hyperion.ng/libsrc/hyperion/LinearColorSmoothing.cpp

753 lines
21 KiB
C++

// Qt includes
#include <QDateTime>
#include <QTimer>
#include <hyperion/LinearColorSmoothing.h>
#include <hyperion/Hyperion.h>
#include <cmath>
#include <chrono>
#include <thread>
#if defined(COMPILER_GCC)
#define ALWAYS_INLINE inline __attribute__((__always_inline__))
#elif defined(COMPILER_MSVC)
#define ALWAYS_INLINE __forceinline
#else
#define ALWAYS_INLINE inline
#endif
/// Clamps the rounded values to the byte-interval of [0, 255].
ALWAYS_INLINE long clampRounded(const floatT x) {
return std::min(255L, std::max(0L, std::lroundf(x)));
}
// Constants
namespace {
const bool verbose = false;
/// The number of microseconds per millisecond = 1000.
const int64_t MS_PER_MICRO = 1000;
/// The number of bits that are used for shifting the fixed point values
const int FPShift = (sizeof(uint64_t)*8 - (12 + 9));
/// The number of bits that are reduce the shifting when converting from fixed to floating point. 8 bits = 256 values
const int SmallShiftBis = sizeof(uint8_t)*8;
/// The number of bits that are used for shifting the fixed point values plus SmallShiftBis
const int FPShiftSmall = (sizeof(uint64_t)*8 - (12 + 9 + SmallShiftBis));
const char* SETTINGS_KEY_SMOOTHING_TYPE = "type";
const char* SETTINGS_KEY_SETTLING_TIME = "time_ms";
const char* SETTINGS_KEY_UPDATE_FREQUENCY = "updateFrequency";
const char* SETTINGS_KEY_OUTPUT_DELAY = "updateDelay";
const char* SETTINGS_KEY_DECAY = "decay";
const char* SETTINGS_KEY_INTERPOLATION_RATE = "interpolationRate";
const char* SETTINGS_KEY_DITHERING = "dithering";
const int64_t DEFAULT_SETTLINGTIME = 200; // in ms
const int DEFAULT_UPDATEFREQUENCY = 25; // in Hz
constexpr std::chrono::milliseconds DEFAULT_UPDATEINTERVALL{MS_PER_MICRO/ DEFAULT_UPDATEFREQUENCY};
const unsigned DEFAULT_OUTPUTDEPLAY = 0; // in frames
}
using namespace hyperion;
LinearColorSmoothing::LinearColorSmoothing(const QJsonDocument &config, Hyperion *hyperion)
: QObject(hyperion)
, _log(nullptr)
, _hyperion(hyperion)
, _prioMuxer(_hyperion->getMuxerInstance())
, _updateInterval(DEFAULT_UPDATEINTERVALL.count())
, _settlingTime(DEFAULT_SETTLINGTIME)
, _timer(nullptr)
, _outputDelay(DEFAULT_OUTPUTDEPLAY)
, _pause(false)
, _currentConfigId(SmoothingConfigID::SYSTEM)
, _enabled(false)
, _smoothingType(SmoothingType::Linear)
, tempValues(std::vector<uint64_t>(0, 0L))
{
QString subComponent = hyperion->property("instance").toString();
_log= Logger::getInstance("SMOOTHING", subComponent);
// timer
_timer = new QTimer(this);
_timer->setTimerType(Qt::PreciseTimer);
// init cfg (default)
updateConfig(SmoothingConfigID::SYSTEM, DEFAULT_SETTLINGTIME, DEFAULT_UPDATEFREQUENCY, DEFAULT_OUTPUTDEPLAY);
handleSettingsUpdate(settings::SMOOTHING, config);
// add pause on cfg 1
SmoothingCfg cfg {true, 0, 0};
_cfgList.append(cfg);
// listen for comp changes
connect(_hyperion, &Hyperion::compStateChangeRequest, this, &LinearColorSmoothing::componentStateChange);
connect(_timer, &QTimer::timeout, this, &LinearColorSmoothing::updateLeds);
connect(_prioMuxer, &PriorityMuxer::prioritiesChanged, this, [=] (int priority){
const PriorityMuxer::InputInfo priorityInfo = _prioMuxer->getInputInfo(priority);
int smooth_cfg = priorityInfo.smooth_cfg;
if (smooth_cfg != _currentConfigId || smooth_cfg == SmoothingConfigID::EFFECT_DYNAMIC)
{
this->selectConfig(smooth_cfg, false);
}
});
}
LinearColorSmoothing::~LinearColorSmoothing()
{
delete _timer;
}
void LinearColorSmoothing::handleSettingsUpdate(settings::type type, const QJsonDocument &config)
{
if (type == settings::type::SMOOTHING)
{
QJsonObject obj = config.object();
setEnable(obj["enable"].toBool(_enabled));
SmoothingCfg cfg(false,
static_cast<int64_t>(obj[SETTINGS_KEY_SETTLING_TIME].toInt(DEFAULT_SETTLINGTIME)),
