hyperion.ng/libsrc/effectengine/EffectModule.cpp
LordGrey 733aa662bf
Refactor Python for 3.12 integration (#1807)
* Correct JS requestConfig call

* Update requestWriteConfig to new API format

* Add hyperion-light and bare-minimum preset scenarios

* Refactor Python

* Windows add bcrypt until mbedtls  is fixed
(https://github.com/Mbed-TLS/mbedtls/pull/9554)

* Corrections

* Use ScreenCaptureKit under macOS 15 and above

* ReSigning macOS package

* Python 3.11.10 test

* Revert "Python 3.11.10 test"

This reverts commit ee921e4f1284fe3d984d9422b24a1c56c6916c21.

* Handle defined exits from python scripts

* Update change.log

* CodeQL findings

---------

Co-authored-by: Paulchen-Panther <16664240+Paulchen-Panther@users.noreply.github.com>
2024-12-01 17:08:25 +01:00

1109 lines
30 KiB
C++

#include <cmath>
#include <effectengine/Effect.h>
#include <effectengine/EffectModule.h>
// hyperion
#include <hyperion/Hyperion.h>
#include <utils/Logger.h>
// qt
#include <QJsonArray>
#include <QDateTime>
#include <QImageReader>
#include <QBuffer>
#include <QUrl>
#include <QNetworkReply>
#include <QNetworkAccessManager>
#include <QEventLoop>
// Define a struct for per-interpreter state
typedef struct {
} hyperion_module_state;
// Macro to access the module state
#define GET_HYPERION_STATE(module) ((hyperion_module_state*)PyModule_GetState(module))
// Get the effect from the capsule
#define getEffect() static_cast<Effect*>((Effect*)PyCapsule_Import("hyperion.__effectObj", 0))
// Module execution function for multi-phase init
static int hyperion_exec(PyObject* module) {
// Initialize per-interpreter state
hyperion_module_state* state = GET_HYPERION_STATE(module);
if (state == NULL)
{
return -1;
}
return 0;
}
// Module deallocation function to clean up per-interpreter state
static void hyperion_free(void* /* module */)
{
// No specific cleanup required in this example
}
static PyModuleDef_Slot hyperion_slots[] = {
{Py_mod_exec, reinterpret_cast<void*>(hyperion_exec)},
#if (PY_VERSION_HEX >= 0x030C0000)
{Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED},
#endif
{0, NULL}
};
// Module definition with multi-phase and per-interpreter state
static struct PyModuleDef hyperion_module = {
PyModuleDef_HEAD_INIT,
"hyperion", // Module name
"Hyperion module", // Module docstring
sizeof(hyperion_module_state), // Size of per-interpreter state
EffectModule::effectMethods, // Methods array
NULL, // Slots array (will be added in PyInit_hyperion)
NULL, // Traverse function (optional)
NULL, // Clear function (optional)
hyperion_free // Free function
};
// initialize function for the hyperion module
PyMODINIT_FUNC PyInit_hyperion(void)
{
// assign slots to the module definition
hyperion_module.m_slots = hyperion_slots;
// return a new module definition instance
return PyModuleDef_Init(&hyperion_module);
}
void EffectModule::registerHyperionExtensionModule()
{
PyImport_AppendInittab("hyperion", &PyInit_hyperion);
}
PyObject* EffectModule::json2python(const QJsonValue& jsonData)
{
switch (jsonData.type())
{
case QJsonValue::Null:
Py_RETURN_NONE;
case QJsonValue::Undefined:
Py_RETURN_NOTIMPLEMENTED;
case QJsonValue::Double:
{
double value = jsonData.toDouble();
if (value == static_cast<int>(value)) // If no fractional part, value is equal to its integer representation
{
return Py_BuildValue("i", static_cast<int>(value));
}
return Py_BuildValue("d", value);
}
case QJsonValue::Bool:
return PyBool_FromLong(jsonData.toBool() ? 1 : 0);
case QJsonValue::String:
return PyUnicode_FromString(jsonData.toString().toUtf8().constData());
