hyperion.ng/libsrc/leddevice/LedDevicePhilipsHue.cpp
Tim Niggemann 7292922309 Improved color space checks by adding latest model ids.
Former-commit-id: db3b067eabeaf36a2a9ab329614892e79d5089c4
2015-03-03 15:54:50 +01:00

305 lines
10 KiB
C++
Executable File

// Local-Hyperion includes
#include "LedDevicePhilipsHue.h"
// jsoncpp includes
#include <json/json.h>
// qt includes
#include <QtCore/qmath.h>
#include <QUrl>
#include <QHttpRequestHeader>
#include <QEventLoop>
#include <set>
bool operator ==(CiColor p1, CiColor p2) {
return (p1.x == p2.x) && (p1.y == p2.y) && (p1.bri == p2.bri);
}
bool operator !=(CiColor p1, CiColor p2) {
return !(p1 == p2);
}
PhilipsHueLight::PhilipsHueLight(unsigned int id, QString originalState, QString modelId) :
id(id), originalState(originalState) {
// Hue system model ids (http://www.developers.meethue.com/documentation/supported-lights).
// Light strips, color iris, ...
const std::set<QString> GAMUT_A_MODEL_IDS = { "LLC001", "LLC005", "LLC006", "LLC007", "LLC010", "LLC011", "LLC012",
"LLC013", "LST001" };
// Hue bulbs, spots, ...
const std::set<QString> GAMUT_B_MODEL_IDS = { "LCT001", "LCT002", "LCT003", "LLM001" };
// Find id in the sets and set the appropiate color space.
if (GAMUT_A_MODEL_IDS.find(modelId) != GAMUT_A_MODEL_IDS.end()) {
colorSpace.red = {0.703f, 0.296f};
colorSpace.green = {0.2151f, 0.7106f};
colorSpace.blue = {0.138f, 0.08f};
} else if (GAMUT_B_MODEL_IDS.find(modelId) != GAMUT_B_MODEL_IDS.end()) {
colorSpace.red = {0.675f, 0.322f};
colorSpace.green = {0.4091f, 0.518f};
colorSpace.blue = {0.167f, 0.04f};
} else {
colorSpace.red = {1.0f, 0.0f};
colorSpace.green = {0.0f, 1.0f};
colorSpace.blue = {0.0f, 0.0f};
}
// Initialize black color.
black = rgbToCiColor(0.0f, 0.0f, 0.0f);
// Initialize color with black
color = {black.x, black.y, black.bri};
}
float PhilipsHueLight::crossProduct(CiColor p1, CiColor p2) {
return p1.x * p2.y - p1.y * p2.x;
}
bool PhilipsHueLight::isPointInLampsReach(CiColor p) {
CiColor v1 = { colorSpace.green.x - colorSpace.red.x, colorSpace.green.y - colorSpace.red.y };
CiColor v2 = { colorSpace.blue.x - colorSpace.red.x, colorSpace.blue.y - colorSpace.red.y };
CiColor q = { p.x - colorSpace.red.x, p.y - colorSpace.red.y };
float s = crossProduct(q, v2) / crossProduct(v1, v2);
float t = crossProduct(v1, q) / crossProduct(v1, v2);
if ((s >= 0.0f) && (t >= 0.0f) && (s + t <= 1.0f)) {
return true;
}
return false;
}
CiColor PhilipsHueLight::getClosestPointToPoint(CiColor a, CiColor b, CiColor p) {
CiColor AP = { p.x - a.x, p.y - a.y };
CiColor AB = { b.x - a.x, b.y - a.y };
float ab2 = AB.x * AB.x + AB.y * AB.y;
float ap_ab = AP.x * AB.x + AP.y * AB.y;
float t = ap_ab / ab2;
if (t < 0.0f) {
t = 0.0f;
} else if (t > 1.0f) {
t = 1.0f;
}
return {a.x + AB.x * t, a.y + AB.y * t};
}
float PhilipsHueLight::getDistanceBetweenTwoPoints(CiColor p1, CiColor p2) {
// Horizontal difference.
float dx = p1.x - p2.x;
// Vertical difference.
float dy = p1.y - p2.y;
// Absolute value.