static_cast<int64_t>(MS_PER_MICRO / obj[SETTINGS_KEY_UPDATE_FREQUENCY].toDouble(DEFAULT_UPDATEFREQUENCY))
);
const QString typeString = obj[SETTINGS_KEY_SMOOTHING_TYPE].toString();
if(typeString == SETTINGS_KEY_DECAY) {
cfg._type = SmoothingType::Decay;
}
else {
cfg._type = SmoothingType::Linear;
}
cfg._pause = false;
cfg._outputDelay = static_cast<unsigned>(obj[SETTINGS_KEY_OUTPUT_DELAY].toInt(DEFAULT_OUTPUTDEPLAY));
cfg._interpolationRate = obj[SETTINGS_KEY_INTERPOLATION_RATE].toDouble(DEFAULT_UPDATEFREQUENCY);
cfg._dithering = obj[SETTINGS_KEY_DITHERING].toBool(false);
cfg._decay = obj[SETTINGS_KEY_DECAY].toDouble(1.0);
_cfgList[SmoothingConfigID::SYSTEM] = cfg;
DebugIf(_enabled,_log,"%s", QSTRING_CSTR(getConfig(SmoothingConfigID::SYSTEM)));
// if current id is 0, we need to apply the settings (forced)
if (_currentConfigId == SmoothingConfigID::SYSTEM)
{
selectConfig(SmoothingConfigID::SYSTEM, true);
}
}
}
int LinearColorSmoothing::write(const std::vector<ColorRgb> &ledValues)
{
_targetTime = micros() + (MS_PER_MICRO * _settlingTime);
_targetValues = ledValues;
rememberFrame(ledValues);
// received a new target color
if (_previousValues.empty())
{
// not initialized yet
_previousWriteTime = micros();
_previousValues = ledValues;
_previousInterpolationTime = micros();
_timer->start(_updateInterval);
}
return 0;
}
int LinearColorSmoothing::updateLedValues(const std::vector<ColorRgb> &ledValues)
{
int retval = 0;
if (!_enabled)
{
retval = -1;
}
else
{
retval = write(ledValues);
}
return retval;
}
void LinearColorSmoothing::intitializeComponentVectors(const size_t ledCount)
{
// (Re-)Initialize the color-vectors that store the Mean-Value
if (_ledCount != ledCount)
{
_ledCount = ledCount;
const size_t len = 3 * ledCount;
meanValues = std::vector<floatT>(len, 0.0F);
residualErrors = std::vector<floatT>(len, 0.0F);
tempValues = std::vector<uint64_t>(len, 0L);
}
// Zero the temp vector
std::fill(tempValues.begin(), tempValues.end(), 0L);
}
void LinearColorSmoothing::writeDirect()
{
const int64_t now = micros();
_previousValues = _targetValues;
_previousWriteTime = now;
queueColors(_previousValues);
}
void LinearColorSmoothing::writeFrame()
{
const int64_t now = micros();
_previousWriteTime = now;
queueColors(_previousValues);
}
ALWAYS_INLINE int64_t LinearColorSmoothing::micros()
{
const auto now = std::chrono::high_resolution_clock::now();
return (std::chrono::duration_cast<std::chrono::microseconds>(now.time_since_epoch())).count();
}
void LinearColorSmoothing::assembleAndDitherFrame()
{
if (meanValues.empty())
{
return;
}
// The number of LEDs present in each frame
const size_t N = _targetValues.size();
for (size_t i = 0; i < N; ++i)
{
// Add residuals for error diffusion (temporal dithering)
const floatT fr = meanValues[3 * i + 0] + residualErrors[3 * i + 0];
const floatT fg = meanValues[3 * i + 1] + residualErrors[3 * i + 1];
const floatT fb = meanValues[3 * i + 2] + residualErrors[3 * i + 2];
// Convert to to 8-bit value
const long ir = clampRounded(fr);
const long ig = clampRounded(fg);
const long ib = clampRounded(fb);
// Update the colors
ColorRgb &prev = _previousValues[i];
prev.red = static_cast<uint8_t>(ir);
prev.green = static_cast<uint8_t>(ig);
prev.blue = static_cast<uint8_t>(ib);
// Determine the component errors
residualErrors[3 * i + 0] = fr - ir;
residualErrors[3 * i + 1] = fg - ig;
residualErrors[3 * i + 2] = fb - ib;
}
}
void LinearColorSmoothing::assembleFrame()
{
if (meanValues.empty())
{
return;
}
// The number of LEDs present in each frame
const size_t N = _targetValues.size();
for (size_t i = 0; i < N; ++i)
{
// Convert to to 8-bit value
const long ir = clampRounded(meanValues[3 * i + 0]);
const long ig = clampRounded(meanValues[3 * i + 1]);