case QJsonValue::Array:
{
QJsonArray arrayData = jsonData.toArray();
PyObject* list = PyList_New(arrayData.size());
int index = 0;
for (QJsonArray::iterator i = arrayData.begin(); i != arrayData.end(); ++i, ++index)
{
PyObject* obj = json2python(*i);
Py_INCREF(obj);
PyList_SetItem(list, index, obj);
Py_XDECREF(obj);
}
return list;
}
case QJsonValue::Object: {
// Python's dict
QJsonObject jsonObject = jsonData.toObject();
PyObject* pyDict = PyDict_New();
for (auto it = jsonObject.begin(); it != jsonObject.end(); ++it) {
// Convert key
PyObject* pyKey = PyUnicode_FromString(it.key().toUtf8().constData());
if (!pyKey) {
Py_XDECREF(pyDict);
return nullptr; // Error occurred, return null
}
// Convert value
PyObject* pyValue = json2python(it.value());
if (!pyValue) {
Py_XDECREF(pyKey);
Py_XDECREF(pyDict);
return nullptr; // Error occurred, return null
}
// Add to dictionary
PyDict_SetItem(pyDict, pyKey, pyValue);
Py_XDECREF(pyKey);
Py_XDECREF(pyValue);
}
return pyDict;
}
default:
// Unsupported type
PyErr_SetString(PyExc_TypeError, "Unsupported QJsonValue type.");
return nullptr;
}
assert(false);
Py_RETURN_NONE;
}
// Python method table
PyMethodDef EffectModule::effectMethods[] = {
{"setColor" , EffectModule::wrapSetColor , METH_VARARGS, "Set a new color for the leds."},
{"setImage" , EffectModule::wrapSetImage , METH_VARARGS, "Set a new image to process and determine new led colors."},
{"getImage" , EffectModule::wrapGetImage , METH_VARARGS, "get image data from file."},
{"abort" , EffectModule::wrapAbort , METH_NOARGS, "Check if the effect should abort execution."},
{"imageShow" , EffectModule::wrapImageShow , METH_VARARGS, "set current effect image to hyperion core."},
{"imageLinearGradient" , EffectModule::wrapImageLinearGradient , METH_VARARGS, ""},
{"imageConicalGradient" , EffectModule::wrapImageConicalGradient , METH_VARARGS, ""},
{"imageRadialGradient" , EffectModule::wrapImageRadialGradient , METH_VARARGS, ""},
{"imageSolidFill" , EffectModule::wrapImageSolidFill , METH_VARARGS, ""},
{"imageDrawLine" , EffectModule::wrapImageDrawLine , METH_VARARGS, ""},
{"imageDrawPoint" , EffectModule::wrapImageDrawPoint , METH_VARARGS, ""},
{"imageDrawRect" , EffectModule::wrapImageDrawRect , METH_VARARGS, ""},
{"imageDrawPolygon" , EffectModule::wrapImageDrawPolygon , METH_VARARGS, ""},
{"imageDrawPie" , EffectModule::wrapImageDrawPie , METH_VARARGS, ""},
{"imageSetPixel" , EffectModule::wrapImageSetPixel , METH_VARARGS, "set pixel color of image"},
{"imageGetPixel" , EffectModule::wrapImageGetPixel , METH_VARARGS, "get pixel color of image"},
{"imageSave" , EffectModule::wrapImageSave , METH_NOARGS, "adds a new background image"},
{"imageMinSize" , EffectModule::wrapImageMinSize , METH_VARARGS, "sets minimal dimension of background image"},
{"imageWidth" , EffectModule::wrapImageWidth , METH_NOARGS, "gets image width"},
{"imageHeight" , EffectModule::wrapImageHeight , METH_NOARGS, "gets image height"},
{"imageCRotate" , EffectModule::wrapImageCRotate , METH_VARARGS, "rotate the coordinate system by given angle"},
{"imageCOffset" , EffectModule::wrapImageCOffset , METH_VARARGS, "Add offset to the coordinate system"},
{"imageCShear" , EffectModule::wrapImageCShear , METH_VARARGS, "Shear of coordinate system by the given horizontal/vertical axis"},
{"imageResetT" , EffectModule::wrapImageResetT , METH_NOARGS, "Resets all coords modifications (rotate,offset,shear)"},
{NULL, NULL, 0, NULL}
};
PyObject* EffectModule::wrapSetColor(PyObject* self, PyObject* args)
{
// check the number of arguments