return sqrt(dx * dx + dy * dy);
}
CiColor PhilipsHueLight::rgbToCiColor(float red, float green, float blue) {
// Apply gamma correction.
float r = (red > 0.04045f) ? powf((red + 0.055f) / (1.0f + 0.055f), 2.4f) : (red / 12.92f);
float g = (green > 0.04045f) ? powf((green + 0.055f) / (1.0f + 0.055f), 2.4f) : (green / 12.92f);
float b = (blue > 0.04045f) ? powf((blue + 0.055f) / (1.0f + 0.055f), 2.4f) : (blue / 12.92f);
// Convert to XYZ space.
float X = r * 0.649926f + g * 0.103455f + b * 0.197109f;
float Y = r * 0.234327f + g * 0.743075f + b * 0.022598f;
float Z = r * 0.0000000f + g * 0.053077f + b * 1.035763f;
// Convert to x,y space.
float cx = X / (X + Y + Z);
float cy = Y / (X + Y + Z);
if (isnan(cx)) {
cx = 0.0f;
}
if (isnan(cy)) {
cy = 0.0f;
}
// Brightness is simply Y in the XYZ space.
CiColor xy = { cx, cy, Y };
// Check if the given XY value is within the color reach of our lamps.
if (!isPointInLampsReach(xy)) {
// It seems the color is out of reach let's find the closes color we can produce with our lamp and send this XY value out.
CiColor pAB = getClosestPointToPoint(colorSpace.red, colorSpace.green, xy);
CiColor pAC = getClosestPointToPoint(colorSpace.blue, colorSpace.red, xy);
CiColor pBC = getClosestPointToPoint(colorSpace.green, colorSpace.blue, xy);
// Get the distances per point and see which point is closer to our Point.
float dAB = getDistanceBetweenTwoPoints(xy, pAB);
float dAC = getDistanceBetweenTwoPoints(xy, pAC);
float dBC = getDistanceBetweenTwoPoints(xy, pBC);
float lowest = dAB;
CiColor closestPoint = pAB;
if (dAC < lowest) {
lowest = dAC;
closestPoint = pAC;
}
if (dBC < lowest) {
lowest = dBC;
closestPoint = pBC;
}
// Change the xy value to a value which is within the reach of the lamp.
xy.x = closestPoint.x;
xy.y = closestPoint.y;
}
return xy;
}
LedDevicePhilipsHue::LedDevicePhilipsHue(const std::string& output, const std::string& username, bool switchOffOnBlack,
int transitiontime, std::vector<unsigned int> lightIds) :
host(output.c_str()), username(username.c_str()), switchOffOnBlack(switchOffOnBlack), transitiontime(
transitiontime), lightIds(lightIds) {
http = new QHttp(host);
timer.setInterval(3000);
timer.setSingleShot(true);
connect(&timer, SIGNAL(timeout()), this, SLOT(restoreStates()));
}
LedDevicePhilipsHue::~LedDevicePhilipsHue() {
delete http;
}
int LedDevicePhilipsHue::write(const std::vector<ColorRgb> & ledValues) {
// Save light states if not done before.
if (!areStatesSaved()) {
saveStates((unsigned int) ledValues.size());
switchOn((unsigned int) ledValues.size());
}
// If there are less states saved than colors given, then maybe something went wrong before.
if (lights.size() != ledValues.size()) {
restoreStates();
return 0;
}
// Iterate through colors and set light states.
unsigned int idx = 0;
for (const ColorRgb& color : ledValues) {
// Get lamp.
PhilipsHueLight& lamp = lights.at(idx);
// Scale colors from [0, 255] to [0, 1] and convert to xy space.
CiColor xy = lamp.rgbToCiColor(color.red / 255.0f, color.green / 255.0f, color.blue / 255.0f);
// Write color if color has been changed.
if (xy != lamp.color) {
// Switch on if the lamp has been previously switched off.
if (switchOffOnBlack && lamp.color == lamp.black) {
put(getStateRoute(lamp.id), QString("{\"on\": true}"));
}
// Send adjust color and brightness command in JSON format.