const long ib = clampRounded(meanValues[3 * i + 2]);
// Update the colors
ColorRgb &prev = _previousValues[i];
prev.red = static_cast<uint8_t>(ir);
prev.green = static_cast<uint8_t>(ig);
prev.blue = static_cast<uint8_t>(ib);
}
}
ALWAYS_INLINE void LinearColorSmoothing::aggregateComponents(const std::vector<ColorRgb>& colors, std::vector<uint64_t>& weighted, const floatT weight) {
// Determine the integer-scale by converting the weight to fixed point
const uint64_t scale = (static_cast<uint64_t>(1L)<<FPShift) * static_cast<double>(weight);
const size_t N = colors.size();
for (size_t i = 0; i < N; ++i)
{
const ColorRgb &color = colors[i];
// Scale the colors
const uint64_t red = scale * color.red;
const uint64_t green = scale * color.green;
const uint64_t blue = scale * color.blue;
// Accumulate in the vector
weighted[3 * i + 0] += red;
weighted[3 * i + 1] += green;
weighted[3 * i + 2] += blue;
}
}
void LinearColorSmoothing::interpolateFrame()
{
const int64_t now = micros();
// The number of leds present in each frame
const size_t N = _targetValues.size();
intitializeComponentVectors(N);
/// Time where the frame has been shown
int64_t frameStart;
/// Time where the frame display would have ended
int64_t frameEnd = now;
/// Time where the current window has started
const int64_t windowStart = now - (MS_PER_MICRO * _settlingTime);
/// The total weight of the frames that were included in our window; sum of the individual weights
floatT fs = 0.0F;
// To calculate the mean component we iterate over all relevant frames;
// from the most recent to the oldest frame that still clips our moving-average window given by time (now)
for (auto it = _frameQueue.rbegin(); it != _frameQueue.rend() && frameEnd > windowStart; ++it)
{
// Starting time of a frame in the window is clipped to the window start
frameStart = std::max(windowStart, it->time);
// Weight the current frame relative to the overall window based on start and end times
const floatT weight = _weightFrame(frameStart, frameEnd, windowStart);
fs += weight;
// Aggregate the RGB components of this frame's LED colors using the individual weighting
aggregateComponents(it->colors, tempValues, weight);
// The previous (earlier) frame display has ended when the current frame stared to show,
// so we can use this as the frame-end time for next iteration
frameEnd = frameStart;
}
/// The inverse scaling factor for the color components, clamped to (0, 1.0]; 1.0 for fs < 1, 1 : fs otherwise
const floatT inv_fs = ((fs < 1.0F) ? 1.0F : 1.0F / fs) / (1 << SmallShiftBis);
// Normalize the mean component values for the window (fs)
for (size_t i = 0; i < 3 * N; ++i)
{
meanValues[i] = (tempValues[i] >> FPShiftSmall) * inv_fs;
}
_previousInterpolationTime = now;
}
void LinearColorSmoothing::performDecay(const int64_t now) {
/// The target time when next frame interpolation should be performed
const int64_t interpolationTarget = _previousInterpolationTime + _interpolationIntervalMicros;
/// The target time when next write operation should be performed
const int64_t writeTarget = _previousWriteTime + _outputIntervalMicros;
/// Whether a frame interpolation is pending
const bool interpolatePending = now > interpolationTarget;
/// Whether a write is pending
const bool writePending = now > writeTarget;
// Check whether a new interpolation frame is due
if (interpolatePending)
{
interpolateFrame();
++_interpolationCounter;
// Assemble the frame now when no dithering is applied
if(!_dithering) {
assembleFrame();
}
}
// Check whether to frame output is due
if (writePending)
{
// Dither the frame to diffuse rounding errors
if(_dithering) {
assembleAndDitherFrame();
}
writeFrame();
++_renderedCounter;
}
// Check for sleep when no operation is pending.