int argCount = PyTuple_Size(args);
if (argCount == 3)
{
// three separate arguments for red, green, and blue
ColorRgb color;
if (PyArg_ParseTuple(args, "bbb", &color.red, &color.green, &color.blue))
{
getEffect()->_colors.fill(color);
QVector<ColorRgb> _cQV = getEffect()->_colors;
emit getEffect()->setInput(getEffect()->_priority, std::vector<ColorRgb>(_cQV.begin(), _cQV.end()), getEffect()->getRemaining(), false);
Py_RETURN_NONE;
}
return nullptr;
}
else if (argCount == 1)
{
// bytearray of values
PyObject* bytearray = nullptr;
if (PyArg_ParseTuple(args, "O", &bytearray))
{
if (PyByteArray_Check(bytearray))
{
size_t length = PyByteArray_Size(bytearray);
if (length == 3 * static_cast<size_t>(getEffect()->_hyperion->getLedCount()))
{
char* data = PyByteArray_AS_STRING(bytearray);
memcpy(getEffect()->_colors.data(), data, length);
QVector<ColorRgb> _cQV = getEffect()->_colors;
emit getEffect()->setInput(getEffect()->_priority, std::vector<ColorRgb>(_cQV.begin(), _cQV.end()), getEffect()->getRemaining(), false);
Py_RETURN_NONE;
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Length of bytearray argument should be 3*ledCount");
return nullptr;
}
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Argument is not a bytearray");
return nullptr;
}
}
else
{
return nullptr;
}
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Function expect 1 or 3 arguments");
return nullptr;
}
}
PyObject* EffectModule::wrapSetImage(PyObject* self, PyObject* args)
{
// bytearray of values
int width = 0;
int height = 0;
PyObject* bytearray = nullptr;
if (PyArg_ParseTuple(args, "iiO", &width, &height, &bytearray))
{
if (PyByteArray_Check(bytearray))
{
int length = PyByteArray_Size(bytearray);
if (length == 3 * width * height)
{
Image<ColorRgb> image(width, height);
char* data = PyByteArray_AS_STRING(bytearray);
memcpy(image.memptr(), data, length);
emit getEffect()->setInputImage(getEffect()->_priority, image, getEffect()->getRemaining(), false);
Py_RETURN_NONE;
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Length of bytearray argument should be 3*width*height");
return nullptr;
}
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Argument 3 is not a bytearray");
return nullptr;
}
}
else
{
return nullptr;
}
// error
PyErr_SetString(PyExc_RuntimeError, "Unknown error");
return nullptr;
}
PyObject* EffectModule::wrapGetImage(PyObject* self, PyObject* args)
{
QBuffer buffer;
QImageReader reader;
char* source;
int cropLeft = 0, cropTop = 0, cropRight = 0, cropBottom = 0;
int grayscale = false;
if (getEffect()->_imageData.isEmpty())
{
Q_INIT_RESOURCE(EffectEngine);
if (!PyArg_ParseTuple(args, "s|iiiip", &source, &cropLeft, &cropTop, &cropRight, &cropBottom, &grayscale))
{
PyErr_SetString(PyExc_TypeError, "String required");
return nullptr;
}
const QUrl url = QUrl(source);
if (url.isValid())
{
QNetworkAccessManager* networkManager = new QNetworkAccessManager();
QNetworkReply* networkReply = networkManager->get(QNetworkRequest(url));
QEventLoop eventLoop;
connect(networkReply, &QNetworkReply::finished, &eventLoop, &QEventLoop::quit);
eventLoop.exec();
if (networkReply->error() == QNetworkReply::NoError)
{
buffer.setData(networkReply->readAll());
buffer.open(QBuffer::ReadOnly);
reader.setDecideFormatFromContent(true);
reader.setDevice(&buffer);
}
delete networkReply;
delete networkManager;
}
else
{
QString file = QString::fromUtf8(source);
if (file.mid(0, 1) == ":")
file = ":/effects/" + file.mid(1);
reader.setDecideFormatFromContent(true);
reader.setFileName(file);
}
}
else
{
