LED %d: clone index of %d is out of range, clone ignored", led.index, led.clone);
led.clone = -1;
}
if ( led.clone < 0 )
{
const QJsonObject& hscanConfig = ledConfigArray[i].toObject()["hscan"].toObject();
const QJsonObject& vscanConfig = ledConfigArray[i].toObject()["vscan"].toObject();
led.minX_frac = qMax(0.0, qMin(1.0, hscanConfig["minimum"].toDouble()));
led.maxX_frac = qMax(0.0, qMin(1.0, hscanConfig["maximum"].toDouble()));
led.minY_frac = qMax(0.0, qMin(1.0, vscanConfig["minimum"].toDouble()));
led.maxY_frac = qMax(0.0, qMin(1.0, vscanConfig["maximum"].toDouble()));
// Fix if the user swapped min and max
if (led.minX_frac > led.maxX_frac)
{
std::swap(led.minX_frac, led.maxX_frac);
}
if (led.minY_frac > led.maxY_frac)
{
std::swap(led.minY_frac, led.maxY_frac);
}
// Get the order of the rgb channels for this led (default is device order)
led.colorOrder = stringToColorOrder(index["colorOrder"].toString(deviceOrderStr));
ledString.leds().push_back(led);
}
}
// Make sure the leds are sorted (on their indices)
std::sort(ledString.leds().begin(), ledString.leds().end(), [](const Led& lhs, const Led& rhs){ return lhs.index < rhs.index; });
return ledString;
}
LedString createLedStringClone(const QJsonArray& ledConfigArray, const ColorOrder deviceOrder)
{
LedString ledString;
const QString deviceOrderStr = colorOrderToString(deviceOrder);
int maxLedId = ledConfigArray.size();
for (signed i = 0; i < ledConfigArray.size(); ++i)
{
const QJsonObject& index = ledConfigArray[i].toObject();
Led led;
led.index = index["index"].toInt();
led.clone = index["clone"].toInt(-1);
if ( led.clone < -1 || led.clone >= maxLedId )
{
//Warning(_log, "LED %d: clone index of %d is out of range, clone ignored", led.index, led.clone);
led.clone = -1;
}
if ( led.clone >= 0 )
{
//Debug(_log, "LED %d: clone from led %d", led.index, led.clone);
led.minX_frac = 0;
led.maxX_frac = 0;
led.minY_frac = 0;
led.maxY_frac = 0;
// Get the order of the rgb channels for this led (default is device order)
led.colorOrder = stringToColorOrder(index["colorOrder"].toString(deviceOrderStr));
ledString.leds().push_back(led);
}
}
// Make sure the leds are sorted (on their indices)
std::sort(ledString.leds().begin(), ledString.leds().end(), [](const Led& lhs, const Led& rhs){ return lhs.index < rhs.index; });
return ledString;
}
QSize getLedLayoutGridSize(const QJsonArray& ledConfigArray)
{
std::vector<int> midPointsX;
std::vector<int> midPointsY;
for (signed i = 0; i < ledConfigArray.size(); ++i)
{
const QJsonObject& index = ledConfigArray[i].toObject();
if (index["clone"].toInt(-1) < 0 )
{
const QJsonObject& hscanConfig = ledConfigArray[i].toObject()["hscan"].toObject();
const QJsonObject& vscanConfig = ledConfigArray[i].toObject()["vscan"].toObject();
double minX_frac = qMax(0.0, qMin(1.0, hscanConfig["minimum"].toDouble()));
double maxX_frac = qMax(0.0, qMin(1.0, hscanConfig["maximum"].toDouble()));
double minY_frac = qMax(0.0, qMin(1.0, vscanConfig["minimum"].toDouble()));
double maxY_frac = qMax(0.0, qMin(1.0, vscanConfig["maximum"].toDouble()));
// Fix if the user swapped min and max
if (minX_frac > maxX_frac)
{
std::swap(minX_frac, maxX_frac);
}
if (minY_frac > maxY_frac)
{
std::swap(minY_frac, maxY_frac);
}
// calculate mid point and make grid calculation
midPointsX.push_back( int(1000.0*(minX_frac + maxX_frac) / 2.0) );
midPointsY.push_back( int(1000.0*(minY_frac + maxY_frac) / 2.0) );
}
}
// remove duplicates
std::sort(midPointsX.begin(), midPointsX.end());
midPointsX.erase(std::unique(midPointsX.begin(), midPointsX.end()), midPointsX.end());
std::sort(midPointsY.begin(), midPointsY.end());
midPointsY.erase(std::unique(midPointsY.begin(), midPointsY.end()), midPointsY.end());
QSize gridSize( midPointsX.size(), midPointsY.size() );
//Debug(_log, "led layout grid: %dx%d", gridSize.width(), gridSize.height());
return gridSize;
}
};