// As our QTimer is not capable of sub 1ms timing but instead performs spinning -
// we have to do µsec-sleep to free CPU time; otherwise the thread would consume 100% CPU time.
if(_updateInterval <= 0 && !(interpolatePending || writePending)) {
const int64_t nextActionExpected = std::min(interpolationTarget, writeTarget);
const int64_t microsTillNextAction = nextActionExpected - now;
const int64_t SLEEP_MAX_MICROS = 1000L; // We want to use usleep for up to 1ms
const int64_t SLEEP_RES_MICROS = 100L; // Expected resolution is >= 100µs on stock linux
if(microsTillNextAction > SLEEP_RES_MICROS) {
const int64_t wait = std::min(microsTillNextAction - SLEEP_RES_MICROS, SLEEP_MAX_MICROS);
std::this_thread::sleep_for(std::chrono::microseconds(wait));
}
}
// Write stats every 30 sec
if ((now > (_renderedStatTime + 30 * 1000000)) && (_renderedCounter > _renderedStatCounter))
{
Debug(_log, "decay - rendered frames [%d] (%f/s), interpolated frames [%d] (%f/s) in [%f ms]"
, _renderedCounter - _renderedStatCounter
, (1.0F * (_renderedCounter - _renderedStatCounter) / ((now - _renderedStatTime) / 1000000.0F))
, _interpolationCounter - _interpolationStatCounter
, (1.0F * (_interpolationCounter - _interpolationStatCounter) / ((now - _renderedStatTime) / 1000000.0F))
, (now - _renderedStatTime) / 1000.0F
);
_renderedStatTime = now;
_renderedStatCounter = _renderedCounter;
_interpolationStatCounter = _interpolationCounter;
}
}
void LinearColorSmoothing::performLinear(const int64_t now) {
const int64_t deltaTime = _targetTime - now;
const float k = 1.0F - 1.0F * deltaTime / (_targetTime - _previousWriteTime);
const size_t N = _previousValues.size();
for (size_t i = 0; i < N; ++i)
{
const ColorRgb &target = _targetValues[i];
ColorRgb &prev = _previousValues[i];
const int reddif = target.red - prev.red;
const int greendif = target.green - prev.green;
const int bluedif = target.blue - prev.blue;
prev.red += (reddif < 0 ? -1:1) * std::ceil(k * std::abs(reddif));
prev.green += (greendif < 0 ? -1:1) * std::ceil(k * std::abs(greendif));
prev.blue += (bluedif < 0 ? -1:1) * std::ceil(k * std::abs(bluedif));
}
writeFrame();
}
void LinearColorSmoothing::updateLeds()
{
const int64_t now = micros();
const int64_t deltaTime = _targetTime - now;
if (deltaTime < 0)
{
writeDirect();
return;
}
switch (_smoothingType)
{
case SmoothingType::Decay:
performDecay(now);
break;
case SmoothingType::Linear:
default:
performLinear(now);
break;
}
}
void LinearColorSmoothing::rememberFrame(const std::vector<ColorRgb> &ledColors)
{
const int64_t now = micros();
// Maintain the queue by removing outdated frames
const int64_t windowStart = now - (MS_PER_MICRO * _settlingTime);
int p = -1; // Start with -1 instead of 0, so we keep the last frame at least partially clipping the window
// As the frames are ordered chronologically we scan from the front (oldest) till we find the first fresh frame
for (auto it = _frameQueue.begin(); it != _frameQueue.end() && it->time < windowStart; ++it)
{
++p;
}
if (p > 0)
{
_frameQueue.erase(_frameQueue.begin(), _frameQueue.begin() + p);