PyArg_ParseTuple(args, "|siiiip", &source, &cropLeft, &cropTop, &cropRight, &cropBottom, &grayscale);
buffer.setData(QByteArray::fromBase64(getEffect()->_imageData.toUtf8()));
buffer.open(QBuffer::ReadOnly);
reader.setDecideFormatFromContent(true);
reader.setDevice(&buffer);
}
if (reader.canRead())
{
PyObject* result = PyList_New(reader.imageCount());
for (int i = 0; i < reader.imageCount(); ++i)
{
reader.jumpToImage(i);
if (reader.canRead())
{
QImage qimage = reader.read();
int width = qimage.width();
int height = qimage.height();
if (cropLeft > 0 || cropTop > 0 || cropRight > 0 || cropBottom > 0)
{
if (cropLeft + cropRight >= width || cropTop + cropBottom >= height)
{
QString errorStr = QString("Rejecting invalid crop values: left: %1, right: %2, top: %3, bottom: %4, higher than height/width %5/%6").arg(cropLeft).arg(cropRight).arg(cropTop).arg(cropBottom).arg(height).arg(width);
PyErr_SetString(PyExc_RuntimeError, qPrintable(errorStr));
return nullptr;
}
qimage = qimage.copy(cropLeft, cropTop, width - cropLeft - cropRight, height - cropTop - cropBottom);
width = qimage.width();
height = qimage.height();
}
QByteArray binaryImage;
for (int i = 0; i < height; i++)
{
const QRgb* scanline = reinterpret_cast<const QRgb*>(qimage.scanLine(i));
const QRgb* end = scanline + qimage.width();
for (; scanline != end; scanline++)
{
binaryImage.append(!grayscale ? (char)qRed(scanline[0]) : (char)qGray(scanline[0]));
binaryImage.append(!grayscale ? (char)qGreen(scanline[1]) : (char)qGray(scanline[1]));
binaryImage.append(!grayscale ? (char)qBlue(scanline[2]) : (char)qGray(scanline[2]));
}
}
PyList_SET_ITEM(result, i, Py_BuildValue("{s:i,s:i,s:O}", "imageWidth", width, "imageHeight", height, "imageData", PyByteArray_FromStringAndSize(binaryImage.constData(), binaryImage.size())));
}
else
{
PyErr_SetString(PyExc_TypeError, reader.errorString().toUtf8().constData());
return nullptr;
}
}
return result;
}
else
{
PyErr_SetString(PyExc_TypeError, reader.errorString().toUtf8().constData());
return nullptr;
}
}
PyObject* EffectModule::wrapAbort(PyObject* self, PyObject*)
{
return Py_BuildValue("i", getEffect()->isInterruptionRequested() ? 1 : 0);
}
PyObject* EffectModule::wrapImageShow(PyObject* self, PyObject* args)
{
int argCount = PyTuple_Size(args);
int imgId = -1;
bool argsOk = (argCount == 0);
if (argCount == 1 && PyArg_ParseTuple(args, "i", &imgId))
{
argsOk = true;
}
if (!argsOk || (imgId > -1 && imgId >= getEffect()->_imageStack.size()))
{
return nullptr;
}
QImage* qimage = (imgId < 0) ? &(getEffect()->_image) : &(getEffect()->_imageStack[imgId]);
int width = qimage->width();
int height = qimage->height();
Image<ColorRgb> image(width, height);
QByteArray binaryImage;
for (int i = 0; i < height; ++i)
{
const QRgb* scanline = reinterpret_cast<const QRgb*>(qimage->scanLine(i));
for (int j = 0; j < width; ++j)
{
binaryImage.append((char)qRed(scanline[j]));
binaryImage.append((char)qGreen(scanline[j]));
binaryImage.append((char)qBlue(scanline[j]));
}
}
memcpy(image.memptr(), binaryImage.data(), binaryImage.size());
emit getEffect()->setInputImage(getEffect()->_priority, image, getEffect()->getRemaining(), false);
return Py_BuildValue("");
}
PyObject* EffectModule::wrapImageLinearGradient(PyObject* self, PyObject* args)
{
int argCount = PyTuple_Size(args);
PyObject* bytearray = nullptr;
int startRX = 0;
int startRY = 0;
int startX = 0;
int startY = 0;
int width = getEffect()->_imageSize.width();
int endX{ width };
int height = getEffect()->_imageSize.height();
int endY{ height };
int spread = 0;
bool argsOK = false;
