hyperion.ng/libsrc/leddevice/dev_net/LedDeviceFadeCandy.cpp

234 lines
5.8 KiB
C++

#include "LedDeviceFadeCandy.h"
#include <QtEndian>
#include <chrono>
// https://docs.microsoft.com/en-us/windows/win32/winprog/windows-data-types#ssize-t
#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif
// Constants
namespace {
constexpr std::chrono::milliseconds CONNECT_TIMEOUT{1000};
const int MAX_NUM_LEDS = 10000; // OPC can handle 21845 LEDs - in theory, fadecandy device should handle 10000 LEDs
const int OPC_SET_PIXELS = 0; // OPC command codes
const int OPC_SYS_EX = 255; // OPC command codes
const int OPC_HEADER_SIZE = 4; // OPC header size
} //End of constants
// TCP elements
const int STREAM_DEFAULT_PORT = 7890;
LedDeviceFadeCandy::LedDeviceFadeCandy(const QJsonObject& deviceConfig)
: LedDevice(deviceConfig)
, _client(nullptr)
, _host()
, _port(STREAM_DEFAULT_PORT)
{
}
LedDeviceFadeCandy::~LedDeviceFadeCandy()
{
delete _client;
}
LedDevice* LedDeviceFadeCandy::construct(const QJsonObject& deviceConfig)
{
return new LedDeviceFadeCandy(deviceConfig);
}
bool LedDeviceFadeCandy::init(const QJsonObject& deviceConfig)
{
bool isInitOK = false;
if (LedDevice::init(deviceConfig))
{
if (getLedCount() > MAX_NUM_LEDS)
{
QString errortext = QString("More LED configured than allowed (%1)").arg(MAX_NUM_LEDS);
this->setInError(errortext);
isInitOK = false;
}
else
{
_host = deviceConfig["host"].toString("127.0.0.1");
_port = deviceConfig["port"].toInt(STREAM_DEFAULT_PORT);
//If host not configured the init fails
if (_host.isEmpty())
{
this->setInError("No target hostname nor IP defined");
}
else
{
_channel = deviceConfig["channel"].toInt(0);
_gamma = deviceConfig["gamma"].toDouble(1.0);
_noDither = !deviceConfig["dither"].toBool(false);
_noInterp = !deviceConfig["interpolation"].toBool(false);
_manualLED = deviceConfig["manualLed"].toBool(false);
_ledOnOff = deviceConfig["ledOn"].toBool(false);
_setFcConfig = deviceConfig["setFcConfig"].toBool(false);
_whitePoint_r = 1.0;
_whitePoint_g = 1.0;
_whitePoint_b = 1.0;
const QJsonArray whitePointConfig = deviceConfig["whitePoint"].toArray();
if (!whitePointConfig.isEmpty() && whitePointConfig.size() == 3)
{
_whitePoint_r = whitePointConfig[0].toDouble() / 255.0;
_whitePoint_g = whitePointConfig[1].toDouble() / 255.0;
_whitePoint_b = whitePointConfig[2].toDouble() / 255.0;
}
_opc_data.resize(static_cast<int>(_ledRGBCount) + OPC_HEADER_SIZE);
_opc_data[0] = static_cast<char>(_channel);
_opc_data[1] = OPC_SET_PIXELS;
qToBigEndian<quint16>(static_cast<quint16>(_ledRGBCount), _opc_data.data() + 2);
if (initNetwork())
{
isInitOK = true;
}
}
}
}
return isInitOK;
}
bool LedDeviceFadeCandy::initNetwork()
{
bool isInitOK = false;
if (_client == nullptr)
{
_client = new QTcpSocket(this);
isInitOK = true;
}
return isInitOK;
}
int LedDeviceFadeCandy::open()
{
int retval = -1;
QString errortext;
_isDeviceReady = false;
// Try to open the LedDevice
if (!tryConnect())
{
errortext = QString("Failed to open device.");
this->setInError(errortext);
}
else
{
// Everything is OK, device is ready
_isDeviceReady = true;
retval = 0;
}
return retval;
}
int LedDeviceFadeCandy::close()
{
int retval = 0;
_isDeviceReady = false;
// LedDevice specific closing activities
if (_client != nullptr)
{
_client->close();
// Everything is OK -> device is closed
}
return retval;
}
bool LedDeviceFadeCandy::isConnected() const
{
bool connected = false;
if (_client != nullptr)
{
connected = _client->state() == QAbstractSocket::ConnectedState;
}
return connected;
}
bool LedDeviceFadeCandy::tryConnect()
{
if (_client != nullptr)
{
if (_client->state() == QAbstractSocket::UnconnectedState) {
_client->connectToHost(_host, static_cast<quint16>(_port));
if (_client->waitForConnected(CONNECT_TIMEOUT.count()))
{
Info(_log, "fadecandy/opc: connected to %s:%d on channel %d", QSTRING_CSTR(_host), _port, _channel);
if (_setFcConfig)
{
sendFadeCandyConfiguration();
}
}
}
}
return isConnected();
}
int LedDeviceFadeCandy::write(const std::vector<ColorRgb>& ledValues)
{
uint idx = OPC_HEADER_SIZE;
for (const ColorRgb& color : ledValues)
{
_opc_data[idx] = static_cast<char>(color.red);
_opc_data[idx + 1] = static_cast<char>(color.green);
_opc_data[idx + 2] = static_cast<char>(color.blue);
idx += 3;
}
int retval = transferData() < 0 ? -1 : 0;
return retval;
}
qint64 LedDeviceFadeCandy::transferData()
{
if (isConnected() || tryConnect())
{
return _client->write(_opc_data);
}
return -2;
}
qint64 LedDeviceFadeCandy::sendSysEx(uint8_t systemId, uint8_t commandId, const QByteArray& msg)
{
if (isConnected())
{
QByteArray sysExData;
int data_size = msg.size() + 4;
sysExData.resize(4 + OPC_HEADER_SIZE);
sysExData[0] = 0;
sysExData[1] = static_cast<char>(OPC_SYS_EX);
qToBigEndian<quint16>(static_cast<quint16>(data_size), sysExData.data() + 2);
qToBigEndian<quint16>(static_cast<quint16>(systemId), sysExData.data() + 4);
qToBigEndian<quint16>(static_cast<quint16>(commandId), sysExData.data() + 6);
sysExData += msg;
return _client->write(sysExData, sysExData.size());
}
return -1;
}
void LedDeviceFadeCandy::sendFadeCandyConfiguration()
{
Debug(_log, "send configuration to fadecandy");
QString data = "{\"gamma\": " + QString::number(_gamma, 'g', 4) + ", \"whitepoint\": [" + QString::number(_whitePoint_r, 'g', 4) + ", " + QString::number(_whitePoint_g, 'g', 4) + ", " + QString::number(_whitePoint_b, 'g', 4) + "]}";
sendSysEx(1, 1, data.toLocal8Bit());
char firmware_data = static_cast<char>(static_cast<uint8_t>(_noDither) | (static_cast<uint8_t>(_noInterp) << 1) | (static_cast<uint8_t>(_manualLED) << 2) | (static_cast<uint8_t>(_ledOnOff) << 3));
sendSysEx(1, 2, QByteArray(1, firmware_data));
}