}
// Append the latest frame at back of the queue
const REMEMBERED_FRAME frame = REMEMBERED_FRAME(now, ledColors);
_frameQueue.push_back(frame);
}
void LinearColorSmoothing::clearRememberedFrames()
{
_frameQueue.clear();
_ledCount = 0;
meanValues.clear();
residualErrors.clear();
tempValues.clear();
}
void LinearColorSmoothing::queueColors(const std::vector<ColorRgb> &ledColors)
{
if (_outputDelay == 0)
{
// No output delay => immediate write
if (!_pause)
{
emit _hyperion->ledDeviceData(ledColors);
}
}
else
{
// Push new colors in the delay-buffer
_outputQueue.push_back(ledColors);
// If the delay-buffer is filled pop the front and write to device
if (!_outputQueue.empty())
{
if (_outputQueue.size() > _outputDelay)
{
if (!_pause)
{
emit _hyperion->ledDeviceData(_outputQueue.front());
}
_outputQueue.pop_front();
}
}
}
}
void LinearColorSmoothing::clearQueuedColors()
{
_timer->stop();
_previousValues.clear();
_targetValues.clear();
clearRememberedFrames();
}
void LinearColorSmoothing::componentStateChange(hyperion::Components component, bool state)
{
if (component == hyperion::COMP_SMOOTHING)
{
setEnable(state);
}
}
void LinearColorSmoothing::setEnable(bool enable)
{
_enabled = enable;
if (!_enabled)
{
clearQueuedColors();
}
// update comp register
_hyperion->setNewComponentState(hyperion::COMP_SMOOTHING, enable);
}
void LinearColorSmoothing::setPause(bool pause)
{
_pause = pause;
}
unsigned LinearColorSmoothing::addConfig(int settlingTime_ms, double ledUpdateFrequency_hz, unsigned updateDelay)
{
SmoothingCfg cfg {
false,
settlingTime_ms,
static_cast<int>(MS_PER_MICRO / ledUpdateFrequency_hz),
SmoothingType::Linear,
ledUpdateFrequency_hz,
updateDelay
};
_cfgList.append(cfg);
DebugIf(verbose && _enabled, _log,"%s", QSTRING_CSTR(getConfig(_cfgList.count()-1)));
return _cfgList.count() - 1;
}
unsigned LinearColorSmoothing::updateConfig(int cfgID, int settlingTime_ms, double ledUpdateFrequency_hz, unsigned updateDelay)
{
int updatedCfgID = cfgID;
if (cfgID < _cfgList.count())
{
SmoothingCfg cfg {
false,
settlingTime_ms,
static_cast<int>(MS_PER_MICRO / ledUpdateFrequency_hz),
SmoothingType::Linear,
ledUpdateFrequency_hz,
updateDelay
};
_cfgList[updatedCfgID] = cfg;
DebugIf(verbose && _enabled, _log,"%s", QSTRING_CSTR(getConfig(updatedCfgID)));
}
else
{
updatedCfgID = addConfig(settlingTime_ms, ledUpdateFrequency_hz, updateDelay);
}
return updatedCfgID;
}
bool LinearColorSmoothing::selectConfig(int cfgID, bool force)
{
if (_currentConfigId == cfgID && !force)
{
return true;
}
if (cfgID < _cfgList.count() )
{
_smoothingType = _cfgList[cfgID]._type;
_settlingTime = _cfgList[cfgID]._settlingTime;
_outputDelay = _cfgList[cfgID]._outputDelay;
_pause = _cfgList[cfgID]._pause;
_outputIntervalMicros = int64_t(1000000.0 / _updateInterval); // 1s = 1e6 µs
_interpolationRate = _cfgList[cfgID]._interpolationRate;
_interpolationIntervalMicros = int64_t(1000000.0 / _interpolationRate);
_dithering = _cfgList[cfgID]._dithering;
_decay = _cfgList[cfgID]._decay;