if (argCount == 10 && PyArg_ParseTuple(args, "iiiiiiiiOi", &startRX, &startRY, &width, &height, &startX, &startY, &endX, &endY, &bytearray, &spread))
{
argsOK = true;
}
if (argCount == 6 && PyArg_ParseTuple(args, "iiiiOi", &startX, &startY, &endX, &endY, &bytearray, &spread))
{
argsOK = true;
}
if (argsOK)
{
if (PyByteArray_Check(bytearray))
{
const int length = PyByteArray_Size(bytearray);
const unsigned arrayItemLength = 5;
if (length % arrayItemLength == 0)
{
QRect myQRect(startRX, startRY, width, height);
QLinearGradient gradient(QPoint(startX, startY), QPoint(endX, endY));
char* data = PyByteArray_AS_STRING(bytearray);
for (int idx = 0; idx < length; idx += arrayItemLength)
{
gradient.setColorAt(
((uint8_t)data[idx]) / 255.0,
QColor(
(uint8_t)(data[idx + 1]),
(uint8_t)(data[idx + 2]),
(uint8_t)(data[idx + 3]),
(uint8_t)(data[idx + 4])
));
}
gradient.setSpread(static_cast<QGradient::Spread>(spread));
getEffect()->_painter->fillRect(myQRect, gradient);
Py_RETURN_NONE;
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Length of bytearray argument should multiple of 5");
return nullptr;
}
}
else
{
PyErr_SetString(PyExc_RuntimeError, "No bytearray properly defined");
return nullptr;
}
}
return nullptr;
}
PyObject* EffectModule::wrapImageConicalGradient(PyObject* self, PyObject* args)
{
int argCount = PyTuple_Size(args);
PyObject* bytearray = nullptr;
int centerX = 0;
int centerY = 0;
int angle = 0;
int startX = 0;
int startY = 0;
int width = getEffect()->_imageSize.width();
int height = getEffect()->_imageSize.height();
bool argsOK = false;
if (argCount == 8 && PyArg_ParseTuple(args, "iiiiiiiO", &startX, &startY, &width, &height, &centerX, &centerY, &angle, &bytearray))
{
argsOK = true;
}
if (argCount == 4 && PyArg_ParseTuple(args, "iiiO", &centerX, &centerY, &angle, &bytearray))
{
argsOK = true;
}
angle = qMax(qMin(angle, 360), 0);
if (argsOK)
{
if (PyByteArray_Check(bytearray))
{
const int length = PyByteArray_Size(bytearray);
const unsigned arrayItemLength = 5;
if (length % arrayItemLength == 0)
{
QRect myQRect(startX, startY, width, height);
QConicalGradient gradient(QPoint(centerX, centerY), angle);
char* data = PyByteArray_AS_STRING(bytearray);
for (int idx = 0; idx < length; idx += arrayItemLength)
{
gradient.setColorAt(
((uint8_t)data[idx]) / 255.0,
QColor(
(uint8_t)(data[idx + 1]),
(uint8_t)(data[idx + 2]),
(uint8_t)(data[idx + 3]),
(uint8_t)(data[idx + 4])
));
}
getEffect()->_painter->fillRect(myQRect, gradient);
Py_RETURN_NONE;
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Length of bytearray argument should multiple of 5");
return nullptr;
}
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Argument 8 is not a bytearray");
return nullptr;
}
}
return nullptr;
}
PyObject* EffectModule::wrapImageRadialGradient(PyObject* self, PyObject* args)
{
int argCount = PyTuple_Size(args);
PyObject* bytearray = nullptr;
int centerX = 0;
int centerY = 0;
int radius = 0;
int focalX = 0;
int focalY = 0;
int focalRadius = 0;
int spread = 0;
int startX = 0;
int startY = 0;
int width = getEffect()->_imageSize.width();
int height = getEffect()->_imageSize.height();
bool argsOK = false;
if (argCount == 12 && PyArg_ParseTuple(args, "iiiiiiiiiiOi", &startX, &startY, &width, &height, &centerX, &centerY, &radius, &focalX, &focalY, &focalRadius, &bytearray, &spread))
{
argsOK = true;
}
if (argCount == 9 && PyArg_ParseTuple(args, "iiiiiiiOi", &startX, &startY, &width, &height, &centerX, &centerY, &radius, &bytearray, &spread))
{
argsOK = true;
focalX = centerX;
focalY = centerY;
focalRadius = radius;
}