// We have to set the transition time each time.
put(getStateRoute(lamp.id),
QString("{\"xy\": [%1, %2], \"bri\": %3, \"transitiontime\": %4}").arg(xy.x).arg(xy.y).arg(
qRound(xy.bri * 255.0f)).arg(transitiontime));
}
// Switch lamp off if switchOffOnBlack is enabled and the lamp is currently on.
if (switchOffOnBlack) {
// From black to a color.
if (lamp.color == lamp.black && xy != lamp.black) {
put(getStateRoute(lamp.id), QString("{\"on\": true}"));
}
// From a color to black.
else if (lamp.color != lamp.black && xy == lamp.black) {
put(getStateRoute(lamp.id), QString("{\"on\": false}"));
}
}
// Remember last color.
lamp.color = xy;
// Next light id.
idx++;
}
timer.start();
return 0;
}
int LedDevicePhilipsHue::switchOff() {
timer.stop();
// If light states have been saved before, ...
if (areStatesSaved()) {
// ... restore them.
restoreStates();
}
return 0;
}
void LedDevicePhilipsHue::put(QString route, QString content) {
QString url = QString("/api/%1/%2").arg(username).arg(route);
QHttpRequestHeader header("PUT", url);
header.setValue("Host", host);
header.setValue("Accept-Encoding", "identity");
header.setValue("Connection", "keep-alive");
header.setValue("Content-Length", QString("%1").arg(content.size()));
QEventLoop loop;
// Connect requestFinished signal to quit slot of the loop.
loop.connect(http, SIGNAL(requestFinished(int, bool)), SLOT(quit()));
// Perfrom request
http->request(header, content.toAscii());
// Go into the loop until the request is finished.
loop.exec();
}
QByteArray LedDevicePhilipsHue::get(QString route) {
QString url = QString("/api/%1/%2").arg(username).arg(route);
// Event loop to block until request finished.
QEventLoop loop;
// Connect requestFinished signal to quit slot of the loop.
loop.connect(http, SIGNAL(requestFinished(int, bool)), SLOT(quit()));
// Perfrom request
http->get(url);
// Go into the loop until the request is finished.
loop.exec();
// Read all data of the response.
return http->readAll();
}
QString LedDevicePhilipsHue::getStateRoute(unsigned int lightId) {
return QString("lights/%1/state").arg(lightId);
}
QString LedDevicePhilipsHue::getRoute(unsigned int lightId) {
return QString("lights/%1").arg(lightId);
}
void LedDevicePhilipsHue::saveStates(unsigned int nLights) {
// Clear saved lamps.
lights.clear();
// Use json parser to parse reponse.
Json::Reader reader;
Json::FastWriter writer;
// Create light ids if none supplied by the user.
if (lightIds.size() != nLights) {
lightIds.clear();
for (unsigned int i = 0; i < nLights; i++) {
lightIds.push_back(i + 1);
}
}
// Iterate lights.
for (unsigned int i = 0; i < nLights; i++) {
// Read the response.
QByteArray response = get(getRoute(lightIds.at(i)));
// Parse JSON.
Json::Value json;
if (!reader.parse(QString(response).toStdString(), json)) {
// Error occured, break loop.
break;
}
// Get state object values which are subject to change.
Json::Value state(Json::objectValue);
state["on"] = json["state"]["on"];
if (json["state"]["on"] == true) {
state["xy"] = json["state"]["xy"];
state["bri"] = json["state"]["bri"];
}
// Determine the model id.
QString modelId = QString(writer.write(json["modelid"]).c_str()).trimmed().replace("\"", "");
QString originalState = QString(writer.write(state).c_str()).trimmed();
// Save state object.
lights.push_back(PhilipsHueLight(lightIds.at(i), originalState, modelId));
}
}
void LedDevicePhilipsHue::switchOn(unsigned int nLights) {
for (PhilipsHueLight light : lights) {
put(getStateRoute(light.id), "{\"on\": true}");
}
}
void LedDevicePhilipsHue::restoreStates() {
for (PhilipsHueLight light : lights) {
put(getStateRoute(light.id), light.originalState);
}
// Clear saved light states.
lights.clear();
}
bool LedDevicePhilipsHue::areStatesSaved() {
return !lights.empty();
}