_invWindow = 1.0F / (MS_PER_MICRO * _settlingTime);
// Set _weightFrame based on the given decay
const float decay = _decay;
const floatT inv_window = _invWindow;
// For decay != 1 use power-based approach for calculating the moving average values
if(std::abs(decay - 1.0F) > std::numeric_limits<float>::epsilon()) {
// Exponential Decay
_weightFrame = [inv_window,decay](const int64_t fs, const int64_t fe, const int64_t ws) {
const floatT s = (fs - ws) * inv_window;
const floatT t = (fe - ws) * inv_window;
return (decay + 1) * (std::pow(t, decay) - std::pow(s, decay));
};
} else {
// For decay == 1 use linear interpolation of the moving average values
// Linear Decay
_weightFrame = [inv_window](const int64_t fs, const int64_t fe, const int64_t /*ws*/) {
// Linear weighting = (end - start) * scale
return static_cast<floatT>((fe - fs) * inv_window);
};
}
_renderedStatTime = micros();
_renderedCounter = 0;
_renderedStatCounter = 0;
_interpolationCounter = 0;
_interpolationStatCounter = 0;
if (_cfgList[cfgID]._updateInterval != _updateInterval)
{
_timer->stop();
_updateInterval = _cfgList[cfgID]._updateInterval;
if (this->enabled())
{
_timer->start(_updateInterval);
}
}
_currentConfigId = cfgID;
DebugIf(_enabled, _log,"%s", QSTRING_CSTR(getConfig(_currentConfigId)));
return true;
}
// reset to default
_currentConfigId = SmoothingConfigID::SYSTEM;
return false;
}
QString LinearColorSmoothing::getConfig(int cfgID)
{
QString configText;
if (cfgID < _cfgList.count())
{
SmoothingCfg cfg = _cfgList[cfgID];
configText = QString ("[%1] - type: %2, pause: %3, settlingTime: %4ms, interval: %5ms (%6Hz), delay: %7 frames")
.arg(cfgID)
.arg(SmoothingCfg::EnumToString(cfg._type),(cfg._pause) ? "true" : "false")
.arg(cfg._settlingTime)
.arg(cfg._updateInterval)
.arg(int(MS_PER_MICRO/cfg._updateInterval))
.arg(cfg._outputDelay);
switch (cfg._type) {
case SmoothingType::Linear:
break;
case SmoothingType::Decay:
{
const double thalf = (1.0-std::pow(1.0/2, 1.0/_decay))*_settlingTime;
configText += QString (", interpolationRate: %1Hz, dithering: %2, decay: %3 -> halftime: %4ms")
.arg(cfg._interpolationRate,0,'f',2)
.arg((cfg._dithering) ? "true" : "false")
.arg(cfg._decay,0,'f',2)
.arg(thalf,0,'f',2);
break;
}
}
}
return configText;
}
LinearColorSmoothing::SmoothingCfg::SmoothingCfg() :
_pause(false),
_settlingTime(DEFAULT_SETTLINGTIME),
_updateInterval(DEFAULT_UPDATEFREQUENCY),
_type(SmoothingType::Linear)
{
}
LinearColorSmoothing::SmoothingCfg::SmoothingCfg(bool pause, int64_t settlingTime, int updateInterval, SmoothingType type, double interpolationRate, unsigned outputDelay, bool dithering, double decay) :
_pause(pause),
_settlingTime(settlingTime),
_updateInterval(updateInterval),
_type(type),
_interpolationRate(interpolationRate),
_outputDelay(outputDelay),
_dithering(dithering),
_decay(decay)
{
}
QString LinearColorSmoothing::SmoothingCfg::EnumToString(SmoothingType type)
{
if (type == SmoothingType::Linear) {
return QString("Linear");
}
if (type == SmoothingType::Decay)
{
return QString("Decay");
}
return QString("Unknown");
}