if (argCount == 8 && PyArg_ParseTuple(args, "iiiiiiOi", &centerX, &centerY, &radius, &focalX, &focalY, &focalRadius, &bytearray, &spread))
{
argsOK = true;
}
if (argCount == 5 && PyArg_ParseTuple(args, "iiiOi", &centerX, &centerY, &radius, &bytearray, &spread))
{
argsOK = true;
focalX = centerX;
focalY = centerY;
focalRadius = radius;
}
if (argsOK)
{
if (PyByteArray_Check(bytearray))
{
int length = PyByteArray_Size(bytearray);
if (length % 4 == 0)
{
QRect myQRect(startX, startY, width, height);
QRadialGradient gradient(QPoint(centerX, centerY), qMax(radius, 0));
char* data = PyByteArray_AS_STRING(bytearray);
for (int idx = 0; idx < length; idx += 4)
{
gradient.setColorAt(
((uint8_t)data[idx]) / 255.0,
QColor(
(uint8_t)(data[idx + 1]),
(uint8_t)(data[idx + 2]),
(uint8_t)(data[idx + 3])
));
}
gradient.setSpread(static_cast<QGradient::Spread>(spread));
getEffect()->_painter->fillRect(myQRect, gradient);
Py_RETURN_NONE;
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Length of bytearray argument should multiple of 4");
return nullptr;
}
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Last argument is not a bytearray");
return nullptr;
}
}
return nullptr;
}
PyObject* EffectModule::wrapImageDrawPolygon(PyObject* self, PyObject* args)
{
PyObject* bytearray = nullptr;
int argCount = PyTuple_Size(args);
int r = 0;
int g = 0;
int b = 0;
int a = 255;
bool argsOK = false;
if (argCount == 5 && PyArg_ParseTuple(args, "Oiiii", &bytearray, &r, &g, &b, &a))
{
argsOK = true;
}
if (argCount == 4 && PyArg_ParseTuple(args, "Oiii", &bytearray, &r, &g, &b))
{
argsOK = true;
}
if (argsOK)
{
if (PyByteArray_Check(bytearray))
{
int length = PyByteArray_Size(bytearray);
if (length % 2 == 0)
{
QVector <QPoint> points;
char* data = PyByteArray_AS_STRING(bytearray);
for (int idx = 0; idx < length; idx += 2)
{
points.append(QPoint((int)(data[idx]), (int)(data[idx + 1])));
}
QPainter* painter = getEffect()->_painter;
QPen oldPen = painter->pen();
QPen newPen(QColor(r, g, b, a));
painter->setPen(newPen);
painter->setBrush(QBrush(QColor(r, g, b, a), Qt::SolidPattern));
painter->drawPolygon(points);
painter->setPen(oldPen);
Py_RETURN_NONE;
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Length of bytearray argument should multiple of 2");
return nullptr;
}
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Argument 1 is not a bytearray");
return nullptr;
}
}
return nullptr;
}
PyObject* EffectModule::wrapImageDrawPie(PyObject* self, PyObject* args)
{
PyObject* bytearray = nullptr;
QString brush;
int argCount = PyTuple_Size(args);
int radius = 0;
int centerX = 0;
int centerY = 0;
int startAngle = 0;
int spanAngle = 360;
int r = 0;
int g = 0;
int b = 0;
int a = 255;
bool argsOK = false;
if (argCount == 9 && PyArg_ParseTuple(args, "iiiiiiiii", &centerX, &centerY, &radius, &startAngle, &spanAngle, &r, &g, &b, &a))
{
argsOK = true;
}
if (argCount == 8 && PyArg_ParseTuple(args, "iiiiiiii", &centerX, &centerY, &radius, &startAngle, &spanAngle, &r, &g, &b))
{
argsOK = true;
}
if (argCount == 7 && PyArg_ParseTuple(args, "iiiiisO", &centerX, &centerY, &radius, &startAngle, &spanAngle, &brush, &bytearray))
{
argsOK = true;
}
if (argCount == 5 && PyArg_ParseTuple(args, "iiisO", &centerX, &centerY, &radius, &brush, &bytearray))
{
argsOK = true;
}
if (argsOK)
{
QPainter* painter = getEffect()->_painter;
startAngle = qMax(qMin(startAngle, 360), 0);
spanAngle = qMax(qMin(spanAngle, 360), -360);
if (argCount == 7 || argCount == 5)
{
a = 0;
if (PyByteArray_Check(bytearray))
{
int length = PyByteArray_Size(bytearray);
if (length % 5 == 0)
{
QConicalGradient gradient(QPoint(centerX, centerY), startAngle);
char* data = PyByteArray_AS_STRING(bytearray);
for (int idx = 0; idx < length; idx += 5)
{
gradient.setColorAt(
((uint8_t)data[idx]) / 255.0,
QColor(
(uint8_t)(data[idx + 1]),
(uint8_t)(data[idx + 2]),
(uint8_t)(data[idx + 3]),
(uint8_t)(data[idx + 4])
));
}
painter->setBrush(gradient);
Py_RETURN_NONE;
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Length of bytearray argument should multiple of 5");
return nullptr;
}
}
else
{
PyErr_SetString(PyExc_RuntimeError, "Last argument is not a bytearray");
return nullptr;
}
}
else
{
painter->setBrush(QBrush(QColor(r, g, b, a), Qt::SolidPattern));
}
QPen oldPen = painter->pen();
QPen newPen(QColor(r, g, b, a));
painter->setPen(newPen);
painter->drawPie(centerX - radius, centerY - radius, centerX + radius, centerY + radius, startAngle * 16, spanAngle * 16);
painter->setPen(oldPen);
Py_RETURN_NONE;
}
return nullptr;
}
PyObject* EffectModule::wrapImageSolidFill(PyObject* self, PyObject* args)
{
int argCount = PyTuple_Size(args);
int r = 0;
int g = 0;
int b = 0;
int a = 255;
int startX = 0;
int startY = 0;
int width = getEffect()->_imageSize.width();
int height = getEffect()->_imageSize.height();
bool argsOK = false;
if (argCount == 8 && PyArg_ParseTuple(args, "iiiiiiii", &startX, &startY, &width, &height, &r, &g, &b, &a))
{
argsOK = true;
}
if (argCount == 7 && PyArg_ParseTuple(args, "iiiiiii", &startX, &startY, &width, &height, &r, &g, &b))
{
argsOK = true;
}
if (argCount == 4 && PyArg_ParseTuple(args, "iiii", &r, &g, &b, &a))
{
argsOK = true;
}
if (argCount == 3 && PyArg_ParseTuple(args, "iii", &r, &g, &b))
{
argsOK = true;
}
if (argsOK)
{
QRect myQRect(startX, startY, width, height);
getEffect()->_painter->fillRect(myQRect, QColor(r, g, b, a));
Py_RETURN_NONE;
}
return nullptr;
}
PyObject* EffectModule::wrapImageDrawLine(PyObject* self, PyObject* args)
{
int argCount = PyTuple_Size(args);
int r = 0;
int g = 0;
int b = 0;
int a = 255;
int startX = 0;
int startY = 0;
int thick = 1;
int endX = getEffect()->_imageSize.width();
int endY = getEffect()->_imageSize.height();
bool argsOK = false;
if (argCount == 9 && PyArg_ParseTuple(args, "iiiiiiiii", &startX, &startY, &endX, &endY, &thick, &r, &g, &b, &a))
{
argsOK = true;
}
if (argCount == 8 && PyArg_ParseTuple(args, "iiiiiiii", &startX, &startY, &endX, &endY, &thick, &r, &g, &b))
{
argsOK = true;
}
if (argsOK)
{
QPainter* painter = getEffect()->_painter;
QRect myQRect(startX, startY, endX, endY);
QPen oldPen = painter->pen();
QPen newPen(QColor(r, g, b, a));
newPen.setWidth(thick);
painter->setPen(newPen);
painter->drawLine(startX, startY, endX, endY);
painter->setPen(oldPen);
Py_RETURN_NONE;
}
return nullptr;
}
PyObject* EffectModule::wrapImageDrawPoint(PyObject* self, PyObject* args)
{
int argCount = PyTuple_Size(args);
int r = 0;
int g = 0;
int b = 0;
int x = 0;
int y = 0;
int a = 255;
int thick = 1;
bool argsOK = false;
if (argCount == 7 && PyArg_ParseTuple(args, "iiiiiii", &x, &y, &thick, &r, &g, &b, &a))
{
argsOK = true;
}
if (argCount == 6 && PyArg_ParseTuple(args, "iiiiii", &x, &y, &thick, &r, &g, &b))
{
argsOK = true;
}
if (argsOK)
{
QPainter* painter = getEffect()->_painter;
QPen oldPen = painter->pen();
QPen newPen(QColor(r, g, b, a));
newPen.setWidth(thick);
painter->setPen(newPen);
painter->drawPoint(x, y);
painter->setPen(oldPen);
Py_RETURN_NONE;
}
return nullptr;
}
PyObject* EffectModule::wrapImageDrawRect(PyObject* self, PyObject* args)
{
int argCount = PyTuple_Size(args);
int r = 0;
int g = 0;
int b = 0;
int a = 255;
int startX = 0;
int startY = 0;
int thick = 1;
int width = getEffect()->_imageSize.width();
int height = getEffect()->_imageSize.height();
bool argsOK = false;
if (argCount == 9 && PyArg_ParseTuple(args, "iiiiiiiii", &startX, &startY, &width, &height, &thick, &r, &g, &b, &a))
{
argsOK = true;
}
if (argCount == 8 && PyArg_ParseTuple(args, "iiiiiiii", &startX, &startY, &width, &height, &thick, &r, &g, &b))
{
argsOK = true;
}
if (argsOK)
{
QPainter* painter = getEffect()->_painter;
QRect myQRect(startX, startY, width, height);
QPen oldPen = painter->pen();
QPen newPen(QColor(r, g, b, a));
newPen.setWidth(thick);
painter->setPen(newPen);
painter->drawRect(startX, startY, width, height);
painter->setPen(oldPen);
Py_RETURN_NONE;
}
return nullptr;
}
PyObject* EffectModule::wrapImageSetPixel(PyObject* self, PyObject* args)
{
int argCount = PyTuple_Size(args);
int r = 0;
int g = 0;
int b = 0;
int x = 0;
int y = 0;
if (argCount == 5 && PyArg_ParseTuple(args, "iiiii", &x, &y, &r, &g, &b))
{
getEffect()->_image.setPixel(x, y, qRgb(r, g, b));
Py_RETURN_NONE;
}
return nullptr;
}
PyObject* EffectModule::wrapImageGetPixel(PyObject* self, PyObject* args)
{
int argCount = PyTuple_Size(args);
int x = 0;
int y = 0;
if (argCount == 2 && PyArg_ParseTuple(args, "ii", &x, &y))
{
QRgb rgb = getEffect()->_image.pixel(x, y);
return Py_BuildValue("iii", qRed(rgb), qGreen(rgb), qBlue(rgb));
}
return nullptr;
}
PyObject* EffectModule::wrapImageSave(PyObject* self, PyObject* args)
{
QImage img(getEffect()->_image.copy());
getEffect()->_imageStack.append(img);
return Py_BuildValue("i", getEffect()->_imageStack.size() - 1);
}
PyObject* EffectModule::wrapImageMinSize(PyObject* self, PyObject* args)
{
int argCount = PyTuple_Size(args);
int w = 0;
int h = 0;
int width = getEffect()->_imageSize.width();
int height = getEffect()->_imageSize.height();
if (argCount == 2 && PyArg_ParseTuple(args, "ii", &w, &h))
{
if (width < w || height < h)
{
delete getEffect()->_painter;
getEffect()->_image = getEffect()->_image.scaled(qMax(width, w), qMax(height, h), Qt::KeepAspectRatioByExpanding, Qt::SmoothTransformation);
getEffect()->_imageSize = getEffect()->_image.size();
getEffect()->_painter = new QPainter(&(getEffect()->_image));
}
return Py_BuildValue("ii", getEffect()->_image.width(), getEffect()->_image.height());
}
return nullptr;
}
PyObject* EffectModule::wrapImageWidth(PyObject* self, PyObject* args)
{
return Py_BuildValue("i", getEffect()->_imageSize.width());
}
PyObject* EffectModule::wrapImageHeight(PyObject* self, PyObject* args)
{
return Py_BuildValue("i", getEffect()->_imageSize.height());
}
PyObject* EffectModule::wrapImageCRotate(PyObject* self, PyObject* args)
{
int argCount = PyTuple_Size(args);
int angle;
if (argCount == 1 && PyArg_ParseTuple(args, "i", &angle))
{
angle = qMax(qMin(angle, 360), 0);
getEffect()->_painter->rotate(angle);
Py_RETURN_NONE;
}
return nullptr;
}
PyObject* EffectModule::wrapImageCOffset(PyObject* self, PyObject* args)
{
int offsetX = 0;
int offsetY = 0;
int argCount = PyTuple_Size(args);
if (argCount == 2)
{
PyArg_ParseTuple(args, "ii", &offsetX, &offsetY);
}
getEffect()->_painter->translate(QPoint(offsetX, offsetY));
Py_RETURN_NONE;
}
PyObject* EffectModule::wrapImageCShear(PyObject* self, PyObject* args)
{
int sh = 0;
int sv = 0;
int argCount = PyTuple_Size(args);
if (argCount == 2 && PyArg_ParseTuple(args, "ii", &sh, &sv))
{
getEffect()->_painter->shear(sh, sv);
Py_RETURN_NONE;
}
return nullptr;
}
PyObject* EffectModule::wrapImageResetT(PyObject* self, PyObject* args)
{
getEffect()->_painter->resetTransform();
Py_RETURN_NONE;
}